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Abstract

The nitrogen (N) fertilization synthetic or biological is primordial for food 
production worldwide. The consumption of N fertilizers in agricultural systems 
increased in exponential scale, mainly in developing countries. However, some 
negative points are associated to industrial N consumption; consequently the industry 
promoted ways to minimize N losses in production systems of tropical agriculture. 
Biological nitrogen fixation is a very important natural and sustainable process for the 
growth of leguminous plants, in which many micronutrients are involved, mainly as 
enzyme activators or prosthetic group. However, other mechanisms in the rhizosphere 
and molecular region still need to be clarified. Therefore, the aim of this chapter is to 
compile information about the historical and current affairs about the advances in N 
fertilization in tropical environments through a history from N fertilization world-
wide, N balance in the main agricultural systems, introduction of alternative ways to 
avoid N losses, advances between BNF and micronutrients, as well as the effects of N 
absence in plant metabolisms. Biological nitrogen fixation is a very important natural 
process for the growth of leguminous plants, in addition many metallic nutrients, 
micronutrients, are involved in BNF metabolism, mainly as enzyme activators or 
prosthetic group. But other mechanisms in the rhizosphere and molecular region still 
need to be clarified.

Keywords: ammonia synthesis, biological N fixation, humic substances, N balance, 
volatilization

1. Introduction

Hellriegel and Wilfarth showed definitive evidence for N2 fixation by microbes 
in legumes in 1886, but the industrial process to fertilizer production known as the 
Haber-Bosch was established just in 1906, which uses a catalytic agent at high pres-
sure and high temperature [1].

Actually, the world population has now been increasingly relying on nitrogen 
(N) fertilizers in order to keep up with the demands of food and economic growth 
rates; on the other hand, less than 30% of synthetic fertilizers would actually be 
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utilized; the unused chemicals sprayed on crops would be lost in the field and could 
subsequently cause serious environmental problems.

Urea is a popular N source in developing countries due to its advantages of a high 
N content, safety, and easy transportation [2]. However, the increase of pH and 
surface soil NH4

+ concentrations resulting from urea hydrolysis can exacerbate NH3 
emission.

This causes low N use efficiency, especially in alkaline soils or soils with low 
sorption capacity, which limits the use of urea fertilizer in Europe [3]. In tropical 
areas, increasing the adoption of no-tillage systems also induces to high N losses 
from urea fertilization, in tropical soils, due to high temperatures and moisture; 
NH3 losses exceeding 40% of the surface-applied urea N have been reported, 
especially under no-till or perennial crops where plant residues are kept on the soil 
surface [4].

Nitrogen losses by NH3 emission not only brings economic loss to farmers, 
but also detrimental effects to ecosystems and human health, while the biological 
nitrogen fixation (BNF) has the advantage of being environmentally friendly and 
therefore would be ideal for sustainable agriculture.

Enormous progress in almost all aspects of BNF has been made in the past 
century, especially in the recent two decades, in genetics and biochemistry, culmi-
nating in the determination of the crystallographic structures of both nitrogenase 
components and micronutrients metabolism.

These information collaborated to elucidate N assimilation routes in plants 
clarifying further its essentiality and allowing to infer that plants can be affected 
negatively in molecular even genetic level in N absence.

Therefore, the aim of this chapter is to compile information about the historical 
and current concerns about the advances in N fertilization in tropical environ-
ments through a history from N fertilization worldwide, N balance in the main 
agricultural systems, introduction of alternatives ways to avoid N losses, advances 
between BNF and micronutrients, as well as the effects of N absence in plant 
metabolism.

2. History of nitrogen fertilization on tropical environmental

Nitrogen is an essential element to all organisms, because it is part of protein, 
acids, and other organic compounds [5]. The importance of this nutrient for plants 
is already known since the 1660s; however, only at 1804 De Saussure received 
credits for N essentiality after observations of nitrate uptake from soil solution. In 
this same period, other researchers, as Liebig at 1840, fortified the idea of plants 
absorb N from atmosphere [6, 7].

Around 78% of the atmosphere gas is compound for N however in gaseous 
form chemically unavailable. In front of the increased demand by food production 
and need of N restitution after crop harvests, Fritz Haber at 1909 synthetizes the 
gaseous element to ammonia (NH3) through a reaction with hydrogen and iron on 
high pressure and temperatures, which posteriorly was industrially developed by 
Carl Bosch in 1912–1913, resulting at the known Haber-Bosch process [8].

The N sources used on agricultural activities, even at the end of the eighteenth 
century, were from crop residues and animal manure modified or not through 
composting. The production and management of N fertilizers to increase crop yield, 
as well as corn [9, 10] and wheat [11] around the world [12] have begun at the Green 
Revolution of the nineteenth century, followed by ammonia synthesis in the begin-
ning of the twentieth century and the increased need of high yield on agricultural 
areas [13].
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World 2015 2016 2017 2018 2019 2020 Reference

Total capacity NH3 174.781 181.228 185.222 186.804 186.920 188.310 [11]

Africa

Total capacity NH3 8.310 9.545 10.739 10.700 10.700 11.000

Americas

Total capacity NH3 24.301 27.618 28.688 29.304 29.320 29.346

Asia

Total capacity NH3 99.959 101.188 101.703 101.734 101.734 102.799

Europe

Total capacity NH3 40.378 41.044 42.338 43.211 43.311 43.311

Oceania

Total capacity NH3 1.833 1.833 1.854 1.854 1.854 1.854

Table 1. 
Estimative of supply capacity of N (NH3) in continents (in thousand tons) of 2015–2020 (adapted of FAO [12]).

World 1960 1980 2000 Reference

Animal manure applied in soil 22% 16% 14% [14]

Animal feces 56% 40% 40%

Synthetic fertilizers 22% 44% 46%

Africa

Animal manure applied in soil 4% 4% 4%

Animal manure left in pasture 91% 84% 84%

Synthetic fertilizers 5% 12% 12%

Americas

Animal manure applied in soil 16% 13% 13%

Animal manure left in pasture 60% 50% 47%

Synthetic fertilizers 24% 37% 40%

Asia

Animal manure applied in soil 20% 13% 12%

Animal manure left in pasture 61% 34% 30%

Synthetic fertilizers 19% 53% 58%

Europe

Animal manure applied in soil 40% 28% 30%

Animal manure left in pasture 27% 17% 17%

Synthetic fertilizers 33% 55% 53%

Oceania

Animal manure applied in soil 2% 3% 4%

Animal manure left in pasture 96% 91% 77%

Synthetic fertilizers 2% 6% 19%

The percentual represents averages from the 1960s, 1980s, and 2000s (adapted of FAO [12]).

Table 2. 
Global cumulative of N fertilization from animal manure and fertilizers between 1961 and 2014.
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Data from the FAO [14] estimated that the global capacity of N ammonia offer 
increases annually of 1.5% in average, with production of 174,781–188,310 thou-
sands of tons of 2015–2020 (Table 1).

In addition, during this period, Africa, Oceania, Europe, and the Americas 
increased the capacity to 32.4, 1.1, 7.3, and 20.8%, respectively, however, stands out 
to Asia continent with the highest productive capacity estimated to 102,799 thou-
sands of tons of N to 2020 (Table 1).

Estimates in global scale from FAOSTAT [15] show N inputs from animal 
manure increased from 66 to 113 million from 1961 to 2014, while N fertilizers 
applied in soils increased from 18 to 28 million of tons of N, respectively.

The use of N fertilizer at Europe continent increased 33% (about 5 million of 
tons of N), as a similar tendency observed in others regions (Table 2).

Brazil is one of the biggest fertilizer consumers in the world. The signifi-
cant increase in fertilizer consumption occurred between 1988 and 2010 [16] 
as consequence of public policy implementation and Brazilian agriculture 
modernization.

Nitrogen had a higher growth consumption among the nutrients from NPK in 
the analyzed period, around 250%, from 814,952 to 2,854,189 tons; however, N fer-
tilizers consumption was 12,211,855 ton from 2010 to 2013 and to around 15,469,549 
tons from 2014 to 2017 [17, 18].

3. Nitrogen balance in the tropical agricultural systems

Nitrogen balance in the systems becomes a concern for tropical agriculture as a 
result of the high scale of N fertilizer production. Nutrient balance is a parameter 
that analyzes the relation between quantity of vegetable biomass produced and 
nutrient applied. Besides, nutrient balance is a tool with easy application and able to 
guide the management to efficient fertilization [19].

Nitrogen balance as a management technique accounts the nutrient exportation 
by crops, residual in soil and the N losses [20]; thus it is essential to a balanced 
fertilization strategy aiming to maximize the economic return and ensure the 
environmental quality.

The calculations of nutrient balance evaluation must account for the input and 
output of N because this nutrient can be distributed by soil, plant, and animal 
(Table 3). Between 95 and 100% of the total N input into soil is from the surface 
through rainfall or dust and aerosols, irrigation, runoff and groundwater, biologi-
cal fixation by phototrophic and heterotrophic organisms, organic and inorganic 
fertilization, and seed reserves. Besides the plants exports, the N output occurs 
by erosion, leaching and drainage, ammonia volatilization, denitrification, and 
senescence plants [21, 22].

Brazilian crop exports 50% of N in harvested product mainly by the largest 
exportations of soybean (70%), corn (15%), sugarcane (8%), rice (2%), and 
wheat (2%) [17]. However, these N quantities have contribution from the N bio-
logic fixation (NBF), mainly from soybean with 82% of the total N input in crops 
production.

Soybean occupied the largest area of agriculture in Brazil between 2013 and 
2016 and also was responsible for the largest nutrient exportation, although N is 
not applied in this crop, it comprised 70% of the total N exported by all crops, 
while phosphorus and potassium reached 57.5 and 56.8%, respectively [23]. Analyze 
nutrient exportation nutrient exportation for area unity in this period was found 
out the largest nutrient exporters were soybean (181 kg ha−1), tomato (159 kg ha−1), 
and cotton (129 kg ha−1).
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4. Ways to avoid N losses from agricultural systems

In agricultural systems there are losses in general; however, N losses are consid-
ered highly relevant [24, 25]. Nitrogen losses are a potential contaminant and can 
impact production cost. Nitrogen is a dynamic element in soil and can be lost to the 
atmosphere by denitrification and ammonia volatilization [24, 25].

Ammonia volatilization is a concerning problem because it represents high N 
losses in soil–plant system besides to be a threat for global environmental [26], while 
the N losses by denitrification in tropical areas are less significant in consequence of 
its restriction in the use of nitrate as fertilizer due its explosive potential [25–28].

Global agricultural production is responsible for 50% of N losses by ammonia 
volatilization meaning 37 tons of N for year; however, the losses can be higher 
according to the N source, application way, soil management, climate, soil tempera-
ture, and humidity [29–34].

Source Amount References

N input [3]

Total N fertilization rates A

Total manure applied B

N symbiotic fixation C

Atmospheric deposition of N D

Irrigation water E

N input by seed in harvest F

N nonsymbiotic fixation G

Total N input X = A + B + C + D + E + F + G

N output

N exportation in crops and/or biomass I

N losses by denitrification J

N losses by ammonia volatilization K

N losses by plants senescence L

Gaseous losses of N (except NH3 

volatilization)

M

N losses by surface runoff N

N leaching O

N losses by soil erosion P

Total N output Y=I + J + K + L + M + N + O + P

Total N in soil

Total N in beginning of the experiment Q

Total N in end of the experiment R

Total N changes in soil Z = R-Q

N balance

During experiment performance Nb = X-Y-Z

N balance for year

(kg N ha−1 yr−1)

Nb/Years of experiment

Table 3. 
N balance from total of inputs and outputs and N in soil in the beginning and final of agricultural 
experiments, modified from [3].
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Urea is the most N source used in the world; however, also it has high suscepti-
bility to be lost in agricultural systems [24, 25]. The high presence of urease enzyme 
in soil causes a rapid hydrolysis of urea and, consequently, ammonia losses to the 
atmosphere [35].

Variable quantities of ammonia lost to the atmosphere were related by urea use 
in agriculture [35–37] according to the exemplified in Table 4.

Urease is an extracellular enzyme naturally presents in soil, plants, and microor-
ganisms acting as a catalyzer of urea in the hydrolysis process [30–32]. This chemi-
cal process induces excess of protons (H+); consequently it rises pH in soil around 
the fertilizer granules of 6.5–8.8 or until 9.0 causing unbalance between ammonium 
(NH4

+) and ammonia (NH3) [33, 34].
During hydrolysis ammonium carbonate is formed, which is dissociated to pro-

duce ammonia ions and hydroxide; however, the relative concentration of ammonia 
and ammonium is determined by the pH in soil solution, and ammonia is favored 
under high pH condition according to equations [28].

    NH  4     +  +  OH   
−
  ↔  NH  3   +  H  2   O  (1)

     ( NH 2  )     2CO +  2H 2 O →  ( NH 4  )   2CO 3   →   NH 4  +  +  NH 3   ↑   +  CO 2   +  OH  −     (2)

Researches about urease inhibition in soil have begun over than 70 years ago, 
resulting in many compounds evaluated and patented as urease inhibitors [38]. 
Urease has a great effect on the soil-plant system through plant N efficiency, as well 
as being a versatile enzyme, presenting technological, biotechnological and trans-
genic applications [39].

Nitrogen losses can be avoided or reduced through organic or inorganic chemical 
compounds included in urea as an able technology to increase the efficiency of N 
fertilization at low cost [40–42]. Urea with urease inhibitor can cost around 30% 
higher than conventional urea [43].

The phosphorotriamides, hydroquinone, catechol, copper, boron, and zinc 
are the most evaluated additives as urease inhibitor [44]. There are more than 

Rate of applied 

(kg N ha−1)

Mean % N 

volatilized

Location Reference

Grassland 

soils

180 22.8 Argentina [16–22]

15–200 17.6 New Zealand

50 36.0 USA

30–150 26.7 UK

25 7.5 New Zealand

Arable soils 50

150

55

30

Brazil

Brazil

[11, 17, 23–29]

120 77 Brazil

90 17.8 Denmark

200 30 India

60 7.9 Argentina

46 23 Australia

Table 4. 
Examples of ammonia volatilization due to urea application in different soils, modified from [20].
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40 phosphorotriamides synthetized considered the most effective compound to 
urease inhibition because its composition comprises a functional group containing 
P=O or P=S bonded for at least one free amide (NH2) to react with urease active 
sites and they are considered [45].

Urease inhibitor known as NBPt (N-(n-butyl) thiophosphoric triamide) has 
been the most used additives in Brazil, in which urea is the most used N source.

This additive is dissolved in a nonaqueous solvent to adding characteristics as (i) 
larger stability to NBPt molecule under temperature, humidity and transportation 
variances, and (ii) higher solubility; (iii) improves adherence of mix solvent + NBPt 
to urea granule, (iv) low toxicity, and inflammable potential; and (v) acts as buffer 
agent to keep alkaline pH similar to hydrolysis environment of urea in soil providing 
NBPt stability [43].

The largest of compounds used along with urea are low efficient when applied 
in soil [43]. NBPt aim is to retard the ammonia volatilization peak [46]. Generally, 
chemical compounds with similar structure as urea can be more efficient to retard 
the volatilization; thus, the bond sites and length of amide of phosphoryl triaside 
are similar to urea; however, there are no substrates for urease [45].

Recently, lab researches reported beneficial and/or synergic effects of the 
humic substances use with urea [47–49]; however, the action mechanism is still 
unknown [49]; also depending of humic substances, the results can be contradic-
tory [50, 51], but there are hypotheses that urease enzymes reduce with the asso-
ciation of humic acid and urea [48]; besides it minimizes N losses, it can improve 
buffer effect in soil pH [52].

Urease inhibitor and humic substances with urea at adjusted pH (pH = 7) 
provided reduction of 50% from total N volatilization on a Latossolo Vermelho on 
sugar cane [53].

5.  Interaction between biological N fixation (BNF) and micronutrients 
to higher plants

Biological N fixation (BNF) is an important process to global agricultural sys-
tems. This phenomenon was discovered in the mid of the nineteenth century by the 
German chemist Hermann Hellriegel (1831–1895); however, factors on root nodules 
were unknown, until the Dutch microbiologist and botanic Martinus Beijerinck 
(1851–1931) identifies microorganisms on root nodules able to realize chemical 
process to transform atmospherically N to ammonia allowing fixation and absorp-
tion by plants, proving the symbiosis between legumes and bacterial [54].

Fixation biological of N2 (BNF) through the bacteria from genus Bradyrhizobium 
can supply N quantity necessary in legume crops as soybean, besides it is currently 
observed for many researchers as a clean technology contributing to replace mineral 
N fertilizers in legume crops [55].

Nitrogen fixation by bacteria already is well described [56]; however, currently 
studies are focused in nutrients involved in this metabolism, especially micronutri-
ents [57, 58]. Among the micronutrients able to influence the BNF are boron, cop-
per, zinc, cobalt, iron, nickel, manganese, and molybdenum, essential as structural 
components and enzyme activators in plants [56–59].

Iron is necessary to the production of cofactor FeMo that acts along with nitro-
genase enzymes, which can affect significantly the BNF [60]. Excess or default 
of zinc and nickel can affect the established bacteria inside of the nodules and its 
symbiosis with plants [57].

There was an increase in BNF and N uptake as a result of the growth of nodules 
in number and mass with boron foliar application, and these results were attributed 
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Figure 1. 
Root nodules from legume. A1, longitudinal section; A2, approximated image on nodules developed with no Ni; 
B1,longitudinal section; B2, approximated image on nodules developed with 0.5 g dm−3 of Ni; C1, longitudinal 
section; C2, approximated image on nodules developed with 10 g dm−3 of Ni [64].

to the role of boron in the induction of nitrate assimilation by increasing protein 
synthesis by plant [58].

Manganese has direct role on many enzymatic processes on the BNF, including 
amide hydrolase enzyme which is directly dependent of Mn+2, and it is responsible 
for ureide degradation being able to control the BNF under hydric deficiency [61].

Low copper affects the nodule formation and reduces the quantity of fixation 
bacteria; this element is essential for both bacteria and plants; however, its direct 
role on BNF is still unclear [59].

Molybdenum is an essential nutrient to BNF taking part on nitrate reductase 
with the reduction of nitrate (NO3

−) to nitrite (NO2
−) and on the nitrogenase 

process in conversion of dinitrogen (N2) to ammonia (NH3) by fixation bacteria. 
The low quantity demand of molybdenum allows its application on soil and foliar 
or even by seeds treatments, which is a form of quality aggregation to the seeds by 
affecting positively on germination [62].

Cobalt is a component of cobalamin and leghemoglobin synthesis, which is 
controlling their levels on nodules and avoiding nitrogenase enzyme inactivation; 
thus this element can be considered essential to N2 fixation [63].

Nickel can affect directly the presence and quantity of fixation microorgan-
isms because it is a hydrogenase component (Ni-Fe), which can recycle H2 that is 



9

Advancement of Nitrogen Fertilization on Tropical Environmental
DOI: http://dx.doi.org/10.5772/intechopen.90699

generated from N reduction and could affect positively or negatively the legume 
metabolism [64]. Nickel balance on BNF can be seen on fixation nodules where in 
its absence causes large formation of internal cells according to Figure 1.

6. Recent reports about N absence on plants metabolism

Even though the essentiality had been established for N at higher plants, there 
are still remained doubts about how the N absence can affect the metabolism. 
Recently, by modern techniques and sensible equipment, it was possible to deter-
mine clearly as N absence affects plant metabolism and production.

The N deficiency exposure of Olea europaea plants was described as a significant 
decrease on chlorophyll a and net photosynthetic rate (Figure 2). Photosynthesis is 
a process that involves light absorption by the photosynthetic pigments present in 

Figure 2. 
Chlorophyll a (Chl a), nitrogen content, and net photosynthetic rate (Amax) in Olea europaea plants exposed 
to nitrogen deficiency [65].
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light-harvesting complexes, being crucial for plant development and largely depen-
dent on the leaf N content, because N composes the chlorophyll molecules [65].

The effects of N deficiency in the leaves of Oryza sativa seedlings were verified 
that the fluorescence parameters were negatively modulated in N-deficient plants 
[66]. While Figure 2 presents few modifications until the fifth day in N-deficient 
plants, when compared with control plants, however as nitrogen deficiency contin-
ued, chlorophyll fluorescence of N-deficient plants was significantly impacted, in 
comparison with control plants.

The decrease in the ratio Fv/Fm of plants under water deficit indicates reduction 
in the photochemical activity, leading to the inhibition of the photosynthetic rate and 
the generation of reactive oxygen radicals in the chloroplast, causing damages to PSII 
components. Additionally, the decline in ETR values of plants under water deficit is 
due to the deficiency of plastoquinone (PQ ) used in oxidation-reduction reactions.

7. Concluding remarks

Nitrogen fertilizer consumption follows the increasing demand by food, fiber, 
and energy production. The quantification of nitrogen inputs and outputs on 
agricultural system has been a useful and efficient tool to the evaluation of manage-
ments, mainly to the tropical agricultural.

Biological fixation is an important nitrogen input to productive systems com-
prising benefits in economic and environmental concerns, mainly for tropical 
agriculture; however, the narrow relation among this process and micronutrients 
and its metabolic routes still needs to be clarified.

Advances of the N fertilization on tropical environment reported at this chapter 
are focused mainly in an attempt to reduce ammonia volatilization from urea in 
consequence of its largest use as N source.

Among urease inhibitors used in tropical agriculture, NBPt has been high-
lighted; however, humic substances have been shown as a future alternative to 
reduce ammonia volatilization that still requires knowledge about its origin, 
molecular composition, and environmental questions.

© 2020 The Author(s). Licensee IntechOpen. This chapter is distributed under the terms 
of the Creative Commons Attribution License (http://creativecommons.org/licenses/
by/3.0), which permits unrestricted use, distribution, and reproduction in any medium, 
provided the original work is properly cited. 
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