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Chapter

Progressive Underwater
Exploration with a Corridor-Based
Navigation System
Mario Alberto Jordan

Abstract

The present work focuses on the exploration of underwater environments by
means of autonomous submarines like AUVs using vision-based navigation.
An approach called Corridor SLAM (C-SLAM) was developed for this purpose.
It implements a global exploration strategy that consists of first creating a trunk
corridor on the seabed and then branching as far as possible in different directions
to increase the explored region. The system guarantees the safe return of the
vehicle to the starting point by taking into account a metric of the corridor lengths
that are related to their energy autonomy. Experimental trials in a basin with
underwater scenarios demonstrated the feasibility of the approach.

Keywords: monocular active SLAM, vision-based navigation, dense mapping,
feature-based SLAM, corridor network, path planning, guidance system,
self-similarity, sunlight caustics

1. Introduction

Vision-based SLAM systems are much appreciated nowadays in a broad
spectrum of applications in robotics, autonomous navigation, and guidance
systems, in airborne, underwater, and terrestrial environments [1–4]. A global
comparison shows that SLAM applications underwater are less abundant (see some
state-of-the-art works) [5–10].

In particular, underwater navigation generally excludes any form of global
positioning system such as in other environments, so vision is a sound alternative,
provided visibility is good enough. On the other hand, in turbid waters it is possible,
to some extent, to navigate at low altitude on the seabed. However, in these extreme
cases, the texture of the seabed may appear voluminous, which implies visual
occlusions and collision probabilities. Conversely, shallow waters, rapid changes in
the natural illumination, for example, due to the sunlight caustic on the floor,
shadows, and flashes, can seriously damage the photometric properties of the
images. In such extreme cases, the estimation of the vehicle position can be so
impaired with the possibility of vehicle loss.

These characteristics of the underwater environment pose major challenges to
the success of navigation, especially if it takes place in unknown regions. These
challenges relate not only to robust estimations of the vehicle position and
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surrounding cartography [11] but also to the ability of the guidance system to avoid
possible collisions at low altitudes.

In this work we will present an approach for the autonomous exploration of
unknown regions of the seabed by means of a navigating system connected to
a decision-making process hosted in the submarine. This vision-based approach is
called Corridor SLAM (C-SLAM), because it combines SLAM techniques with
a strategy to build a corridor over the seabed. The original concept was described in
[12]. This document presents a generalization of previous work centered on a robust
network of corridors. A variant of the basic concept uses active SLAM for exploring
and building a grid map (see recent works [13–15]), but they do not enclose in any
way the concept of path optimality as here, which proposes continuous paths with
viewpoints associated.

A relatively close idea to the concept of corridor can be found in the “teach and
repeat” method, [16], to follow a path in unfamiliar outdoor environment, such as
in the exploration on the surface of Mars by a rover. However, the basic method
does not include an autonomous exploration, as the first path construction is given
remotely by a human operator with the aid of a camera at the rover front. Once an
a priori feasible path has been defined, the vehicle can “repeat” the path that was
previously “learned.”

The main objective of our approach is to make the right decisions to build robust
pathways to explore and configure them in a network. At the same time, the system
is able to bring the vehicle back to the starting point from any position in the
explored area. The robustness properties of the network are conceived in the sense
that there are preferential directions to explore and are such that one allows
a successful return.

2. C-SLAM-based autonomous navigation

Figure 1 illustrates the complete structure of the proposal for an autonomous
vision-based system. It consists of three nested feedback loops, called adaptive
control loop, reference adjustment loop, and dense mapping loop. They are
described in details below.

The adaptive control loop generates the control actions u necessary to achieve

the prescribed reference path η̂ref and the reference speed _̂ηref. Both are provided by
the guidance system. The path following will attenuate the influence of sea currents

Figure 1.
C-SLAM structure. Three-loop-based approach to underwater exploration.
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that push the vehicle off the corridor. The adaptive law circumvents the require-
ment to make available an AUV model which is generally complex due to its 6
degrees of freedom (see [17, 18]). Additionally, the action of marine currents and
a variable speed of the AUV make hydrodynamic resistance forces very difficult to
estimate and include in the dynamic model. For these reasons, controllers with
self-adjustment of coefficients and dynamics adaptation seem to be much more
effective than fixed controllers.

In the adaptive control loop feedback, there is the vision system that basically
takes images of the seabed with the vehicle in motion to estimate the position η and

rate _η of the AUV. The estimates are termed η̂ and _̂η, respectively. The monocular
camera onboard takes images in a sequence called I. The line of vision is oriented
forward with a certain inclination towards the ground. In case of sunlight caustics
on the seafloor [19], the quality of the images may be significantly improved by an
online deflickering filter [20–22]. The filter attempts to retrieve the original photo-
metric properties of the frame. Its output is the frame sequence Id. A feature-based
SLAM algorithm estimates the position of the vehicle and a sparse depth map MS of
the floor. Here, texture characteristics of the ground like self-similarity and water
turbidity will generally difficult the self-localization and map estimation. Therefore
they are considered as disturbances [23, 24].

The reference adjustment loop has the function of reformulating the references

η̂ref and _̂ηref according to a new scale factor of the estimated relief. This is necessary
due to the variability of the estimated sparse map when revisiting the corridor site.

The outer loop of the C-SLAM, namely, the dense mapping loop, is dedicated
to the construction of the corridor network, providing alternatives for bifurcating
the path during the exploration. The feedback consists of the navigation system,
a block for estimating a dense mapping MD of the terrain, and a block for path
planning and bifurcation managing. These blocks will process the odometry infor-
mation provided by the inner feedback in order to update the topography of the
corridors. The dense map helps the guidance system to implement the future path
to follow and to avoid collisions.

A typical navigation route consists in part of stretches between relevant points
or landmarks. For example, a stretch that links a starting point with a bifurcation
point, or one that covers an entire branch, or one between a bifurcation point and a
point of no return. During the exploration, the path is created step by step, in which
the vehicle direction is regularly changed towards preferential points that should
ensure the continuity of the future path.

According to the main objectives of the exploration, C-SLAM should allow a
successful return of the vehicle to the starting point from any distant point of the
network. The farthest points are called no-return points. In this case, it is assumed
that when the vehicle reaches a point of no return, it possesses at least half of its
energy autonomy [25–27]. It is therefore that C-SLAM must permanently estimate
points of no return and also ensure that there exists at least one way for the
comeback before losing the energy autonomy.

3. Corridor net

The network of submarine corridors is the composition of interconnected strips
on the seabed, which covers a certain explored region and allows navigation
between different points of it. Topographically the strips are sequences of recog-
nizable sites on MS and topologically by a branched network that is made up of
nodes and bifurcation points.
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A node is characterized by a cluster of seabed characteristics. It has a position
and a viewpoint associated with the local characteristics. These characteristics are
represented by keypoints of the local scene. The position of the cluster is deter-
mined by its centroid.

In the exploration, C-SLAM has to decide at each moment the next step of
movement that starts from the current node. Each step consists of the identification
of the next node, the direction of its centroid, and the speed of navigation to bridge
the gap between nodes. The detection and identification of a node is a process that
can involve many steps, during which a node is tracked and classified among other
nodes in a merit order list.

In order to choose a suitable node among many possible ones, the vision system
evaluates the most outstanding characteristics of the scene and then decides the
optimal direction towards the corresponding node. The optimization of this direc-
tion results from the maximization of a cost function of the quantifiable require-
ments. Similarly, the rate is properly determined based on a previously specified
vehicle cruising speed. Thus, the speed can be regulated to go up and down
according to the curvature of the path. This construction procedure is repeated in
the next step permanently during the exploration.

Cluster tracking involves localization on both a scattered local map and a dense
map. The estimation of distances between nodes of any network branch is decisive
for the planning of revisits according to the available margins of autonomy of the
vehicle.

It is worth noting that estimated distances on the maps are simply evaluated on
the particular scale of the monocular SLAM method, which does not necessarily
coincide with the actual scale. This would not represent an obstacle to C-SLAM as
long as the estimated distance between the starting point and any point of no return
on the network is exactly related to half the energy autonomy of the vehicle. Some
approaches define another type of scaled topology, achieved by means of stereo
vision or scanner [8, 10, 27].

Bifurcation points are commonly distributed along each branch. There are two
different sets of bifurcation points. The first set includes divergent points at which
the paths physically bifurcate. The second set covers the so-called open bifurcation
points, which were identified and ranked in a list of suitable landmarks for a future
deviation of the path. The ranking position is issued in accordance to a criterion of
robustness.

While each new corridor is simply added to the network as a new branch, existing
corridors are updated in each new revisiting. Each round trip implies that the
vehicle starts with plenty of energy autonomy. This indicates the dimensions of the
explored region. Clearly, with the deployment of multi-robots, the scan will be faster
[28, 29] but will not necessarily cover a larger region than with this proposal.

Since the camera is monocular, safe return is practically implemented by guiding
the vehicle in reverse. This is because the system might not identify all the nodes in
the 3D landscape in the way back, i.e., when navigating from the opposite direction.
However, with the camera in reverse, the system is able to recognize the seabed
features on the path straightforwardly. In reverse motion, all nodes are revisited but
from back to front.

4. Construction of a corridor net

Before starting a round trip in the network of corridors, C-SLAM must make the
decision to advance the exploration or revisit explored branches of the network.
Commonly, both decisions are involved with the intent to expand the explored
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region. In addition, the system defines a suitable ground altitude for navigation with
the end of achieving good visibility conditions.

For the next discussion, Figure 2 is taken as support.
The first corridor and each new section of the corridor network are constructed

according to an optimum criterion. This criterion takes into account the most
outstanding characteristics of the seabed in the form of keypoints (shortened KP),
which can be categorically recognized over time and preferably from different
points of view.

Autonomous navigation begins with a commissioning phase (CP) to adjust the
controller and initialize SLAM techniques for scattered and dense mapping. To
achieve these objectives, the vehicle is forced to travel fast short distances, zigzag-
ging over the bottom with a rather erratic course. In this way, images can reflect the
changes in texture and parallax that are necessary for a visual odometry. This, in
turn, produces a stable estimation of the vehicle localization at the beginning of the
exploration.

Once odometric data η and _η are considered reliable, the adaptation of the
controller coefficients is carried out by providing persistent and rich-in-frequencies

changes in the reference position η̂ref and rate _̂ηref in the main degrees of freedom.
To this end, it is convenient for η̂ref to continue in time the previous erratic motion.

Additionally, the rate _̂ηref is defined as the sum of the cruising rate and a random
sequence that causes soft accelerations and brakings along the trajectory. Once the
convergence of the controller coefficients has been attained, the exploration starts
at the current position. This position is marked as the starting point (shortened SP)
and fixed for future trips.

Figure 2 (left) illustrates the construction of a corridor path from SP up to an
end point (shortened EP), for instance, the estimated no-return point. The system
analyzes the texture characteristics in the image sequence in order to detect robust
clusters (C). Once they are recognized, the system tracks them as they pass in front
of the camera. With a set of robust clusters, the system is able to triangulate frame
by frame the pose of the camera.

Usually, raw information for robust cluster detection is provided by the feature-
based SLAM method employed in the vision system. Certainly, for self-localization,
the SLAM method constantly defines keyframes (KF) with the most stable
keypoints in the image, i.e., with those that have been followed up so far. Thus,
C-SLAM has to group the robust keypoints in clusters and finally perform an

Figure 2.
Round trip during exploration (left). Corridor network topology (right).
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evaluation of cluster set. In this way, C-SLAM can define nodes (N) and eventually
bifurcation points (BP).

The topology of the corridor network usually contains a diversity of elements
that are described in Figure 2 (right), shortened SP, EP, KP, KF, C, N, LM, and BP.
Additionally there are trifurcation points (TF) which are created from BPs:
confluence points (CO) that occur between two paths that meet at a point; outer
points (OP) which are detected landmarks or nodes but due to energy reasons are
unreachable; dead-end points (DP) at which the vehicle must turn by force due to
the absence of Ns or LMs in the horizon; and, finally, crosspoints (CR) at which a
path crosses another path and these can or cannot be detected by the vision system.

It can frequently happen that, due to the existence of COs and CRs, many
possible path alternatives are established to return from any point or to join two
distant points in the network. Loops can also be generated during the expansion
(see Figure 2, right).

As mentioned previously, the topological space is subject to an unknown and
variable cartographic scale that produces accumulative odometric errors. This
means that corridors can cross others without this being reflected in the global map.
However, this does not invalidate the objective of C-SLAM, to return safely to SP.

It is expected that after reiterated revisits along different corridors, the number
of loop closures carried out by the basic SLAM method will increase and the net-
work will progressively take on a more real form. Simultaneously, the scale of the
map will become more uniform, and the used metric will increasingly gain in
accuracy.

The construction of the network is mainly based on a criterion to define
a metric in the topological space. This is discussed below.

5. Nodes, landmarks, and keyframes

C-SLAM sets up a node to accurately synchronize future movement steps. For
example, the direction to which the vehicle is to be driven in the short term in order
to reach the next node is precisely defined at the current node. In addition, the
speed of the vehicle on this direction is also defined here. All this gives the reference

position η̂ref and rate _̂ηref, which are used in the adaptive control system as inputs.
Many other steps are synchronized at the current node as detailed below.

When C-SLAM decides to expand the network with a new branch, it searches
for a landmark in the current corridor and then deflects the path in the indicated
direction.

Nodes and landmarks are gestated in a common optimization process. Optimi-
zation involves maximization of a cost function with one optimum and many
suboptimal results. The optimum outcome defines the first place in a ranking list,
followed orderly by the suboptimal outcomes. Nodes and landmarks are selected
from this ranking list.

The direction that defines η̂ref and _̂ηref to the next node is given by the optimal
result. On the other hand, the best solution in the suboptimal set is reserved for a
landmark.

Unlike a node whose next direction is defined in each step, a landmark can
demand many steps. A landmark is a node whose high position on the merit list
ranks it for a successful future branching. Therefore, not all the nodes become
landmarks.

Finally, there is a subtle difference between a node and a keyframe generated
from any SLAM technique. A node is the most robust cluster in the current
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keyframe, and in general its appearance frequency is generally lower than the
frequency of a keyframe.

5.1 Selection of optimal directions and landmarks

During exploration, keyframes are the basis for selecting nodes. For every few
keyframes of the sequence generated by the active SLAM algorithm, C-SLAM
chooses the current keyframe and defines a node. The frequency of the node
appearance depends physically on the visibility conditions and is commonly fixed in
the commissioning phase.

On the other side, the selection of a path direction from the current node to
navigate to the next (yet not defined) node follows a particular criterion. Also the
selection of a promissory landmark for a future bifurcation is subject to the same
criterion.

It is assumed that many keypoint clusters are faced at the same time in the
ranking process in order to establish an order of merit. When the score of a partic-
ular cluster exceeds a threshold value, it is then considered as a potential landmark.
Clearly, many clusters remain in the vision field for a time, so that they may
continuously be tracked during their latency periods. Some of them will become
landmarks.

After a landmark is lost in the field of vision, it will remain inactive with its last
score and its location on the map. While in the exploration phase landmarks are
generated, in a revisiting period they are consolidated, or even separated. Eventu-
ally, a landmark becomes a bifurcation point when C-SLAM decides to branch out
to explore new regions.

The proposed criterion is based on a cost that is defined as a linear combination
of quantifiable requirements to be met by each cluster in its latency period. Thus

V i ¼ λ1 fC þ λ2TC þ λ3Δθ þ λ4δ
�1 (1)

where V i is a cost for one keypoint cluster named Ci, given the weights λj with
0≤ λj ≤ 1 and Σjλj ¼ 1: The requirements for Ci are described and symbolized as

• High density of keypoints in a cluster: factor fC

• Continuous traceability of a cluster: period TC

• Robustness against the change of points of view: span angle Δθ

• Alignment of a cluster on the heading direction: factor δ�1

The cost weights will be defined previously according to the emphasis placed
on some particular aspects of robust navigation. Since all requirement variables
will be normalized to their expected highest values, a trivial choice λj ¼ 0:25
is generally satisfactory. The simple election λ1 ¼ 1 should support a
continuous navigation; however in this case zigzagging on the pathway should not
be ruled out.

Since some detected landmarks are far away from the vehicle position, one
should check whether these will be attainable with the current autonomy range of
the vehicle. If they are unreachable, they will be removed from the ranking list or
marked as OPs. To this goal a metric is required for the topological space of the
corridor network.
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5.2 Cost parameters

5.2.1 Density of keypoints in the cluster fC

The key assumption to calculate the first parameter fC is that visual features are
very volatile in harsh underwater environments. Therefore, dense clusters may be
thought to be more resistant to long-term disappearance than dispersed clusters.
The first step to determine fC is to group keypoints of the current keyframe in
clusters. For this, for example, k-means clustering can be used in combination with
an efficient initialization method. For the time k of cluster appearance, the follow-
ing is calculated:

fC kð Þ ¼
NKP Cið Þ

maxNKP
(2)

where i identifies the cluster of the set and NKP is the number of KPs in Ci. Thus,
the parameter can be determined recursively by

fC ¼
k� 1ð Þ fC k� 1ð Þ þ fC kð Þ

k
(3)

Since the set of selected robust keypoints in the SLAM algorithm is generally
sparse, clustering operation should not be excessively time-consuming.

Statistically, the maximum expected number of NKP can be estimated in the
commissioning phase as a function of the harshness of underwater environments.
For example, poor visibility, self-similarity of the ground, caustic sunlight,
shadows, flares, etc. are factors that contribute to reduce the number of robust
keypoints.

5.2.2 Period for continuous traceability TC

The second parameter is related to the traceability of Ci. The longer Ci is
detected, the more feasible it will be to achieve continuity of navigation and a safe
return. The parameter is estimated in each keyframe as follows:

TC ¼
NKF Cið Þ

maxNKF
(4)

where NKF is the number of consecutive KFs in which Ci appears approximately
at the same position and almost with a similar density. To assess the similarity of
the NKF clusters, a Euclidean norm can be used. In addition, attention should be
paid to changes in fC and cluster midpoint. NKF is estimated by thresholding all
these variables properly.

Finally, the maximum number of consecutive keyframes depends to some
extent on vehicle speed, altitude, camera tilt, and field of vision, among other
factors. As a reference formaxNKF one can take the number of KFs required to
cover a distance of 10 times the length of visibility in the line of sight.

5.2.3 Span angle Δθ for viewpoint range

The third parameter Δθ relates the robustness of Ci with the variation of
viewpoints. A fairly large angle would be necessary for a cluster to be unambigu-
ously detected from different points of view. Δθ applies in these two important
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cases: first when clusters are aligned in front of the vehicle and second when they
are aligned to one side of the vehicle (see example in Figure 2, left, for landmarks
LM1 and LM2). Thus, it results in

Δθ ¼
span θj Cið Þ

� �

max span θj
� � (5)

where the symbol span :f g means the difference between the maximum and
minimum value of the sequence θj during the tracking of Ci. In turn, θj is the angle
between the line that joins the camera with the cluster midpoint and the camera
optical axis.

A large value of Δθ suggests a more robust link between the nodes and, on the
other hand, in the case of landmarks, a more successful bifurcation.

The maximal span of θj is set equal to half of the horizontal field of vision of the
camera, which specifies the tracking of a cluster that is initially seen far away in
front of the vehicle and disappears from the field of vision sideways.

5.2.4 Course alienation factor δ�1

The fourth parameter δ�1 plays a key role in the construction of the corridor.When
the corridor is built step by step, one would normally prefer to keep the real course
along a straight line rather than change the course. This is because the control of the
vehicle along a line is generally more precise than on curves. Similarly, revisits on
straight stretches are more immune to loop-closing failures than on curved stretches.

Therefore, in the case of nodes, δ�1 should generally produce a higher cost than
in the case of landmarks that are reserved for bifurcations. Hence, landmarks are
generally created on one side of the path, while nodes are rather in a straight line.

Since the cost (Eq. (1)) contains terms that must be maximized, δ�1 reflects the

opposite of the alienation parameter here called β. Therefore, δ�1 should indicate

how much the transverse separation of a cluster from the route is δ�1 assessed in the
horizontal navigation plane. To this end, both the optical axis and the line that joins
the camera with the midpoint of the cluster are projected onto the navigation plane.
Between these lines, the angle βj is obtained. A third line is defined, which connects

the camera with the point furthest to the right of the vision field. Projecting this line
on the navigation plane results in the angle called β ∗ with the projected optical axis.

Hence, it results in geometric mean

δ�1 ¼
1

N

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

X

j

tan β ∗

tan βj

 !2
v

u

u

t (6)

where N is the number of assessments j during cluster tracking.

5.3 Application of the selective criterion

The inclusion of a cluster Ci in the merit order list during its tracking is subject to

Vi >V ∗ (7)

where V ∗ is a global threshold given for the cluster score. The merit order list is
updated keyframe by keyframe. Hence, if Ci is already in the list, its score is simply
actualized.
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If V ∗ is set too high, many landmarks might be created, and the network could
be unnecessarily too dense. The optimal number of bifurcations per corridor should
satisfy a general rule that the distance between two consecutive BPs is spanned by
about 20 nodes. On the other hand, if the branches are too scattered, V ∗ could be
too high.

When a new node is created, C-SLAM immediately evaluates the next most
promising direction to lead the vehicle into the unknown environment with the goal
of exploration. Therefore, the highest score refers to the cluster with which the
reference path η̂ref should be continued.

In addition, C-SLAM checks whether the second highest score corresponds to an
active cluster and in which case decides to set a landmark. Another more cautious
strategy is to set a landmark when the second highest cluster just disappears from
the list.

Landmarks can be also consolidated in the return and in every passage on any
explored corridor. On the other side, the landmark cost may decrease so much that
it is to be removed from the list. In this way, landmarks are permanently evaluated
up to the moment they are employed to bifurcate into the corridor. At this moment,
they change their status from LM to BP and disappear from the list forever.

In a changing environment, the adaptation of Ns, LMs, and BPs after a long
period is necessary. This allows a renewal of the corridor network as needed
(cf. [7, 30]).

During assiduous navigation, the topology of the network is outlined like a tree
of branches. Each branch contains its identification in the tree, the sequence of
nodes arranged in one direction, the landmarks, the bifurcation points, and any
other particular element that should be important for decision-making.

6. Expansion of the network

Extending the boundaries of the corridor network requires C-SLAM to
implement certain policy-makings, which goes beyond the corridor network
building.

A first policy implies the definition of an appropriate metric to extend the
lengths of the corridor network as much as possible according to the available
energy autonomy.

A second policy supports the decision-making to choose bifurcations in order to
multiply the number of branches. In this case, revisitings are of secondary impor-
tance as they take place only when they are needed as bridges to create new
branches.

A third and final policy concerns the optimal scheduling of paths between two
points of the network. In a situation with many alternatives to get a connection
between sites, the system will search for the one with the best energy efficiency.

6.1 Metric

The metric space represented by the corridor network depends on an unknown
scale which also changes over time due to cumulative odometric errors. This will
affect, above all, the global map, which is the composition of many local maps with
their own scale. As scale variations are generally small from map to map, the
metrics are similar.

In order to maximize the length of a corridor without compromising the safety
of the way back, it is essential to have a reliable metric. Since safety and energy
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autonomy are closely related, the metric must express the energy margin that the
vehicle possesses at any time and position in the network (cf. [24, 25]).

It is clear that due to the challenging environment, the energy used to connect
two points is often not the same in both directions. This will undoubtedly depend
on sea currents, vehicle speed changes, travel breaks, and zigzagging on the refer-
ence route. Thus, for example, real-time detection of the no-return points based on
the battery state of charge may not be reliable enough in unforeseeable circum-
stances. For this reason, a more powerful detection of no-return points is developed
here on an empirical basis.

To this end, a function for the estimation of the energy margin is proposed. It
adds up the energy consumption until the full autonomy is completed. The function
can be evaluated at any time, especially in the decision to return.

The idea behind the proposal is that almost all the energy available in navigation
is intended to move the vehicle. Therefore, an approach that is based solely on the
energy of motion along the travelled path seems to be quite rational.

The first one defines the consumption of energy as a set of possible cases:

E _̂η, η̂
� �

¼

ð

Ci

_̂η
2
η̂ð Þdη̂

� �

(8)

where :f g is a symbol for a set of cases and
Ð

Ci
_dη̂ describes a curvilinear integral

along the path i that spans the way from the SP up to the point where the autonomy
is completed (see Figure 3 to support the concept). Similarly, the distance covered
by the vehicle on this path i until all available energy is consumed is defined as
a set of cases:

d η̂ð Þ ¼

ð

Ci

dη̂

� �

(9)

It should be noted that all routes cover each shape, both straight and
curved ones.

Figure 3.
Energy margin to reach total energy consumption. Numerical identification of no-return points on different
paths.
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Figure 3 shows numerical simulation results wherein the distance travelled by a
vehicle over different paths is computed after accomplishing full autonomy. In the
experiments the vehicle acquires a cruise velocity, but this is slightly changed around
this value at random. The resulting ground truth statistics must be available before
applying C-SLAM but are updated during the construction of the corridor network.

In order for C-SLAM to decide the time point for the comeback on a new corridor,
a norm based on the average on the sets in Eqs. (8) and (9) is applied. The Euclidean
norm can be used to obtain the energy limits called EEP and travelled distance dEP:

EEPk k2 ¼
1

N

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

X

i

ðEPi

SP

_̂η
2
η̂ð Þdη̂

	 
2
s

and dEPk k2 ¼
1

2N

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

X

i

ð

Ci

dη̂

	 
2
s

(10)

subject to the conditions for safe navigating on the path i

dEPk k2 ≥

ð

Ci

dη̂ (11)

EEPk k2 ≥

ð

Ci

_̂η
2
η̂ð Þdη̂ (12)

where the equality of either of the two equations will mean the identification of
the end point EPi for this path. N is the number of trips in the statistics that cover
a distance di for any route from SP. It is very important to frame the confidence of
the norm in the risk of loss of the vehicle. In this sense, the most unfavorable case
might be more appropriated. In this case, it is valid

EEPk kmax ¼
max
Ci

ðEPi

SP

_̂η
2
η̂ð Þdη̂

� �

and dEPk kmin ¼
min
Ci

1

2

ð

Ci

dη̂

� �

(13)

and so the conditions for the detection of a no-return point are as follows:

dEPk kmin ≥

ð

Ci

dη̂ (14)

EEPk kmax ≥

ð

Ci

_̂η
2
η̂ð Þdη̂ (15)

where again the equality of either of the two equations will mean the identifica-
tion of the end point EPi for this path i.

In order to continuously adapt the norm to the environment, the set (Eqs. (8)
and (9)) must be updated on each round trip. It can be noticed that the update can
be applied both in a new corridor and in a revisiting case as well, regardless of the
path chosen.

6.2 Planning of new corridors

The way in which C-SLAM progressively explores and increases branches can be
supported by different criteria.

6.2.1 Method I

The first method is based on the criterion that for fast expansion of new branches,
occurrences of revisitings of old branches should be reduced as much as possible. To
this end, the number of revisited stretches in old branches and their distances to SP
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should be minimized during the sequence of round trips. Here, the rectification of the

path
Ð BPi

SP dη̂ is employed. It is evident that to reach a certain BP on an old branch, the
vehicle must unfailingly revisit some first stretches on this branch.

Figure 4, right and middle, illustrates a case study of an expanded network in
two different forms.

Once the trunk corridor is created, the proposed method starts from SP and
searches for the closest LM and splits into a new branch until it culminates in an EP.
At this stage, this LM becomes a BP. In doing so, the approach minimizes the length
of all revisited stretches. Any other branch generation is suboptimal. The worst
suboptimal generation, on the contrary, expands the network by starting each
round trip from SP to the most distant LM. In fact, this option produces a maximi-
zation of the revisited stretches.

Even when the optimal branch generation expands the network faster than other
options, all methods end up with the same number of revisited stretches. This fact is
reflected in Figure 4 (right). Therefore, from the point of view of the total energy
consumed, the difference is short and medium term only.

6.2.2 Method II

The optimal solution described above has a theoretical rather than a practical
value. The disadvantage of method I is that the way BPs are used has no connection
with the merit order list. For that reason, vehicle safety might be compromised.
When making decisions about where to branch, trust in the list is the only support
for secure expansion.

Therefore, the main focus of the second method is to build up a solid network in
which the path from every EPi to SP maximizes the trust on the BPs on the
pathway. This means that the LMs chosen for bifurcation have the maximal score
on this pathway. The number of revisited stretches over time is described by a curve
that lies between the two extreme curves in Figure 4 (right). This means that in the
long term, the new curve will also converge to the same extreme value.

Many other strategies can be applied besides the other two methods. For
instance, one could be specifically interested in developing the branches to the left
(or to the right) of the trunk line or in creating a solid statistic for the newly
explored branch before continuing with the exploration.

6.3 Path scheduling

Starting from the conception of a fully interconnected corridor network,
multiple alternatives can be considered to obtain a connection between two distant

Figure 4.
Generation of BPs according to different criteria: the fastest branch expansion (left) and the slowest branch
expansion (middle). Number of revisited stretches during network expansion: optimal expansion (red) and a
suboptimal expansion (blue).
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points of the network (see, for example, in Figure 3, right, the bypass shaped by the
points BP-CO and BP-TP-CO). In such situations, C-SLAM should be able to seek
that path that involves the best energy efficiency. For that purpose C-SLAM must
count with odometric information of each stretch and the energy consumption cost
per unit of length.

Once the network has converged in its expansion and especially after a large
number of revisits, it is common to count with the presence of bypasses and loops.
Thereupon these elements will become part of the topology of the network.

In the case of one-way corridors, the existence of a bypass can only occur in the
presence of COs or CRs (see Figure 5, left). On the other hand, the generation of a
loop needs indefectibly at least one CR (see Figure 5, right). It is worth noticing that
a loop represents a dummy alternative to connect a point with oneself through the
loop as illustrated in Figure 5 (right).

As topological elements of the network, loops are marked to avoid unnecessary
energy consumption. For example, in Figure 5 (right) when a loop is encountered,
the path entering the loop is avoided unless the destination is a BP allowing exit
from the loop. For the optimization of paths, the criterion consists in searching
for the shortest path between two points or for the path that minimizes the
energy consumption, or a combination of both. If safety aspects are emphasized, the
energy approach is the most suitable for C-SLAM. This option is described in
the following.

To find the optimal path, the following cost functional is minimized for a path
starting at node NA and ending at node NB:

J NA,NBð Þ ¼
min

NA,NB;Ckf g

X

NB

NA

ðNiþ1

Ni

_̂η
2
η̂ð Þdη̂

( )

(16)

where Ck is one of the paths that connects NA and NB and the pair Ni and Niþ1 is
the terminal nodes of the stretch in Ck. The energy information on the stretch from
Ni to Niþ1 is the result of an average each time that the vehicle passes on this
section. For the minimization in Eq. (16), BPs and COs, even dead-end points, are
taken into account along with all nodes. Thus, the minimal value of the sum
on every stretch that links Ni and Niþ1 of Ck represents the optimal path denoted
by C ∗

k .
To assist Eq. (16), the A* search algorithm has been chosen in this work over

other tree search algorithms because of its optimal efficiency [31]. Therefore, the
cost is

F Niþ1ð Þ ¼ g Niþ1ð Þ þ h Niþ1ð Þ (17)

where g is the cost of the path from NA to Niþ1 and h is a heuristic function that
estimates the cost of the cheapest path C ∗

k fromNiþ1 toNB. A* ends when the goal is

Figure 5.
Bypass (left) and loop (right) in the network topology.
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reached or when there are no paths eligible to be extended. In this work, the cost
functions g and h are selected according to the following two terms:

F Niþ1ð Þ ¼ J NA,Niþ1ð Þ þ
min

Niþ1,NB;Ckf g

X

NB

Niþ1

ðN jþ1

Nj

_̂η
2
η̂ð Þdη̂

( )

(18)

The heuristic function h Niþ1ð Þ is admissible provided that paths with one or
more sections travelled in both directions are excluded from the minimization.
Thus, branches that do not represent a bypass to the branch on which NB is located
are discarded. Loops are also avoided when used to connect a node to itself.

7. Case study

This section shows some experimental results which are selected to illustrate the
viability of the proposal for autonomous navigation based on the proposal. Many
of the functions of the approach are tested together according to the C-SLAM
structure in Figure 1. It is important to note that the case studies are carried out in
limited spaces with simulation of light effects and seabed textures. However, the
staged environments reflect quite well the difficulties encountered in image
processing in real underwater scenarios.

7.1 Environment

In order to provide a ground truth for testing and to achieve acceptable repro-
ducibility of results, many scenarios were set up in a basin with a staged underwater
landscape that closely resembled the natural seabed. In this scenario, rocks, gravel,
sandbanks, and benthos, among others, predominated wherein a variety of under-
water visual effects could be obtained [19, 23] (see Figure 6).

The bioactivity of microorganisms was cyclically changing the characteristics of
soil texture and water transparency. The scenarios were illuminated by direct and
indirect sunlight. However, light disturbances and turbidity were controlled for the

Figure 6.
Stage installations for tests underwater. Diversity of scenarios.
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range of tests. For instance, strong or weak sunlight flickers on the ground were
generated by agitating the water in two orthogonal directions. In addition, visibility
was reduced by discharging silt particles onto the surface that remained suspended
for a period of time.

Therefore, a wide variety of case studies could be faithfully reproduced, such as
rapid changes in luminance, transition from dark to bright scenarios, blurriness,
lens flares, motion blur, self-similarities, glare, and bubbles (see Figure 6).

7.2 Hardware

An ROV (model OpenROV v2.8) was used as the platform for the experiments,
although this was hydrodynamically reformed with side fins to reduce the
motion blur.

Two independent cameras were installed on board, a high-resolution, wide-
angle vehicle camera (Genius f100) and a high-performance camera (GoPro Session
H4). Both cameras are rolling shutter and operate at different frame rates. To
attenuate undesired effects of the rolling shutter mechanism, especially in
photometric-based algorithms, a high speed of 120 fps with an image size of 848 �
480 pixels was used for dense mapping, albeit off-line at the end of every
round trip.

The vehicle was completely steered by C-SLAM that was programmed and
installed in a notebook with GPGPU technology. The bi-directional flow of video
and control signals was implemented via cable. The altitude was conveniently fixed
in advance to adapt to the visibility of the environment. Altitude control was carried
out independently of the adaptive controller by a PI controller. An adaptive speed-
gradient controller [17] was used to self-adjust the controller coefficients for the
main dynamics of the ROV.

7.3 Software

Among other functions, C-SLAM uses state-of-the-art free software to localiza-
tion and mapping. As shown in Figure 1, the block for feature-based SLAM was
implemented with the algorithm ORB-SLAM [32]. On the other hand, the block for
dense mapping was implemented with the photometric-based DSO-SLAM [33] and
sometimes with LSD-SLAM [34, 35]. However, there was a significant modification
in the implementation, namely, DSO (or LSD-SLAM) was supported with the
estimated camera position provided by ORB. This was necessary in general for
improving the stability of the mapping in very harsh environments, especially due
to the presence of strong sunlight caustics or/and poor visibility [23]. The
deflickering filter in this work is based on estimations of sunlight caustic fringes
using a feedback of predicted images [20], which employs very high accuracy
velocity estimation [36]. Software for guidance, control, and corridor construction
was developed specially for C-SLAM.

7.4 Results

One begins with Figure 7which illustrates the role deflickering filter plays in the
improvement of dense mapping in environments with strong sunlight caustics.
Generally, spatiotemporal light changes affect the performance of photometric-
based methods seriously. As seen in the heat maps, the camera depths are coherent
with the physical environment. Thus, the photometric consistence is preserved
after image deflickering.

16

Underwater Work



The situation is totally different in the case of ORB-SLAM, where light
disturbances do not affect ORB to the same degree as DSO (or LSD-SLAM) (see
Figure 8). However, from several experiments, it was concluded that in turbid
waters, robust texture features decrease substantially, although the overall perfor-
mance of ORB does not degrade as much as in the case of DSO (see [8]). Therefore,
the filtering of caustic sunlight waves can be omitted in the case of ORB, but not in
the case of DSO (or LSD-SLAM). For this reason, the deflickering filter in the
C-SLAM structure in Figure 1 is necessary only for dense mapping ends. Another
conclusion was drawn from navigation in self-similar terrains staged in the basin
like in the third picture to the right in Figure 8.

These terrains provide commonly numerous features in a similar cluster pattern,
but ORB-SLAM often losses the track as it is unable to deal with nearby similarities.

An important instance at the beginning of C-SLAM navigation is the start-up
phase for initializing SLAM algorithms and adaptive controller parameters. To this
end, in the study, the vehicle movements were performed manually providing a
zigzag path of the camera. Figure 9 illustrates the initial process of constituting a
dense mapping of the environment with an adequate camera trajectory. From there,
the start of the exploration was supplied with good estimates of vehicle position and
speed, which in turn, allow the adaptive controller to adjust its coefficients.

Dense methods suffer, more than any other class, from odometric errors [8],
which are minimized in the particular case of DSO through a very cumbersome and
thorough camera calibration process. In these trials, the combination of direct
methods for mapping with ORB-SLAM for tracking increases the accuracy of the
global map of the corridor network, even in the case of normal rolling shutter

Figure 7.
Dense mapping in two cases after image deflickering. Images with sunlight caustics (left), deflickered images
(center) [14], and heat maps for camera depth (right).

Figure 8.
Selection of robust keypoints in three harsh environments: with strong sunlight caustics (left), low visibility
(center), and self-similarities (right).
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cameras as used here. Figure 10 illustrates these results in one experiment with
good textured floor.

The limited space and relatively short time span for the experiments prevented
the use of an energy autonomy metric beyond the context of numerical computer
simulations. In this sense, end points located sideways must be at a certain limited
distance from the trunk corridor. The frequency of occurrence of nodes was syn-
chronized with the keyframe generation according to the simple strategy, namely,
“one keyframe, one node.” The direction to the next node was optimized primarily
by the maximizing the density of cluster keypoints near the front line of vision to
avoid zigzagging of the vehicle. In this way, branches could be extended to a
relatively significant length.

An important feature of the monocular C-SLAM is the vehicle return through
the corridor in reverse motion as seen in the display provided by ORB-SLAM by
means of the symbol “ ,” indicating the direction of movement (see Figure 11,
top). In addition, the track link that exists when the algorithm identifies a connec-
tion between nodes is characterized by green segments between them (see
Figure 12, left).

Reverse movements often caused motion blur due to pulling and cable drag on
the floor [37]. Besides, the drag of the ROV backside is much more pronounced than

Figure 9.
Commissioning phase to initialize photometric dense mappings. Camera path on dense map (left), camera
depth (top-right), and original frame (bottom-right).

Figure 10.
Estimated camera path and dense map. Map and path (left), heat map of camera depth (top-right), and
original frame (bottom-right).
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in the forward displacement. All this made it necessary to reduce the cruise velocity
to minimize large heading perturbations that would cause track loss. In the follow-
ing, two case studies illustrate the C-SLAM performance under these circumstances.

Figure 11 shows a corridor network that was constructed under the criterion of
fast expansion of new branches, i.e., minimizing of revisits in short and medium
terms. Here, three bifurcation points were implemented in four steps. First, the
system creates the trunk corridor and returns to SP. Accordingly, in the next round
trip, the vehicle is led to the nearest BP and forced to bifurcate to create the first
branch, and thereafter it returns to SP again. This routine was repeated for the
second and third BP.

It is notorious that the way back through the trunk corridor from the BP3 to the
SP does not completely agree with the way out. However the position track was
never lost, which demonstrates the robustness of the system against changes of
points of views. The differences in trajectories were due to many causes, including
control tracking errors, cable tugs, and drag disturbances [37].

The diversity of terrain texture shown in Figure 11 (bottom) and their impact
in the performance and robustness of C-SLAM are noticeable. For instance, at BP1,
the terrain is bulky, so the contrast is high and the keypoints are robust. On the
other hand, in BP2 and BP3, the terrain was acquiring an increasingly self-similar
appearance, and the keypoint clusters were becoming increasingly volatile. In
some trips in reverse through this self-similar zone, the vehicle briefly lost its
tracked position.

Figure 12 illustrates a more sophisticated experiment in which branches were
allowed to occur on both sides of the trunk corridor. Over time, in addition to the
formation of branches, confluence of paths and way crossings were also appearing.
The picture on the left shows the network from above and the interconnection of
nodes. On the other side, the picture on the right displays the network nodes and

Figure 11.
Corridor network construction with three branches (top). Camera-taken scenes at the corresponding SP, BPs,
and EPs (bottom).
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keypoints produced during the multiple round trips. It is observed that the density
of keypoints is significantly higher in the right zone than in the left zone of the
explored area. This is due to the marked self-similarity of the terrain that dispersed
the keypoints over the terrain, while in the left zone, the bulky elements concen-
trate the keypoints around their peripheries.

The trunk corridor was long enough to encompass areas of different textures.
Light disturbances were moderate; most of them transitions from dim to shining
scenarios.

The sequence of the round trips can be followed by the order of occurrence of
EPs and BPs. The strategy of expanding the network is the same as in the case
before, i.e., create the trunk corridor, return to SP, annex a new branch, and begin a
new round trip.

The most remarkable instance in this experiment occurred on a stretch in front
of EP1, in the self-similar zone, where the C-SLAM briefly loses the vehicle location.
Afterwards the vehicle was led in the direction of EP1 up to cross the trunk corridor.
This CR was recognized by the system and aggregated to the network. From this
point, the vehicle could return in reverse to a point that was also recognized by the
system as a CO. Finally, after the sixth branch, C-SLAM completed the exploration
by providing a global map of the corridor network.

8. Conclusions

This work deals with the autonomous navigation of underwater vehicles with
the aim of achieving a broad exploration of the seabed. Unlike autonomous naviga-
tion systems in aerial, terrestrial, and space applications, for which the main source
for localization is a GPS system, this approach basically uses only a monocular
camera as sensor.

To establish the position of the vehicle, the proposed vision system takes advan-
tage of the characteristics of texture of the seabed. Since underwater scenarios are
generally very diverse and harsh due to water turbidity and light disturbances,
vision-supported navigation poses a huge challenge for safe autonomous explora-
tion. In particular, the lack of transparency in water forces the control system
to lower the altitude to the seabed, which in turns demands a high degree of
maneuverability to avoid collisions.

Figure 12.
Construction of a corridor network. Path graph with localization of BPs, EPs, COs, and CRs (left). Node
sequence in a sparse map (right).
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This work describes a vision-based system named C-SLAM that provides a
nested loop structure to integrate control, guidance, navigation, and route planning
systems into one. To explore the seabed, C-SLAM implements a strategy based on
active SLAM. In contrast to many methods in the literature that employs topological
models of the environment like feature graphs [13], Bayes tree [14], or grid maps
[15], C-SLAM presents the environment as a network of interconnected corridors
made up nodes and bifurcation points. It is claimed in this work that this simple
topology is highly adequate and robust for harsh underwater environments with
self-similarities, strong spatiotemporal light perturbations, and lack of water
transparency [23].

Compared to other optimization techniques proposed for underwater applica-
tions such as random trees [38], particle swarming [36], octo-trees [39], level
setting [40], and genetic background [41], among others, this proposal has a sig-
nificant level of novelty. It radially searches in the field of vision for the optimal
direction to explore. This direction is subject to satisfy quantifiable requirements for
the navigation. The requirements are integrated in a weighted linear combination
that is maximized step by step. This produces an active scoring list of promising
points for selection of nodes and future bifurcation points providing adaptation to
the environment and robustness of the node sequence.

The heuristic of the proposal have similitudes with the visual teach and repeat
method for long-range autonomy [16]. Therein a pathway is created in an unfamil-
iar outdoor environment, at first by teleoperation and then followed by a rover.
However, C-SLAM is essentially designed for autonomous exploration underwater
and deals with a dense exploration in 2D. Besides, the submarine navigates basically
on a plane over the seabed contemplating topographic features from above, not
over the terrain. So, comparatively, C-SLAM has the advantage to choose the
optimal route in order to be able to safely return to the start point. Another differ-
ence is that the C-SLAM can cope with the lack of map scale and odometric errors
and even so ensure the vehicle return.

In order to expand the explored region as far as possible, a suitable metric in the
non-scaled topological space is defined in relation to the vehicle energy autonomy.
The key idea is to lead the vehicle by a corridor just up to the no-return point in
order to make the return trip safe. In contrast to other approaches that solve the
problem in a rather complex form, for instance, employing dynamic programming
onto bathymetric and sea current maps [26, 27], C-SLAM proposes a statistic-based
connection of odometric information and energy consumption.

The approach was experimentally tested in reduced-scale in a basin, wherein
subaquatic environments with a good resemblance to a real seabed were staged.
Experimental trials have demonstrated the feasibility of the approach in future
applications where an autonomous underwater vehicle can host the C-SLAM vision
system for large-scale underwater exploration. With the exception of extremely
turbid environments, practically in all other cases, C-SLAM was able to make
correct decisions to create and expand the underwater corridor network in a stable
manner.
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