We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

6,900 186,000 200M

ailable International authors and editors Downloads

among the

154 TOP 1% 12.2%

Countries deliv most cited s Contributors from top 500 universities

Sa
S

BOOK
CITATION
INDEX

Selection of our books indexed in the Book Citation Index
in Web of Science™ Core Collection (BKCI)

Interested in publishing with us?
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected.
For more information visit www.intechopen.com

Y



Chapter

Complex Space Nature of the
Quantum World: Return Causality
to Quantum Mechanics

Ciann-Dong Yang and Shiang-Yi Han

Abstract

As one chapter, we about to begin a journey with exploring the limitation of the
causality that rules the whole universe. Quantum mechanics is established on the
basis of the phenomenology and the lack of ontology builds the wall which blocks
the causality. It is very difficult to reconcile the probability and the causality in
such a platform. A higher dimension consideration may leverage this dilemma by
expanding the vision. Information may seem to be discontinuous or even so weird
if only be viewed from a part of the degree of freedoms. Based on this premise,
we reexamined the microscopic world within a complex space. Significantly, some
knowledge beyond the empirical findings is revealed and paves the way for a more
detailed exploration of the quantum world. The random quantum motion is essen-
tial for atomic particle and exhibits a wave-related property with a bulk of trajecto-
ries. It seems we can break down the wall which forbids the causality entering the
quantum kingdom and connect quantum mechanics with classical mechanics.

The causality returns to the quantum world without any assumption in terms of
the quantum random motion under the optimal guidance law in complex space.
Thereby hangs a tale, we briefly introduce this new formulation from the
fundamental theoretical description to the practical technology applications.

Keywords: random quantum trajectory, optimal guidance law, complex space

1. Introduction

It took scientists nearly two centuries from first observation of flower powder’s
Brownian motion to propose a mathematical qualitative description [1]. Time is an
arrow launched from the past to the future, every event happens for a reason. “The
world is woven from billions of lives, every strand crossing every other. What we
call premonition is just movement of the web. If you could attenuate to every strand
of quivering data, the future would be entirely calculable. As inevitable as mathe-
matics [2].” All physical phenomena are connected to the same web. As long as we
can see through the quivering data and cut into the very core, we can glimpse the
most elegant beauty of nature. As precise as physics.

It took nearly 30 years for physicists to establish quantum mechanics but nearly
100 years to seek for its essence. Quantum mechanics is the most precise theory to
describe the microscopic world but also is the most obscure one among all theories.
It collects lots data but not all. Just like what we can observed is the shadow on the
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ground not the actual object in the air. It is impossible to see the whole appearance
of the object by observing its shadow. The development of the quantum era seems
started in such circumstances and missed something we call the essence of nature.
In this chapter, we hope to recover the missing part by considering a higher dimen-
sion to capture the actual appearance of nature. At the end, we will find out that
nature dominates the web where we live as well as the theories we develop. Every-
thing should follow the law of the nature, and there is no exception.

Trajectory is a typical classical feature of the macroscopic object solved by the
equation of motion. The trajectory of the microscopic particle is supposed to be
observed if the law of nature remains consistent all the way down to the atomic
scale. However, such an observation cannot be made till 2011. Kocsis and his
coworkers propose an observation of the average trajectories of single photons in a
two-slit interferometer on the basis of weak measurement [3]. Since then quantum
trajectories are observed for many quantum systems, such as superconducting
quantum bit, mechanical resonator, and so on [4-6]. Weak measurement provides
the weak value which is a measurable quantity definable to any quantum observable
under the weak coupling between the system and the measurement apparatus [7].
The significant characteristic of the weak value does not lie within the range of
eigenvalues and is complex. It is pointed out that the real part of the complex weak
value represents the average quantum value [8], and the imaginary part is related to
the rate of variation in the interference observation [9].

The trajectory interpretation of quantum mechanics is developed on the basis of
de Broglie’s matter wave and Bohm’s guidance law. In recent years, the importance
of the quantum trajectory in theoretical treatment and experimental test has been
discussed in complex space [10-21]. All these research indirectly or directly show
that the complex space extension is more than a mathematical tool, it implies a
causal essence of the quantum world.

On the other hand, it is found out that the real part of momentum’s weak value is
the Bohmian momentum representing the average momentum conditioned on a
position detection; while its imaginary part is proportional to the osmotic velocity
that describes the logarithmic derivative of the probability density for measuring the
particular position directed along the flow generated by the momentum [22]. This
not only implies the existence of randomness in a quantum system, but also discloses
that the random motion occurs in complex space. Numerous studies with the com-
plex initial condition and the random property have been discussed [23-25]. A
stochastic interpretation of quantum mechanics is proposed which regards the ran-
dom motion as a nature property of the quantum world not the interference made by
the measurement devices [26, 27]. These investigations suggest that a complex space
and the random motion are two important features of the quantum world.

Based on the complex space structure, we propose a new perspective of quan-
tum mechanics that allows one to reexamine quantum phenomena in a classical
way. We will see in this chapter how the quantum motion can provide the classical
description for the quantum kingdom and is in line with the probability distribu-
tion. One thing particular needed to be emphasized is that the stochastic Hamilton
Jacobi Bellman equation can reduce to the Schrodinger equation under some spe-
cific conditions. In other words, the Schrédinger equation is one special case of all
kinds of random motions in complex space. A further discussion of the relationship
between the trajectory interpretation and probability interpretation is presented in
Section 2. In particular, the solvable nodal issue is put into discussion, and the
continuity equation for the complex probability density function is proposed. In
Section 3, we demonstrate how the quantum force could play the crucial role in the
force balanced condition within the hydrogen atom and how the quantum potential
forms the shell structure where the orbits are quantized. A practical application to
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the Nano-scale is demonstrated in Section 4. We consider the quantum potential
relation to the electronic channel in a 2D Nano-structure. In addition, the conduc-
tance quantization is realized in terms of the quantum potential which shows that
the lower potential region is where the most electrons pass through the channel.
And then, concluding remarks are presented in Section 5.

2. Random quantum motion in the complex plane

In the macroscopic world, it is natural to see an object moving along with a
specific path which is determined by the resultant optimal action function. How-
ever, in the microscopic world, we cannot repetitively carry out this observation
since there is no definition of the trajectory for a quantum particle. With the limit
on the observation, only a part of trajectory, more precisely, the trajectory in the
real part of complex space can be detected. As particle passing or staying in the
imaginary part of complex space it disappears from our visible world and becomes
untraceable. The particle randomly transits in and out of the real part and imaginary
part of complex space, causes a discontinuous trajectory viewed from the observ-
able space. Therefore, it can only be empirically described by the probability in
quantum mechanics.

In this section, we briefly introduce how particle’s motion can be fully described
by the optimal guidance law in the complex plane [28]. Then we will discuss under
what condition the statistical distribution of an ensemble of trajectories in the
complex plane will be compatible with the quantum mechanical and classical
results. In the following, we consider a complex plane for the purpose of simplicity;
however, there should be no problem to implement the optimal guidance law in
complex space. Let us consider a particle with random motion in the complex plane
whose dynamic evolution reads

dx =f(t,x,u)dt + g(x,u)dw, x =xg+ix;eC, (1)

where x represents a vector, u is the guidance law needed to be determined, w is
Wiener process with properties (dw) = 0 and (dw?) = dt, f (t, x, u) is the drift
velocity, and g(x, u) is the diffusion velocity. The cost function for x(t) with
randomness property reads

J(t %, 1) = By Uth(f,x(f),u(T))dT , 2)

t

where E, , represents the expectation of the cost function over all infinite trajec-
tories launched from the single initial condition, x(¢) = x in time interval [£,#]. To
find the minimum cost function, we define the value function,

V(t,x) = min J(t,x,u). (3)

u[t,tf

Instead of using the variational method, we apply the dynamic programming
method to Eq. (3) for the random motion. We then have the following expression
after having the Taylor expansion:

oVit,x), 1 *V(t,x)
p i f—l—itr gT(x,u)—g(x,u)} }, (4)

0x 0x?
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which is recognized as the Hamilton-Jacobi-Bellman (HJB) equation and
0’V (t,x)/0x? is Jacobi matrix. Finding the minimum of the cost function leads to the
momentum for the optimal path,

B OL(t,x,u) B oL(t,x,x) B

and determines the optimal guidance law,
u=ult,%,p)|, _yy- (6)

If one replaces Lagrange L by Hamiltonian H(t,x,p) = pTu — L(t,x, u), defines
the action function as S(¢,x) = —V/(¢,x) and let g(x,u) = \/—ih/m, Eq. (4) can be
transferred to the quantum Hamilton-Jacobi (HJ) equation,

ih

oS
E+H(t,x,p)|pzvs +%v25 = 0. (7)

Please notice that the last term in Eq. (7) is what makes the quantum HJ equation
differs from its classical counterpart. It is called the quantum potential,

Q= % V32S (8)

in dBB theory, Bohmian mechanics, and quantum Hamilton mechanics [29-33].
Even the quantum potential we derive here has the same expression appeared in
Bohmian mechanics, its relation to the random motion should be noticed. However,
it is not yet suitable to claim that the random motion attributes to the quantum
potential or vice versa. It is worthwhile to bring into discussion. Before inspecting
this question more deeply, we still can take advantage of the quantum potential to
describe or even explain some quantum phenomena.

We can transfer the quantum H]J equation (7) to the Schrédinger equation,

L o0P(tx) K,
ih " ——%V Y(t,x)+ U¥P(t,x) 9)

via the relation between the action function and wave function,
S(t,x) = —ihln¥(t,x), (10)

where U represents the external potential. This simple relation reveals a con-
nection between the trajectory and the wave description. In classical mechanics, a
particle follows the principle of least action; while the wave picture took place in
quantum mechanics. Eq. (10) implies that if we collect all action functions deter-
mined by different initial conditions which satisfy the initial probability distribu-
tion, a collection of corresponding wave patterns arise and eventually forms the
solution wave function of the Schrédinger equation. This process is the same as
what Schrédinger attempted to cope with the observable wave and tried to deduce
the suitable wave equation based on the classical wave theory. The only difference is
that Schrodinger started his deduction from the wave perspective; however, we
start from the particle perspective. Even the wave-particle duality troubles
physicists to inspect advanced about the essence of nature, the recent experiment
confirms relation (10) by observing an ensemble of quantum trajectories [3].
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This becomes a solid evidence to support the deduction that the matter wave is
formed by a huge number of trajectories.

To fully understand the property of these trajectories under the influence of the
guidance law, we consider a particle experiencing a randomness,

dx = u(t,x,p)dt + \/%hdw, (11)

where we have replaced f (¢, x,u) by the optimal guidance law «(¢,x, p), and
assigned g(x,u) = \/—ih/m into Eq. (1). Combining Egs. (6) and (10), the optimal
guidance law can be expressed in terms of the wave function,

—ih V¥ (t,x)

W) (12)

u(t,x,p) =

Therefore, Eq. (11) can be recast into the following expression:

 —ih V¥ (t,x) [Zih
dx = W) dt + - dw. (13)

Eq. (13) will reduce to the equation of motion given by the quantum H]J equation
(7) if we take the average of both sides,

- —th V¥(t,x) ’ (14)
m  P(t,x)

since the random motion in Eq. (13) has zero mean. This result shows that the
quantum HJ equation represents the mean motion of the particle. The trajectory in
the complex plane solved from Eq. (13) is random and will become the mean
trajectory solved from Eq. (14) after being averaged out. Figure 1 illustrates this
property by demonstrating the quantum motion of the Gaussian wave packet [28].

The first question we would like to answer by the complex random trajectory
(CRT) interpretation is its connection to the probability interpretation. In quantum
mechanics, the amplitude square of the wave function gives the probability density
of physical quantities as shown in Figure 2(a), in which the solid line stands for the
quantum harmonic oscillator in # = 1 state. The trajectory interpretation is
supported by the excellent agreement of the statistical spatial distribution made by
collecting all crossovers on the real axis of an ensemble of CRTs as the dots
displayed in Figure 2(a). It shows a good agreement of the statistical spatial distri-
bution and the quantum mechanical probability distribution [36].

In most text book of quantum mechanics, the nodes of the probability of har-
monic oscillator either be ignored or be regarded as the quantum characteristic.
Only the classical-like curve of the averaged probability has been mentioned. The
other significant finding brought out by the CRT interpretation is the nodal
vanished condition given by the statistical distribution of the collection of all
pointes be projected onto the real axis as Figure 2(b) shows. It starts to approach
the classical probability distribution for high quantum number as Figure 2(c) pre-
sents. The leverage of complex space structure deals with the probability nodes, and
even further to reach the classical region dominated by Newtonian mechanics
(more detail refers to [36]). After the matter wave can be interpreted by an ensem-
ble of trajectories in both theoretical and experimental results [3, 18, 34, 35], the
CRT interpretation shows both quantum mechanical and classical compatible
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Figure 1.

1 o%‘)';looo trajectories solved from Eq. (13) with the same initial condition of the Gaussian wave packet in the
complex plane: (a) the time evolution on the real axis for which the mean is denoted by the blue line; (b) the
time evolution on the imaginary axis with zero mean represented by the blue line. The complex trajectory solved
from Eq. (14) with one initial condition: (c) the time evolution on the real axis; (d) the time imaginary part of
the motion. This figuve reveals that the mean of the CRT is the trajectory solved from the quantum Hamilton
equations of motion [28].

results under two kinds of point collections. In other words, Bohr’s correspondence

principle can be interpreted by the CRT interpretation without loss of generality [36].
The second question we try to cope with by means of the CRT interpretation is

the conservation of the complex probability. In quantum mechanics, the continuity

equation for the probability density function is given by Bohr’s law pgy, = \¥|?, and
the current density J,

dpom

5 -V-J. (15)

The probability density function of the CRT interpretation satisfies the
Fokker-Planck equation,

0p(t,x) o i ih 2
==V, (x(t,x)p(t,x)) — 5 ¥ P6x), (16)

and has the complex value. Multiplying Eq. (16) and its complex conjugate then
dividing by 2, we obtain the continuity equation for complex probability density,

PEX) g (ple, ), (17)
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Figure 2.

(a) The quantum mechanical compatible outcome proposed by point collections of an ensemble of CRTSs crossing
the real axis for quantum harmonic oscillator in n = 1 state with coefficient correlation, T’ = 0.995. (b) The
dismissed nodal condition is given by the same trajectory ensemble but is composed of all projected points onto the
rveal axis. (c) The classical-like probability distribution is presented by collecting all projection points on the real
axis for n = 70 state with coefficient corrvelation, I' = 0.9412. (d) The analytical solution of the complex
probability density function solved from the Fokker-Planck equation shows good agreement with the spatial
distribution composed of all projection points on the real axis with coefficient correlation, T’ = 0.9975 [36].

where X denotes the mean of valuable x. From Eq. (17) we can see that the
complex probability density is conserved in the complex plane, neither on the real
axis nor imaginary axis. Figure 2(d) illustrates the good agreement between the
solution solved from Eq. (17) (blue dotted line) and the statistical spatial distribu-
tion (black solid line) contributed by all points collected by the projections onto the
real axis. This result verifies that the analytical solution coheres with the statistical
distribution made by CRT. It shows that the same results obtained from two differ-
ent ways stand from the equal footing of the classical concept.

3. Shell structure in hydrogen atom

In quantum mechanics, the quantized orbits of the electron in the hydrogen
atom is determined by solving the Schrédinger equation for different eigen states.
There is no further description of these orbits, especially no explanation about the
force balanced condition under the influence of the Coulomb force. Less study
reports the role that the quantum potential plays in atomic analysis. In this section,
a quest for describing the hydrogen atom is stretching underlying the quantum
potential in complex space. We show our most equations in dimensionless form for
the purposes of simplifying the question.

Let us consider the quantum Hamiltonian with Coulomb potential in complex
space [37],
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where S is the action function. Hamiltonian (18) is state dependent if we apply
the simple relation (9) to it. We can therefore have the dimensionless total potential
in terms of the wave function,

—Ze?
4reor’

(18)

A’ InRy(r) 1d’In®y, ()

g R ; (19)

i (4 + cotze) —

2
anml == _; + 472

where 7, [, and m; denote the principle quantum number, azimuthal quantum
number, and magnetic quantum number, respectively. The first term in Eq. (19) is
recognized as the Coulomb potential; while the remaining terms are the compo-
nents of the quantum potential. Figure 3(a) illustrates the three potentials varying
in radial direction of (n,1,m;) = (1, 0, 0) state; they are the total potential, Coulomb
potential, and quantum potential. The quantum potential yields the opposite spatial
distribution to the Coulomb potential, therefore, the total potential performs a
neutral situation. When the electron is too close (less than the Bohr radius) to the
nucleus, the total potential forms a solid wall that forbids the electron getting closer.
The total potential holds an appropriate distribution such that the electron is subject
to an attractive force when it is too far away from the nucleus. From the perspective
of the electron, it is quantum potential maintains the orbit stable and stop the
disaster of crashing on the nucleus.

From Eq. (19) we can obtain the total forces for (n,l,m;) = (1, 0, 0) state:

2 1 ) 0 1 cos6 "
_ﬁ_‘_ﬁ@—i—cot 0), f100:ﬁm’ f100 = 0. (20)

f100 =
Under a specific condition f},, = 4, = 0, the electron stays stationary at the
equilibrium position (r,0) = (1, z/2) for which » = 1 corresponds to the Bohr
radius. The motion of electron at the equilibrium point is determined by

r r r 2 2
f100(rs7/2) :fQ+fV:7,_3_V_2’ (21)

where the first and the second term represent the repulsive quantum force and
the attractive Coulomb force with lower label Q and V, respectively. As the distance
between the electron and the nucleus changes, the two forces take the lead in turn
as Figure 3(b) illustrates. It is clear to see that the zero force location happens at
r =1 (Bohr radius) owing to the force balancing formed by the Coulomb force and
quantum force.

In quantum mechanics, the maximum probability of finding the electron is at
the Bohr radius according to

—Pyo(r) = % (4zr’e™) = 0. (22)

The balanced force and the probability are totally different concepts; however,
present the same description of the hydrogen atom. This may reflect the equivalent
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Figure 3.

(a) The variations of three potentials in vadial divection for the ground state. (b) The total radial force in the
ground state which is composed of the coulomb force and quantum force with zero value at the Bohr radius [37].

meaning between the classical shell layers and the quantum probability. Further-
more, it may help us to realize the probabilistic electron cloud in a classical
standpoint.

Let us consider (n,l,m;) = (2,0, 0) state, which has the total potential as

2 1 1
VZOO:V+Q:_;+ mﬁ-ﬂ(‘t—i— C0t29) s (23)

]
(@ 53 Iy First shell |
I
* | Second shell
'
I
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11 | | rho
2 :
0 1 ] :
™ ] |
4] !
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{1
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\

First Shell

Figure 4.

(a) The shell structure of (n,1, m;) = (2, 0, 0) state in radial direction. (b) The dynamic equilibrium points
locate where the total force equals to zero. (c) Electron’s motion in r — 0 plane, and (d) illustrated in the shell
plane [37].
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and the force distributions in three directions:

2 1 1 ) 0 1 cos® _,
Sao == | e (4 et 0) oo = 9 g a0 = 00 (24)

which indicates the same equilibrium point location (re,, 0,y) = (3 +V/5,7/2)
given by the equations of motion from Eq. (14):

dr v’ —6r+4 d(cost) . cost dp

" r(r—2) > dr T % (25)

under the zero resultant force condition and the electron dynamic equilibrium
condition. Figure 4(a) presents the shell structures in radial direction according to
Eq. (24). The range of the layers are constrained by the total potential and divided
into two different parts. The two equilibrium points individually correspond to the
zero force locations in the two shells as Figure 4(b) indicates. Eq. (25) offers how
electron move in this state. Figure 4(c) illustrates electron’s trajectory in the » —
plane; while Figure 4(d) embodies trajectory in the shell structure.

4. Channelized quantum potential and conductance quantization in 2D
Nano-channels

The practical technology usage of the proposed formalism is applied to 2D Nano-
channels in this section. Instead of the probability density function offered by the
conventional quantum mechanics, we stay in line with causalism to perceive what
role played by the quantum potential. Consider a 2D straight channel made by
GaAs-GaAlAs and is surrounded by infinite potential barrier except the two reser-
voirs and the channel. The schematic plot of the channel refers to Figure 5. The
dynamic evolution of the wave function y(x,y) in the channel is described by the
Schrédinger equation,

S (% . %)wx,w ~ By(oy) 26)
Ga, Al As (b)

2 9 §

it .. :

Figure 5.

(a) A single quantum wire and an expanded view showing schematically the single degree of freedom in the x
divection. (b) 2D straight channel made up of quantum wire with length 2d and width w connects the left
reservoir to the right veservoir.
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where m* = 0.067m, is the effective mass of the electron, and E is the total
energy of the incident electron. The general solution of Eq. (26) has the form as

N
wE(y) = (B + Coe )y 0) ) = sin [ (y+5)]. @)

n=1

where N is the number of mode, w is the width of the channel, and k,, is the
wave number which satisfies the energy conservation law:

fe,h)?
E.+E, = (21713 +E, =E, (28)

in which E, = p2/(2m*) = (knh)®/(2m*) is the free particle energy in the x
direction, and E, = E, = n*/*z?/(2m*w?), n = 1,2, .-, is quantized energy in the y
direction due to the presence of the infinite square well. From Eq. (28), we have the
wave number read

kn = \/2m* (E - E,) /I (29)

The function B,e*»* + C,e~** in Eq. (27) is the free-particle wave function in
the x direction, and ¢, (y) is an eigen function for the infinite well in the y direction
satisfying the boundary condition ¢, (y)(w/2) = ¢,(y)(—w/2) = 0. The coefficients
B, and C, are uniquely determined by the incident energy E and incident angle ¢ .
(More detail refers to [38].) The quantum potential in the channel can be obtained
by combing Egs. (8), (10) and the wave function (27) (in dimensionless form),

PR .
Q) = (g2t 3 ) W) 30)
The quantum potential provides fully information of electron’s motion, its char-
acteristic of inverse proportional to the probability density displays more knowl-
edge in the channel. The inverse proportional relation reads

Q) = 5 [(a;”—f) + (%)] G

which represents that the high quantum potential region corresponds to the low
probability of electrons passing through as Figure 6 displays; and Figure 7 illus-
trates how the quantum potential gradually form the quantized channels as the
incident angle increases, which shows the state dependent characteristic of the
quantum potential.

The other quantum feature originating from the quantum potential is the quan-
tization of conductance in the channel as Figure 8 presents. We will show that the
high conductance region is where the most electrons gather. To simplify the system,
we firstly replace the motion in 2D channel by a motion in 1D square barriers [39].
Therefore, we consider the wave function y,, (x) satisfying the following
Schrédinger equation,

dry, (x) 2m*
b) B B V) =0, (32)

11
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(@) P(sy) with E=11, ¢=40° ) Q=z,y) with E=11, ¢=40

Figure 6.

The incident energy E = 11 and the incident angle ¢ = 40° for: (a) the probability density function; (b) the
corresponding quantum potential of the cross-section in the channel. The bright regions of the quantum potential
in (b) represent the lower potential barriers which are in accord with the bright regions in (a) where are the
locations with higher probability of finding electrons [38].
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Figure 7.
The variation of the quantum potential with vespect to the incident angle ¢ for a fixed incident energy
E = 11. It is seen that the channelized structure becomes move and more apparent with the increasing incident
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G 2eh

Figure 8.
The conductance G of a narrow channel shows plateaus at integer multiples of 2e> /h as the electron’s energy

& = VE increases [39].

where V,, is the equivalent square barrier,

n2h’
<
V=1 2m*w?’ el <d (33)
0, x| >d

Please notice that potential V,, depends on the eigen state, hence, the electron
will encounter different heights of the potential barrier in different eigen states.
Furthermore, it makes electron with different energy either transmitting or going
through the barrier by tunneling. When electrons transmit the channel, the con-
ductance will be changed and is expected to have the quantized value.

Let us express the transmission coefficient in dimensionless form as

n* sin? (ﬂg\/ & — nz) -
48 (& —n?)

Tu(é) = |1+ ; (34)

where & = VE, d = 2d /w is the aspect ratio of the channel. To display the
quantization of the conductance, we conduct a combination consisting of all trans-
mission coefficients which represents all electrons transmitting through all potential
barriers. This combination is expressed in terms of the total transmission coefficients,

N N n* sin?( nd/ & — n? -
) =3 T =3 |1+ ( )|

n=1 n=1 4‘52 (52 - n2) (35)

Figure 9 illustrates the quantization of the total transmission coefficient. Take
N =2 as an example, T\ (€) is composed of T'1(£) andT(¢):

Total
0, E<1
T ()~ 1, 1<é<2, (36)
2, £22
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(N)

The total transmission coefficients Ty

N = 1,2, 3,4 with d = 10. [39].

(&) display the step shape with the increasing of incident energy & for

where we have ignored the rapid oscillations parts in the transmission coeffi-
cient (more detail refers to [39]). Eq. (36) shows the step structure illustrated in
Figure 9, which has the same steps shape of the conductance shown in Figure 8.
We have demonstrated that the total transmission coefficient is proportional to the
total number of electrons passing the channel and it is relevant to the conductance
in the channel.

5. Concluding remarks

Looking for the unifying theory of quantum and classical mechanics lasts for
decades. Several approaches have been proposed, they share some viewpoints and
contributions. We have learned that the quantum potential plays a switch role
between the quantum and classical world. When the mass is getting larger and
larger, the quantum potential will become smaller and smaller, and eventually
becomes ignorable. Causality exists everywhere in the universe but hides itself in
the microscopic world. What makes physicists miss the link that connects the two
scale worlds is the statistical expression of the quantum world. It is impossible to
extract the fundamental law from the probability interpretation. As the higher
dimension is demanded, there are more evidences of causality emerging from the
backbone of quantum mechanics. The complex weak measurement proposes the
solid evidence of the complex space structure nature of the quantum world, and
evokes the ontology return to the quantum kingdom. All quantum motions happen
in complex space. All we can observe is a part of the whole appearance.

In Bohmian mechanics, the quantum potential is a product given by the trans-
formation process which starts from the Schrédinger equation to the quantum H]J
equation. In optimal guidance quantum motion formulation, the quantum potential
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naturally arises in the process of finding the minimum cost function. From the view
point of the space geometry, the quantum potential exposits the geometric variation
for the particle to lead its motion. This is what makes the quantum world quite
different to the classical world as many quantum phenomena reveal. The quantum
potential is so charming and plays the most important part that bridges the gap
between the quantum and classical world.

Probability is a prescription to deal with the empirical data not to represent the
essence of nature in such a small scale. We have demonstrated how to emerge the
trajectory from the probability by expanding the dimensions to complex space. As
meanwhile, we have pointed out how to reach the classical limit with increasing
quantum numbers from the same ensemble of trajectories by adopting different
statistical collection method. Take the advantage of the quantum potential, we are
allowed to explain the force balanced condition in the hydrogen atom, moreover,
we illustrate the formation of the shell structures which cohere with the shape of the
electron clouds. The channels in 2D Nano-structure are shown to be related to the
quantum potential and so does the conductance. We confirm that the quantized
conductance is originated from the electron’s transmission behavior. The ontology
renders the reality of the identity to the quantum object. It cannot be done without
the complex space structure. Complex space is essential for the quantum world and
becomes the most crucial part of solving the quantum puzzle. It may proper to say
that the causality returns to the quantum world and throughout the whole universe.
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