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Chapter

Boundary Element Modeling
and Optimization of Three
Temperature Nonlinear Fractional
Generalized Photo-Thermoelastic
Interaction in Anisotropic
Semiconductor Structures
Mohamed Abdelsabour Fahmy

Abstract

The main objective of this paper is to introduce a new fractional-order theory
called nonlinear fractional generalized photo-thermoelasticity involving three tem-
peratures. Due to strong nonlinearity, it is very difficult to solve the wave problems
related to this theory analytically. Therefore, we propose a new boundary element
algorithm and technique for simulation and optimization of the considered prob-
lems related to this theory. The genetic algorithm (GA) as an optimization method
has been applied based on free form deformation (FFD) technique to improve the
performance of our proposed technique. In the formulation of the considered
problem, the profiles of the considered objects are determined by FFD technique,
where the FFD control point positions are treated as genes, and then the chromo-
some profiles are defined with the gene sequence. The population is established by
a number of individuals (chromosomes), where the objective functions of individ-
uals are achieved by the boundary element method (BEM). A nonuniform rational
B-spline curve (NURBS) was used to model optimized boundary where it reduces
the number of control points and provides the flexibility to design several
different shapes for solving the considered photo-thermoelastic wave problems.
The numerical results verify the validity and accuracy of our proposed boundary
element technique.

Keywords: boundary element method, fractional-order, nonlinear generalized
photo-thermoelasticity, three temperatures, modeling and optimization,
anisotropic semiconductor structures

1. Introduction

In semiconductors, an electronic deformation leads to local strain which pro-
duces plasma waves that are similar to thermal waves generated by local periodic
elastic deformation. In general, the electric resistance of semiconductor decreases
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with increasing temperature, due to semiconductor electrons released from atoms
by heat. Recently, the fractional differential equations that can be used for describ-
ing many real-world systems have gotten more and more researchers’ attention
due to their many applications in sciences and engineering fields.

Recently, increasing attention has been directed toward generalized micropolar
thermoelastic problems in anisotropic media due to its many applications in aero-
nautics, astronautics, geophysics, plasma physics, nuclear plants, nuclear reactors,
automobile industries, military technologies, robotics, earthquake engineering, soil
dynamics, mining engineering, high-energy particle accelerators, and other
engineering industries.

The classical thermoelasticity (CTE) theory has been proposed by Duhamel
[1] and Neuman [2] and has two physical paradoxes. First, the heat conduction
equation of this theory does not include any elastic terms. Second, the heat
conduction equation is of a parabolic type, predicting infinite propagation speed
of thermal energy. This prediction is a physically unacceptable situation. Biot [3]
developed the classical coupled thermoelasticity (CCTE) theory to resolve the
first paradox of CTE theory. However, both theories share the second paradox.
So, several generalizations of Fourier’s law that predicts finite propagation speed
of thermal waves have been successfully developed and implemented. Lord and
Shulman (L-S) [4] proposed the extended thermoelasticity (ETE) theory, where
the Fourier’s heat conduction law is replaced by the so-called Maxwell-Cattaneo
law with one relaxation time. Green and Lindsay (G-L) [5] proposed the temper-
ature rate-dependent thermoelasticity (TRDTE) theory including two relaxation
times. Green and Naghdi (G-N) [6, 7] have formulated three different theories in
the context of linear generalized thermoelasticity; the general constitutive assump-
tions for the heat flux vector in each theory are different. So, they got three
models labeled as types I, II, and III. Type I is based on the classical Fourier’s law
of heat conduction, type II characterizes the thermoelastic behavior without
energy dissipation (TEWOED), and type III describes the thermoelastic interac-
tion with energy dissipation (TEWED). Due to the mathematical difficulties,
inherent in solving coupled magnetomechanical problems [8, 9], the problems
become too complicated to obtain an analytical solution in a general case. Instead
of analytical methods, several numerical methods have recently been successfully
developed and implemented to obtain the approximate solutions for such prob-
lems including the finite difference method (FDM) [10] and finite element
method (FEM) [11]. Nowadays, the boundary element method (BEM) is an
effective computational technique [12–31] which provides an excellent alternative
to the prevailing finite difference and finite element methods for solving various
engineering, scientific, and mathematical applications due to its simplicity, effi-
ciency, and ease of implementation. Throughout the present paper, the new term
three-temperature is presented for the first time in the field of
photo-thermoelasticity.

The main aim of this paper is to introduce a new fractional-order theory called
nonlinear generalized photo-thermoelasticity involving three temperatures. The
governing equations of transient thermal stress wave propagation problems associ-
ated with this theory are very difficult to solve analytically because of strong
nonlinearity. So, we need to develop new numerical techniques for solving such
equations. Therefore, we propose a new boundary element technique for solving
the governing equations of the proposed theory. The numerical results are depicted
graphically to confirm the validity and accuracy of our proposed technique.

A brief summary of this chapter is as follows. Section 1 outlines the background
and provides the readers with the necessary information from books and articles for
a better understanding of the generalized thermoelastic theories associated with the
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distributions of three temperature and thermal stress fields. Section 2 describes the
formulation of the new theory and its related problems. Section 3 discusses the
implementation of the new BEM to obtain the carrier density field. Section 4 studies
the implementation of the new BEM for solving the nonlinear radiative heat con-
duction equation, to obtain the three temperature fields. Section 5 studies the
development of the new BEM and its implementation for solving the move equation
based on the known three temperature fields, to obtain the displacement field.
Section 6 discusses the shape optimization scheme for semiconductor structures.
Section 7 presents the new numerical results that describe the BEM results which
are in excellent agreement with the FDM and FEM results.

2. Formulation of the problem

We considered the Cartesian coordinates for a semiconductor structure which
occupies the region R and bounded by a closed surface S.

The coupled plasma and thermoelastic wave equations during photothermal
process can be written as follows:

The wave equation:

σij,j þ ρFi ¼ ρ€ui (1)

The plasma wave equation:

∂N

∂τ
�D0∇

2N þ 1
τ0

N � n0ð Þ ¼ �αθ (2)

where D0,N, n0, τ0, and �α are the diffusion coefficient, carrier density, equilib-
rium carrier concentration at temperature θ, electron relaxation time, and thermal
expansion coefficient, respectively. Also, we assumed that �α ¼ ~Ae�ax.

The two-dimensional three-temperature (2D-3T) radiative heat conduction
equations can be expressed as follows:

Da
τTα r, τð Þ ¼ ξ∇ α∇Tα r, τð Þ½ � þ ξ r, τð Þ, ξ ¼ 1

cαρδ1
(3)

where

σij ¼ Cijklδij � βij θ þ dnN

�α

� �

,Cijkl ¼ Cklij ¼ Cjikl, βij ¼ βji (4)

 r, τð Þ ¼

ρ ei Te � Tið Þ þ ρ er Te � Tp

� �

þ, α ¼ e, δ1 ¼ 1

�ρei Te � Tið Þ þ, α ¼ i, δ1 ¼ 1

�ρer Te � Tp

� �

þ, α ¼ p, δ1 ¼
4
ρ
T3
p

8

>

>

>

>

>

>

<

>

>

>

>

>

>

:

(5)

 r, τð Þ ¼ �δ2nα
_Tα,ij þ βijTα0 Åδ1n _ui,j þ τ0 þ δ2nð Þ€ui,j

� �

þ ρcα τ0 þ δ1nτ2 þ δ2nð Þ€Tα

� �

� Eg

τ0
N � n0ð Þ

(6)
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where

ei ¼ ρeiT
�2=3
e ,er ¼ ρerT

�1=2
e ,α ¼ αT

5=2
α , α ¼ e, i,p ¼ pT

3þ
p (7)

The total energy of unit mass can be described by

P ¼ Pe þ Pi þ Pp,Pe ¼ ceTe,Pi ¼ ciTi,Pp ¼
1
ρ
cpT

4
p (8)

where σij is mechanical stress tensor; ρ is the density; Fi is the mass force vector;
ui is the displacement vector; Cijkl is the constant elastic moduli; βij are the stress-
temperature coefficients; ce, ci, and cp are specific heat capacities of electron, ion,
and phonon, respectively; e,i, and p are conductive coefficients of electron,
ion, and phonon, respectively; ei is the electron-ion coefficient; ep is the

electron-phonon coefficient; the total temperature θ ¼ Te þ Ti þ Tp, � Eg

τ0
N � n0ð Þ

is the recombination term; and Eg is the semiconductor gap energy.

3. BEM solution of carrier density field

In order to construct the integral equation, we use the following Green’s function:

G x, τð Þ ¼ e
� τ

τ0

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

πD0τð Þ
p e�x2=4D0τ: (9)

We assume that the solution of Eq. (2) can be written as

N ¼ n0 þN0 x, τð Þ þ
ð

g τ0ð ÞG x, τ � τ0ð Þdτ0, (10)

where G x, τ � τ0ð Þ is a particular solution of Eq. (2) when its right-hand side is
equal to zero and N0 x, τð Þ is also a particular solution of Eq. (2) which can be
obtained as

N0 x, τð Þ ¼ A

ðτ

0
dτ0

ð

∞

�∞

e�axG x� x0, τ � τ0ð Þdx0: (11)

which can be written in the following form [32].

N0 x, τð Þ ¼ Ae�ax τ0

1� a2L2
0

1� e� 1�a2L2
0ð Þτ=τ0

h i

, (12)

where the minority carrier diffusion length is L0 ¼
ffiffiffiffiffiffiffiffiffiffiffi

D0τ0
p

. Thus after imposing
initial conditions N x, 0ð Þ ¼ N0 for all xð Þ and boundary conditions
N 0, τð Þ ¼ N0 for all τð Þ, we have

ðτ

0
g τ0ð ÞG 0, τ � τ0ð Þdτ0 ¼ �N0 0, τð Þ (13)

By solving Eq. (13), the unknown g τð Þ is determined. Then from Eq. (10),
we obtain N x, τð Þ.

4

Recent Trends in Computational Intelligence



4. BEM solution of temperature field

By applying the Caputo scheme, we have [33].

Da
τT

fþ1
α þDa

τT
f
α ≈

X

k

j¼0

Wa,j T
fþ1�j
α rð Þ � T f�j

α rð Þ
� �

, f ¼ 1, 2, … :, Fð Þ, (14)

where

Wa,0 ¼ ∆τð Þ�a

Γ 2� að Þ ,Wa,j ¼ Wa,0 jþ 1ð Þ1�a � j� 1ð Þ1�a
	 


, j ¼ 1, 2, … :,F:

Substituting Eq. (11) into Eq. (3), we obtain

Wa,0T
fþ1
α rð Þ �α xð ÞT fþ1

α,II rð Þ �α,I xð ÞT fþ1
α,I rð Þ

¼ Wa,0T
f
α rð Þ �α xð ÞT f

α,II rð Þ �α,I xð ÞT f
α,J rð Þ

�
X

f

j¼1

Wa,j T
fþ1�j
α rð Þ � T f�j

α rð Þ
� �

þ
fþ1
m x, τð Þ þ

f
m x, τð Þ, f ¼ 0, 1, 2, … ,F: (15)

Based on the fundamental solution which satisfies Eq. (15), the boundary inte-
gral equations corresponding to Eq. (3) can be expressed as

CTα ¼
ð

S
Tαq

∗� T ∗

α q
� �

dS�
ð

R

α

D

∂T ∗

α

∂τ
Tα dR: (16)

Based on [34], we can write

C _Tα þH Tα ¼ G Q (17)

To solve Eq. (17), the functions Tα and q can be interpolated as

Tα ¼ 1� θð ÞTm
α þ θ Tmþ1

α , (18)

q ¼ 1� θð Þqm þ θ qmþ1: (19)

Differentiating Eq. (18) with time, we obtain

_Tα ¼
dTα

dθ

dθ

dτ
¼ Tmþ1

α � Tm
α

τmþ1 � τm
¼ Tmþ1

α � Tm
α

∆τm
, θ ¼ τ � τm

τmþ1 � τm
, 0≤ θ≤ 1: (20)

By substituting Eqs. (18)-(20) into Eq. (17), we get

C

∆τm
þ θH

� �

Tmþ1
α � θGQmþ1 ¼ C

∆τm
� 1� θð ÞH

� �

Tm
α þ 1� θð ÞGQm: (21)

Thus, the temperature can be determined from the following system:

X ¼ , (22)

where  is an unknown matrix and X and  are known matrices.
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5. BEM solution of displacement field

On the basis of the weighted residual method, the differential equations (1) can
be transformed to the following integral equations:

ð

R

σij,j þUi

� �

u ∗

i dR ¼ 0, i, j ¼ 1, 2, … :,N (23)

in which

Ui ¼ ρFi � ρ€ui: (24)

According to Huang and Liang [35], Eringen [36], and Dragos [37], we can write
Eq. (23) as

Cnn ¼
X

Ne

j¼1

�
ð

Γj

∗ψ dΓ

" #

 j þ
X

Ne

j¼1

ð

Γj

 ∗ψ dΓ

" #

 j, ¼ ψ  j, ¼ ψ  j (25)

which can be written as

Cii ¼ �
X

Ne

j¼1

ℍ̂
ij
 j þ

X

Ne

j¼1

̂
ij
 j: (26)

This matrix system can be written as follows:

 ¼ , (27)

where  represents the displacements and  represents the tractions.
By using the boundary conditions in Eq. (27), we get

  ¼ , (28)

where  is an unknown matrix and  and  are known matrices. We refer the
interested readers to Reference [37] for further details.

6. Shape optimization scheme for semiconductor structures

Two criteria can be implemented during shape optimization of semiconductor
structures:

I. The minimum global compliance based on the tractions λ and boundary
displacements u

F ¼ 1
2

ð

S

λ ∙ uð Þ dS, (29)

II. The minimum boundary based on the equivalent stresses σij and the reference
stress σ0

F ¼
ð

S

σij

σ0

� �n

dS, (30)

where n is a natural number.
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Based on the boundary displacement u and the reference displacement u0, we
can write

F ¼
ð

S

u

u0

� �n

dS, (31)

which can be used to obtain

F ¼ δ
X

M

k¼1

uk � ûk
	 


þ η
X

N

l¼1

θl � θ̂
l

	 


: (32)

The efficiency of the proposed technique has been improved using FFD, GA,
and the following nonuniform rational B-spline curve (NURBS):

C tð Þ ¼
Pn

i¼0Ni,o tð ÞϖiPi
Pn

i¼0Ni,o tð Þϖi
, (33)

where Ni,o tð Þ are the B-spline basis functions of order o andϖi are the weights of
control points Pi.

7. Numerical results and discussion

The efficiency of our numerical modeling technique has been improved using a
nonuniform rational B-spline curve (NURBS) to decrease the computation time and
the model’s optimized boundary where it reduces the number of control points and
provides the flexibility to design a large variety of shapes.

Figure 1 shows the main steps of the genetic algorithm of photo-thermoelastic
semiconductor structures.

Figure 1.
Genetic algorithm of photo-thermoelastic semiconductor structures.
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The design vector is represented by a chromosome x which consists of genes
xi, i ¼ 1, … , N:

x ¼ x1, … , xi, … , xN½ � (34)

Thus, genes can be considered as design variables.
The following constraints are also imposed on each gene:

xiL ≤ xi ≤ xiR, i ¼ 1, … ,N (35)

where xiL and xiR are the left and right admissible values of xi.
The uniform mutation and boundary mutation are implemented, where the

uniform mutation operator replaces a gene of the chromosome with the new
random value xi which corresponds to the design parameter as shown in Figure 2.

The uniform mutation probability determines the gene number which will be
modified in each population. The boundary mutation operator is a special case of
the uniform mutation. The gene after mutation receives one of the boundary values
xiL or xiR as shown in Figure 3.

The boundary mutation is very useful for boundary element problems in which
the solution is on the boundary. The boundary mutation probability determines the
gene number which will be modified in each population.

The simple crossover and arithmetical crossover are implemented, where the
operator of the simple crossover creates two new chromosomes x0 and y0 from two
existing chromosomes selected randomly, x and y, where both chromosomes are
coupled together as shown in Figure 4.

The simple crossover probability determines the chromosomes number which
will be crossing in each population.

The arithmetic crossover operator creates two identical new chromosomes x0

from two existing chromosomes selected randomly, x and y, where the gene values
in the new chromosomes are the arithmetic average of genes of the parents as
shown in Figure 5.

Figure 2.
Implementation of uniform mutation.

Figure 3.
Implementation of boundary mutation.
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The operator of the cloning increases the probability of survival of the best chro-
mosome by duplicating this one to the next generation. The probability of the cloning
decides how many copies of the best chromosome will be in the new generation.

The ranking selection allows chromosomes to survive with a great value of
an objective function. The first step of the ranking selection is sorting all the
chromosomes according to the value of the objective function. Then on the basis of
the position in the population, the probability of survival is attributed to every
chromosome by the following formula:

prob rankð Þ ¼ q 1� qð Þrank�1 (36)

where rank is the chromosome position after sorting, prob rankð Þ is the
probability of survival, and q is a selection coefficient.

A shape optimization of the photo-thermoelastic semiconductor structure
presented in Figure 6 is considered. Only the parts of the boundary, where the tem-
perature field T0 and the heat flux q0 are prescribed, undergo the shapemodification.

The optimal shape of the photo-thermoelastic semiconductor structure for
isotropic, transversely isotropic, orthotropic, and anisotropic is presented in
Figure 7. Table 1 contains the genetic algorithm parameters which were applied.

Figure 4.
Implementation of simple crossover.

Figure 5.
Implementation of arithmetic crossover.
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The efficiency of our numerical modeling technique has been improved using
GA, FFD, and NURBS to decrease the computation time of solving three-
temperature photo-thermoelastic problems in semiconductor structures. Due to
strong nonlinearity, it is very difficult to solve the problems related to this theory
analytically. Therefore, we propose a new boundary element model for our current
complex problem. So, the validity and accuracy of the proposed technique were
confirmed by comparing graphically the one-dimensional results obtained from
BEM with those obtained using the finite difference method (FDM) of Pazera and

Figure 6.
Optimized considered photo-thermoelastic semiconductor structure.

Figure 7.
Optimal shape of photo-thermoelastic semiconductor structure. (a) Isotropic, (b) transversely isotropic,
(c) orthotropic, and (d) anisotropic.
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Chromosome number 100

Iteration number 150

Design parameter number 5

Uniform mutation probability 0.015

Boundary mutation probability 0.0075

Simple crossover probability 0.075

Arithmetic crossover probability 0.075

Cloning probability 0.05

Selection coefficient 0.1

Table 1.
Parameters of genetic algorithm.

Figure 8.
Variation of the three temperatures Te,Ti, and Tp with time τ.

Figure 9.
Variation of the thermal stress σ11 with time τ.
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Jędrysiak [38] and finite element method (FEM) of Xiong and Tian [39] which have
been reduced as a special case from the current problem. For comparison reasons,
the 2D-3T radiative heat conduction is replaced by heat conduction. Figure 8 shows
the variations of the temperature Te, Ti, Tp and θ ¼ Te þ Ti þ Tp with the time τ. The
differences between time distributions of electron temperature Te, ion temperature
Ti, phonon temperature Tp, and total temperature θ can be seen from this figure.
Figures 9–11 show the variations of the thermal stresses σ11, σ12, and σ22 with the
time τ. It can be seen from these figures that the BEM results are in excellent
agreement with the FDM and FEM results.

Figure 10.
Variation of the thermal stress σ12 with time τ.

Figure 11.
Variation of the thermal stress σ22 with time τ.
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8. Conclusion

The aim of this study is to propose a new theory called nonlinear fractional
generalized photo-thermoelasticity involving three temperatures and implement a
new boundary element technique for modeling and optimization of the three-
temperature nonlinear fractional generalized photo-thermoelastic interaction prob-
lems in anisotropic semiconductor structures associated with the proposed theory.
This technique is implemented based on genetic algorithm (GA), free-form defor-
mation (FFD) method, and nonuniform rational B-spline curve (NURBS) as the
global optimization techniques for solving complex problems associated with the
proposed theory. FFD is an efficient and accurate technique for treating optimiza-
tion problems with complex shapes. In the formulation of the considered problem,
solutions are obtained for specific arbitrary parameters which are the control point
positions in the considered problem; the profiles of the considered objects are
determined by FFD method, where the FFD control points positions are treated as
genes; and then the chromosomes profiles are defined with the gene sequence. The
population is founded by a number of individuals (chromosomes), where the
objective functions of individuals are determined by the BEM. The optimal shape of
the photo-thermoelastic semiconductor structure for isotropic, transversely isotro-
pic, orthotropic, and anisotropic is obtained. The proposed technique can be applied
to a wide range of modeling and optimization problems related with our proposed
theory. The numerical results verify the validity and accuracy of our proposed
boundary element technique. Also, the BEM is more powerful and simple to use
than the FDM or FEM, because it reduces the computational cost. The present
numerical results for our general and complex problem may provide interesting
information for mechanical engineers, material science researchers, computer sci-
entists, and designers of semiconductor devices.

Author details

Mohamed Abdelsabour Fahmy
Faculty of Computers and Informatics, Suez Canal University, Ismailia, Egypt

*Address all correspondence to: mohamed_fahmy@ci.suez.edu.eg

©2020TheAuthor(s). Licensee IntechOpen. This chapter is distributed under the terms
of theCreativeCommonsAttribution License (http://creativecommons.org/licenses/
by/3.0),which permits unrestricted use, distribution, and reproduction in anymedium,
provided the original work is properly cited.

13

Boundary Element Modeling and Optimization of Three Temperature Nonlinear Fractional…
DOI: http://dx.doi.org/10.5772/intechopen.91230



References

[1]Duhamel J. Some memoire sur les
phenomenes thermo-mechanique.
Journal de l’École polytechnique.
1837;15:1-57

[2]Neumann F. Vorlesungen Uber die
theorie der elasticitat. Brestau: Meyer;
1885

[3] Biot M. Thermoelasticity and
irreversible thermo-dynamics. Journal
of Applied Physics. 1956;27:249-253

[4] Lord HW, Shulman Y. A generalized
dynamical theory of thermoelasticity.
Journal of the Mechanics and Physics of
Solids. 1967;15:299-309

[5] Green AE, Lindsay KA.
Thermoelasticity. Journal of Elasticity.
1972;2:1-7

[6]Green AE, Naghdi PM. On undamped
heat waves in an elastic solid. Journal of
Thermal Stresses. 1992;15:253-264

[7] Green AE, Naghdi PM.
Thermoelasticity without energy
dissipation. Journal of Elasticity. 1993;
31:189-208

[8] Kaliski S. Thermo-magneto-
microelasticity. Bulletin of the Polish
Academy of Sciences: Technical
Sciences. 1968;16:7-12

[9] Jafarian A, Ghaderi P,
Golmankhaneh AK, Baleanu D. Analytic
solution for a nonlinear problem of
magneto-thermoelasticity. Reports on
Mathematical Physics. 2013;71:399-411

[10] Abd-Alla AM, El-Naggar AM,
Fahmy MA. Magneto-thermoelastic
problem in non-homogeneous isotropic
cylinder. Heat and Mass Transfer. 2003;
39:625-629

[11] Abbas IA, Abd-alla AN,
Othman MIA. Generalized magneto-
thermoelasticity in a fiber-reinforced

anisotropic half-space. International
Journal of Thermophysics. 2011;32:
1071-1085

[12] FahmyMA. Thermoelastic stresses in
a rotating non-homogeneous anisotropic
body. Numerical Heat Transfer: Part A
Applications. 2008;53:1001-1011

[13] Fahmy MA. A time-stepping
DRBEM for magneto-thermo-
viscoelastic interactions in a rotating
nonhomogeneous anisotropic solid.
International Journal of Applied
Mechanics. 2011;3:1-24

[14] Fahmy MA. A time-stepping
DRBEM for the transient magneto-
thermo-visco-elastic stresses in a
rotating non-homogeneous anisotropic
solid. Engineering Analysis with
Boundary Elements. 2012;36:335-345

[15] Fahmy MA. Transient magneto-
thermoviscoelastic plane waves in a
non-homogeneous anisotropic thick
strip subjected to a moving heat source.
Applied Mathematical Modelling. 2012;
36:4565-4578

[16] Fahmy MA. Numerical modeling of
transient magneto-thermo-viscoelastic
waves in a rotating nonhomogeneous
anisotropic solid under initial stress.
International Journal of Modeling,
Simulation, and Scientific Computing.
2012;3:1250002

[17] Fahmy MA. The effect of rotation
and inhomogeneity on the transient
magneto-thermoviscoelastic stresses in
an anisotropic solid. Journal of Applied
Mechanics. 2012;79:1015

[18] Fahmy MA. Transient magneto-
thermo-viscoelastic stresses in a rotating
nonhomogeneous anisotropic solid with
and without a moving heat source.
Journal of Engineering Physics and
Thermophysics. 2012;85:950-958

14

Recent Trends in Computational Intelligence



[19] FahmyMA. Transientmagneto-
thermo-elastic stresses in an anisotropic
viscoelastic solidwith andwithoutmoving
heat source.NumericalHeat Transfer: Part
AApplications. 2012;61:547-564

[20] Fahmy MA. Implicit-explicit time
integration DRBEM for generalized
magneto-thermoelasticity problems of
rotating anisotropic viscoelastic
functionally graded solids. Engineering
Analysis with Boundary Elements. 2013;
37:107-115

[21] Fahmy MA. Generalized magneto-
thermo-viscoelastic problems of
rotating functionally graded anisotropic
plates by the dual reciprocity boundary
element method. Journal of Thermal
Stresses. 2013;36:1-20

[22] Fahmy MA. A three-dimensional
generalized magneto-thermo-
viscoelastic problem of a rotating
functionally graded anisotropic solids
with and without energy dissipation.
Numerical Heat Transfer: Part A
Applications. 2013;63:713-733

[23] Fahmy MA. A computerized
DRBEM model for generalized
magneto-thermo-visco-elastic stress
waves in functionally graded anisotropic
thin film/substrate structures. Latin
American Journal of Solids and
Structures. 2014;11:386-409

[24] Fahmy MA. Computerized
Boundary Element Solutions for
Thermoelastic Problems: Applications to
Functionally Graded Anisotropic
Structures. Saarbrücken: LAP Lambert
Academic Publishing; 2017

[25] Fahmy MA. Boundary Element
Computation of Shape Sensitivity and
Optimization: Applications to
Functionally Graded Anisotropic
Structures. Saarbrücken: LAP Lambert
Academic Publishing; 2017

[26] Fahmy MA. Shape design sensitivity
and optimization for two-temperature

generalized magneto-thermoelastic
problems using time-domain DRBEM.
Journal of Thermal Stresses. 2018;41:
119-138

[27] Fahmy MA. Shape design sensitivity
and optimization of anisotropic
functionally graded smart structures
using bicubic B-splines DRBEM.
Engineering Analysis with Boundary
Elements. 2018;87:27-35

[28] Fahmy MA. Boundary element
algorithm for modeling and simulation
of dual phase lag bioheat transfer and
biomechanics of anisotropic soft tissues.
International Journal of Applied
Mechanics. 2018;10:1850108

[29] Fahmy MA. Modeling and
optimization of anisotropic viscoelastic
porous structures using CQBEM and
moving asymptotes algorithm. Arabian
Journal for Science and Engineering.
2019;44:1671-1684

[30] Fahmy MA. Boundary element
modeling and simulation of
biothermomechanical behavior in
anisotropic laser-induced tissue
hyperthermia. Engineering Analysis with
Boundary Elements. 2019;101:156-164

[31] FahmyMA. A new LRBFCM-GBEM
modeling algorithm for general solution of
time fractional order dual phase lag
bioheat transfer problems in functionally
graded tissues. Numerical Heat Transfer:
Part A Applications. 2019;75:616-626

[32]De Mey G. An integral equation
method to calculate the transient
behavior of a photovoltaic solar cell.
Solid-State Electronics. 1978;21:595-596

[33] Cattaneo C. Sur une forme de
i’equation de la chaleur elinant le
paradox d’une propagation instantanc.
Comptes Rendus de l’Académie des
Sciences. 1958;247:431-433

[34]Wrobel LC, Brebbia CA. The dual
reciprocity boundary element

15

Boundary Element Modeling and Optimization of Three Temperature Nonlinear Fractional…
DOI: http://dx.doi.org/10.5772/intechopen.91230



formulation for nonlinear diffusion
problems. Computer Methods in
Applied Mechanics and Engineering.
1987;65:147-164

[35]Huang FY, Liang KZ. Boundary
element method for micropolar
thermoelasticity. Engineering Analysis
with Boundary Elements. 1996;17:19-26

[36] Eringen AC. Theory of micropolar
elasticity. In: Liebowitz H, editor.
Fracture. New York: Academic Press;
1968

[37]Dragos L. Fundamental solutions in
micropolar elasticity. International
Journal of Engineering Science. 1984;22:
265-275

[38] Pazera E, Jędrysiak J. Effect of
microstructure in thermoelasticity
problems of functionally graded
laminates. Composite Structures. 2018;
202:296-303

[39] Xiong QL, Tian XG. Generalized
magneto-thermo-microstretch response
during thermal shock. Latin American
Journal of Solids and Structures. 2015;
12:2562-2580

16

Recent Trends in Computational Intelligence


