
Selection of our books indexed in the Book Citation Index

in Web of Science™ Core Collection (BKCI)

Interested in publishing with us?
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected.

For more information visit www.intechopen.com

Open access books available

Countries delivered to Contributors from top 500 universities

International authors and editors

Our authors are among the

most cited scientists

Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

12.2%

186,000 200M

TOP 1%154

6,900

Chapter

Data Mining and Machine
Learning for Software Engineering
Elife Ozturk Kiyak

Abstract

Software engineering is one of the most utilizable research areas for data mining.
Developers have attempted to improve software quality by mining and analyzing
software data. In any phase of software development life cycle (SDLC), while huge
amount of data is produced, some design, security, or software problems may
occur. In the early phases of software development, analyzing software data helps
to handle these problems and lead to more accurate and timely delivery of software
projects. Various data mining and machine learning studies have been conducted
to deal with software engineering tasks such as defect prediction, effort estimation,
etc. This study shows the open issues and presents related solutions and recom-
mendations in software engineering, applying data mining and machine learning
techniques.

Keywords: software engineering tasks, data mining, text mining, classification,
clustering

1. Introduction

In recent years, researchers in the software engineering (SE) field have turned
their interest to data mining (DM) and machine learning (ML)-based studies since
collected SE data can be helpful in obtaining new and significant information.
Software engineering presents many subjects for research, and data mining can give
further insight to support decision-making related to these subjects.

Figure 1 shows the intersection of three main areas: data mining, software
engineering, and statistics/math. A large amount of data is collected from organiza-
tions during software development and maintenance activities, such as requirement
specifications, design diagrams, source codes, bug reports, program versions, and
so on. Data mining enables the discovery of useful knowledge and hidden patterns
from SE data. Math provides the elementary functions, and statistics determines
probability, relationships, and correlation within collected data. Data science, in the
center of the diagram, covers different disciplines such as DM, SE, and statistics.

This study presents a comprehensive literature review of existing research and
offers an overview of how to approach SE problems using different mining tech-
niques. Up to now, review studies either introduce SE data descriptions [1], explain
tools and techniques mostly used by researchers for SE data analysis [2], discuss
the role of software engineers [3], or focus only on a specific problem in SE such
as defect prediction [4], design pattern [5], or effort estimation [6]. Some existing
review articles having the same target [7] are former, and some of them are not

1

comprehensive. In contrast to the previous studies, this article provides a systematic
review of several SE tasks, gives a comprehensive list of available studies in the
field, clearly states the advantages of mining SE data, and answers “how” and
“why” questions in the research area.

The novelties and main contributions of this review paper are fivefold.

• First, it provides a general overview of several SE tasks that have been the
focus of studies using DM and ML, namely, defect prediction, effort
estimation, vulnerability analysis, refactoring, and design pattern mining.

• Second, it comprehensively discusses existing data mining solutions in
software engineering according to various aspects, including methods
(clustering, classification, association rule mining, etc.), algorithms (k-nearest
neighbor (KNN), neural network (NN), etc.), and performance metrics
(accuracy, mean absolute error, etc.).

• Third, it points to several significant research questions that are unanswered
in the recent literature as a whole or the answers to which have changed
with the technological developments in the field.

• Fourth, some statistics related to the studies between the years of 2010 and
2019 are given from different perspectives: according to their subjects and
according to their methods.

• Five, it focuses on different machine learning types: supervised and
unsupervised learning, especially on ensemble learning and deep learning.

This paper addresses the following research questions:
RQ1. What kinds of SE problems can ML and DM techniques help to solve?
RQ2. What are the advantages of using DM techniques in SE?
RQ3. Which DM methods and algorithms are commonly used to handle SE

tasks?
RQ4. Which performance metrics are generally used to evaluate DM models

constructed in SE studies?
RQ5. Which types of machine learning techniques (e.g., ensemble learning, deep

learning) are generally preferred for SE problems?
RQ6. Which SE datasets are popular in DM studies?
The remainder of this paper is organized as follows. Section 2 explains the

knowledge discovery process that aims to extract interesting, potentially useful, and
nontrivial information from software engineering data. Section 3 provides an over-
view of current work on data mining for software engineering grouped under five
tasks: defect prediction, effort estimation, vulnerability analysis, refactoring, and

Figure 1.
The intersection of data mining and software engineering with other areas of the field.

2

Data Mining - Methods, Applications and Systems

design pattern mining. In addition, some machine learning studies are divided into
subgroups, including ensemble learning- and deep learning-based studies. Section 4
gives statistical information about the number of highly validated research
conducted in the last decade. Related works considered as fundamental by journals
with a highly positive reputation are listed, and the specific methods they used
and their categories and purposes are clearly expressed. In addition, widely used
datasets related to SE are given. Finally, Section 5 offers concluding remarks and
suggests future scientific and practical efforts that might improve the efficiency
of SE actions.

2. Knowledge discovery from software engineering data

This section basically explains the consecutive critical steps that should be
followed to discover beneficial knowledge from software engineering data. It
outlines the order of necessary operations in this process and explains how related
data flows among them.

Software development life cycle (SDLC) describes a process to improve the
quality of a product in project management. The main phases of SDCL are planning,
requirement analysis, designing, coding, testing, and maintenance of a project. In
every phase of software development, some software problems (e.g., software bugs,
security, or design problems) may occur. Correcting these problems in the early
phases leads to more accurate and timely delivery of the project. Therefore, soft-
ware engineers broadly apply data mining techniques for different SE tasks to solve
SE problems and to enhance programming efficiency and quality.

Figure 2 presents the data mining and knowledge discovery process of SE tasks
including data collection, data preprocessing, data mining, and evaluation. In the
data collection phase, data are obtained from software projects such as bug reports,
historical data, version control data, and mailing lists that include various informa-
tion about the project’s versions, status, or improvement. In the data preprocessing
phase, the data are preprocessed after collection by using different methods such
as feature selection (dimensionality reduction), feature extraction, missing data
elimination, class imbalance analysis, normalization, discretization, and so on. In
the next phase, DM techniques such as classification, clustering, and association
rule mining are applied to discover useful patterns and relationships in software

Figure 2.
KDD process for software engineering.

3

Data Mining and Machine Learning for Software Engineering
DOI: http://dx.doi.org/10.5772/intechopen.91448

engineering data and therefore to solve a software engineering problem such as
defected or vulnerable systems, reused patterns, or parts of code changes. Mining
and obtaining valuable knowledge from such data prevents errors and allows
software engineers to deliver the project on time. Finally, in the evaluation phase,
validation techniques are used to assess the data mining results such as k-fold cross
validation for classification. The commonly used evaluation measures are accuracy,
precision, recall, F-score, area under the curve (AUC) for classification, and sum
of squared errors (SSE) for clustering.

3. Data mining in software engineering

In this review, we examine data mining studies in various SE tasks and evaluate
commonly used algorithms and datasets.

3.1 Data mining in defect prediction

A defect means an error, failure, flaw, or bug that causes incorrect or unex-
pected results in a system [8]. A software system is expected to be without any
defects since software quality represents a capacity of the defect-free percentage
of the product [9]. However, software projects often do not have enough time or
people working on them to extract errors before a product is released. In such a
situation, defect prediction methods can help to detect and remove defects in the
initial stages of the SDLC and to improve the quality of the software product. In
other words, the goal of defect prediction is to produce robust and effective
software systems. Hence, software defect prediction (SDP) is an important topic for
software engineering because early prediction of software defects could help to
reduce development costs and produce more stable software systems.

Various studies have been conducted on defect prediction using different met-
rics such as code complexity, history-based metrics, object-oriented metrics, and
process metrics to construct prediction models [10, 11]. These models can be con-
sidered on a cross-project or within-project basis. In within-project defect predic-
tion (WPDP), a model is constructed and applied on the same project [12]. For
within-project strategy, a large amount of historical defect data is needed. Hence, in
new projects that do not have enough data to train, cross-project strategy may be
preferred [13]. Cross-project defect prediction (CPDP) is a method that involves
applying a prediction model from one project to another, meaning that models are
prepared by utilizing historical data from other projects [14, 15]. Studies in the field
of CPDP have increased in recent years [10, 16]. However, there are some deficien-
cies in comparisons of prior studies since they cannot be replicated because of the
difference in utilizing evaluation metrics or preparation way of training data.
Therefore, Herbold et al. [16] tried to replicate different CPDP methods previously
proposed and find which approach performed best in terms of metrics such as
F-score, area under the curve (AUC), and Matthews correlation coefficient (MCC).
Results showed that 7- or 8-year approaches may perform better. Another study
[17] replicated prior work to demonstrate whether the determination of classifica-
tion techniques is important. Both noisy and cleaned datasets were used, and the
same results were obtained from the two datasets. However, new dataset gave
better results for some classification algorithms. For this reason, authors claimed
that the selection of classification techniques affects the performance of the model.

Numerous defect prediction studies have been conducted using DM techniques.
In the following subsections, we will explain these studies in terms of whether they
apply ensemble learning or not. Some defect prediction studies in SE are compared

4

Data Mining - Methods, Applications and Systems

Ref. Year Task Objective Algorithms Ensemble learning Dataset Evaluation metrics and

results

[18] 2011 Classification Comparative study of various
ensemble methods to find the
most effective one

NB Bagging, boosting,
RT, RF, RS,
AdaBoost, Stacking,
and Voting

NASA datasets: CM1 JM1 KC1
KC2 KC3 KC4 MC1 MC2 MW1
PC1 PC2 PC3 PC4 PC5

10-fold CV, ACC, and AUC
Vote 88.48% random forest

87.90%

[19] 2013 Classification Comparative study of class
imbalance learning methods and
proposed dynamic version of
AdaBoost.NC

NB, RUS, RUS-bal, THM, SMB,
BNC

RF, SMB, BNC,
AdaBoost.NC

NASA and PROMISE repository:
MC2, KC2, JM1, KC1, PC4, PC3,
CM1, KC3, MW1, PC1

10-fold CV
Balance, G-mean and AUC,
PD, PF

[20] 2014 Classification Comparative study to deal with
imbalanced data

Base Classifiers: C4.5, NB
Sampling: ROS, RUS, SMOTE

AdaBoost, Bagging,
boosting, RF

NASA datasets: CM1, JM1, KC1,
KC2, KC3, MC1, MC2, MW1,
PC1, PC2, PC3, PC4, PC5

5 � 5 CV, MCC, ROC, results
change according to
characteristics of datasets

[17] 2015 Clustering/
classification

To show that the selection of
classification technique has an
impact on the performance of
software defect prediction
models

Statistical: NB, Simple Logistic

Clustering: KM, EM
Rule based: Ripper, Ridor
NNs: RBF
Nearest neighbor: KNN
DTs: J48, LMT

Bagging, AdaBoost,
rotation forest,
random subspace

NASA: CM1, JM1, KC1, KC3,
KC4, MW1, PC1, PC2, PC3, PC4
PROMISE: Ant 1.7, Camel 1.6,
Ivy 1.4, Jedit 4, Log4j 1, Lucene
2.4, Poi 3, Tomcat 6, Xalan 2.6,
Xerces 1.3

10 � 10-fold CV
AUC > 0.5
Scott-Knott test α = 0.05,
simple logistic, LMT, and
RF + base learner
outperforms KNN and RBF

[21] 2015 Classification Average probability ensemble
(APE) learning module is
proposed by combining feature
selection and ensemble learning

APE system combines seven
classifiers: SGD, weighted SVMs
(W-SVMs), LR, MNB and
Bernoulli naive Bayes (BNB)

RF, GB NASA: CM1, JM1, KC1, KC3,
KC4, MW1, PC1, PC2, PC3, PC4
PROMISE (RQ2): Ant 1.7, Camel
1.6, Ivy 1.4, Jedit 4, Log4j 1,
Lucene 2.4, Poi 3, Tomcat 6,
Xalan 2.6, Xerces 1.3

10 � 10-fold CV, AUC > 0.5
Scott-Knott test α = 0.05,
simple logistic, LMT, and
RF + base learner
outperforms KNN and RBF

[22,
23]

2016 Classification Comparative study of 18 ML
techniques using OO metrics on
six releases of Android operating
system

LR, NB, BN, MLP, RBF
SVM, VP, CART, J48, ADT,
Nnge, DTNB

Bagging, random
forest, Logistic
model trees, Logit
Boost, Ada Boost

6 releases of Android app:
Android 2.3.2, Android 2.3.7,
Android 4.0.4, Android 4.1.2,
Android 4.2.2, Android 4.3.1

10-fold, inter-release
validation
AUC for NB, LB, MLP is
>0.7

[24] 2016 Classification Caret has been applied whether
parameter settings can have a

NB, KNN, LR, partial least
squares, NN, LDA, rule based,
DT, SVM

Bagging, boosting Cleaned NASA JM1, PC5
Proprietary from Prop-1 to
Prop-5

Out-of-sample bootstrap
validation technique, AUC

5 D
a
ta

M
in
in
g
a
n
d
M
a
ch
in
e
L
ea
rn
in
g
for

Softw
a
re

E
n
gin

eerin
g

D
O
I:h

ttp
://d

x
.d
oi.org/10

.5772
/in

tech
op
en
.91448

Ref. Year Task Objective Algorithms Ensemble learning Dataset Evaluation metrics and

results

large impact on the performance
of defect prediction models

Apache Camel 1.2, Xalan 2.5–2.6
Eclipse Platform 2.0–2.1–3.0,
Debug 3.4, SWT 3.4, JDT,
Mylyn, PDE

Caret AUC performance up
to 40 percentage points

[25] 2017 Regression Aim is to validate the source code
metrics and identify a suitable set
of source code metrics

5 training algorithms: GD, GDM,
GDX, NM, LM

Heterogeneous linear
and nonlinear
ensemble methods

56 open-source Java projects
from PROMISE Repository

10-fold CV, t-test, ULR
analysis
Neural network with
Levenberg Marquardt (LM)
is the best

[16] 2017 Classification Replicate 24 CDPD approaches,
and compare on 5 different
datasets

DT, LR, NB, SVM LE, RF, BAG-DT,
BAG-NB, BOOST-
DT, BOOST-NB

5 available datasets: JURECZKO,
NASA MDP, AEEEM,
NETGENE, RELINK

Recall, PR, ACC, G-measure,
F-score, MCC, AUC

[26] 2017 Classification Just-in-time defect prediction
(TLEL)

NB, SVM, DT, LDA, NN Bagging, stacking Bugzilla, Columba, JDT,
Platform, Mozilla, and
PostgreSQL

10-fold CV, F-score

[13] 2017 Classification Adaptive Selection of Classifiers
in bug prediction (ASCI) method
is proposed.

Base classifiers: LOG (binary
logistic regression), NB, RBF,
MLP, DT

Voting Ginger Bread (2.3.2 and 2.3.7),
Ice Cream Sandwich (4.0.2 and
4.0.4), and JellyBean (4.1.2, 4.2.2
and 4.3.1)

10-fold, inter-release
validation
AUC for NB, LB, MLP is
>0.7

[27] 2018 Classification MULTI method for JIT-SDP
(just in time software defect
prediction)

EALR, SL, RBFNet
Unsupervised: LT, AGE

Bagging, AdaBoost,
Rotation Forest, RS

Bugzilla, Columba, Eclipse JDT,
Eclipse Platform, Mozilla,
PostgreSQ

CV, timewise-CV, ACC, and
POPT
MULTI performs
significantly better than all
the baselines

[28] 2007 Classification To found pre- and post-release
defects for every package and file

LR — Eclipse 2.0, 2.1, 3.0 PR, recall, ACC

[8] 2014 Clustering Cluster ensemble with PSO for
clustering the software modules
(fault-prone or not fault-prone)

PSO clustering algorithm KM-E, KM-M, PSO-
E, PSO-M and EM

Nasa MDP, PROMISE

6 D
a
ta

M
in
in
g
-
M
eth

od
s,
A
p
p
lica

tion
s
a
n
d
System

s

Ref. Year Task Objective Algorithms Ensemble learning Dataset Evaluation metrics and

results

[29] 2015 Classification Defect identification by applying
DM algorithms

NB, J48, MLP — PROMISE, NASA MDP dataset:
CM1, JM1, KC1, KC3, MC1, MC2,
MW1, PC1, PC2, PC3

10-fold CV, ACC, PR,
FMLP is the best

[30] 2015 Classification To show the attributes that
predict the defective state of
software modules

NB, NN, association rules, DT Weighted voting rule
of the four
algorithms

NASA datasets: CM1, JM1, KC1,
KC2, PC1

PR, recall, ACC, F-score
NB > NN > DT

[31] 2016 Classification Authors proposed a model that
finds fault-proneness

NB, LR, LivSVM, MLP, SGD,
SMO, VP, LR Logit Boost,
Decision Stamp, RT, REP Tree

RF Camel1.6, Tomcat 6.0, Ant 1.7,
jEdit4.3, Ivy 2.0, arc, e-learning,
berek, forrest 0.8, zuzel,
Intercafe, and Nieruchomosci

10-fold CV, AUC
AUC = 0.661

[32] 2016 Classification GA to select suitable source code
metrics

LR, ELM, SVML, SVMR, SVMP — 30 open-source software projects
from PROMISE repository from
DS1 to DS30

5-fold CV, F-score, ACC,
pairwise t-test

[33] 2016 — Weighted least-squares twin
support vector machine
(WLSTSVM) to find
misclassification cost of DP

SVM, NB, RF, LR, KNN, BN,
cost-sensitive neural network

— PROMISE repository: CM1, KC1,
PC1, PC3, PC4, MC2, KC2, KC3

10-fold CV, PR, recall,
F-score, G-mean
Wilcoxon signed rank test

[34] 2016 — A multi-objective naive Bayes
learning techniques MONB,
MOBNN

NB, LR, DT, MODT, MOLR,
MONB

— Jureczko datasets obtained from
PROMISE repository

AUC, Wilcoxon rank test
CP MO NB (0.72) produces
the highest value

[35] 2016 Classification A software defect prediction
model to find faulty components
of a software

Hybrid filter approaches
FISHER, MR, ANNIGMA.

— KC1, KC2, JM1, PC1, PC2, PC3,
and PC4 datasets

ACC, ent filters, ACC 90%

[36] 2017 Classification Propose an hybrid method called
TSC-RUS + S

A random undersampling based
on two-step cluster (TSC)

Stacking: DT, LR,
kNN, NB

NASA MDP: i.e., CM1, KC1,
KC3, MC2, MW1, PC1, PC2,
PC3, PC4

10-fold CV, AUC,
(TSC-RUS + S) is the best

[37] 2017 Classification Analyze five popular ML
algorithms for software defect
prediction

ANN, PSO, DT, NB, LC — Nasa and PROMISE datasets:
CM1, JM1, KC1, KC2, PC1,
KC1-LC

10-fold CV
ANN < DT

7 D
a
ta

M
in
in
g
a
n
d
M
a
ch
in
e
L
ea
rn
in
g
for

Softw
a
re

E
n
gin

eerin
g

D
O
I:h

ttp
://d

x
.d
oi.org/10

.5772
/in

tech
op
en
.91448

Ref. Year Task Objective Algorithms Ensemble learning Dataset Evaluation metrics and

results

[38] 2018 Classification Three well-known ML
techniques are compared.

NB, DT, ANN — Three different datasets
DS1, DS2, DS3

ACC, PR, recall, F, ROC
ACC 97%
DT > ANN > NB

[10] 2018 Classification ML algorithms are compared
with CODEP

LR, BN, RBF, MLP, alternating
decision tree (ADTree), and DT

Max, CODEP,
Bagging J48, Bagging
NB, Boosting J48,
Boosting NB, RF

PROMISE: Ant, Camel, ivy, Jedit,
Log4j, Lucene, Poi, Prop,
Tomcat, Xalan

F-score, PR, AUC ROC
Max performs better than
CODEP

Table 1.
Data mining and machine learning studies on the subject “defect prediction.”

8 D
a
ta

M
in
in
g
-
M
eth

od
s,
A
p
p
lica

tion
s
a
n
d
System

s

in Table 1. The objective of the studies, the year they were conducted, algorithms,
ensemble learning techniques and datasets in the studies, and the type of data
mining tasks are shown in this table. The bold entries in Table 1 have better
performance than other algorithms in that study.

3.1.1 Defect prediction using ensemble learning techniques

Ensemble learning combines several base learning models to obtain better per-
formance than individual models. These base learners can be acquired with:

i. Different learning algorithms

ii. Different parameters of the same algorithm

iii. Different training sets

The commonly used ensemble techniques bagging, boosting, and stacking are
shown in Figure 3 and briefly explained in this part. Bagging (which stands for
bootstrap aggregating) is a kind of parallel ensemble. In this method, each model is
built independently, and multiple training datasets are generated from the original
dataset through random selection of different feature subsets; thus, it aims to
decrease variance. It combines the outputs of each ensemble member by a voting
mechanism. Boosting can be described as sequential ensemble. First, the same
weights are assigned to data instances; after training, the weight of wrong predic-
tions is increased, and this process is repeated as the ensemble size. Finally, it uses a
weighted voting scheme, and in this way, it aims to decrease bias. Stacking is a
technique that uses predictions from multiple models via a meta-classifier.

Some software defect prediction studies have compared ensemble techniques to
determine the best performing one [10, 18, 21, 39, 40]. In a study conducted by
Wang et al. [18], different ensemble techniques such as bagging, boosting, random
tree, random forest, random subspace, stacking, and voting were compared to each
other and a single classifier (NB). According to the results, voting and random
forest clearly exhibited better performance than others. In a different study [39],

Figure 3.
Common ensemble learning methods: (a) Bagging, (b) boosting, (c) stacking.

9

Data Mining and Machine Learning for Software Engineering
DOI: http://dx.doi.org/10.5772/intechopen.91448

ensemble methods were compared with more than one base learner (NB, BN, SMO,
PART, J48, RF, random tree, IB1, VFI, DT, NB tree). For boosted SMO, bagging J48,
and boosting and bagging RT, performance of base classifiers was lower than that of
ensemble learner classifiers.

In study [21], a new method was proposed of mixing feature selection and
ensemble learning for defect classification. Results showed that random forests and
the proposed algorithm are not affected by poor features, and the proposed algo-
rithm outperforms existing single and ensemble classifiers in terms of classification
performance. Another comparative study [10] used seven composite algorithms
(Ave, Max, Bagging C4.5, bagging naive Bayes (NB), Boosting J48, Boosting naive
Bayes, and RF) and one composite state-of-the art study for cross-project defect
prediction. The Max algorithm yielded the best results regarding F-score in terms of
classification performance.

Bowes et al. [40] compared RF, NB, Rpart, and SVM algorithms to determine
whether these classifiers obtained the same results. The results demonstrated that a
unique subset of defects can be discovered by specific classifiers. However, whereas
some classifiers are steady in the predictions they make, other classifiers change in
their predictions. As a result, ensembles with decision-making without majority
voting can perform best.

One of the main problems of SDP is the imbalance between the defect and non-
defect classes of the dataset. Generally, the number of defected instances is greater
than the number of non-defected instances in the collected data. This situation
causes the machine learning algorithms to perform poorly. Wang and Yao [19]
compared five class-imbalanced learning methods (RUS, RUS-bal, THM, BNC,
SMB) and NB and RF algorithms and proposed the dynamic version of AdaBoost.
NC. They utilized balance, G-mean, and AUC measures for comparison. Results
showed that AdaBoost.NC and naive Bayes are better than the other seven algo-
rithms in terms of evaluation measures. Dynamic AdaBoost.NC showed better
defect detection rate and overall performance than the original AdaBoost.NC. To
handle the class imbalance problem, studies [20] have compared different methods
(sampling, cost sensitive, hybrid, and ensemble) by taking into account evaluation
metrics such as MCC and receiver operating characteristic (ROC).

As shown in Table 1, the most common datasets used in the defect prediction
studies [17–19, 39] are the NASA MDP dataset and PROMISE repository datasets. In
addition, some studies utilized open-source projects such as Bugzilla Columba and
Eclipse JDT [26, 27], and other studies used Android application data [22, 23].

3.1.2 Defect prediction studies without ensemble learning

Although use of ensemble learning techniques has dramatically increased
recently, studies that do not use ensemble learning are still conducted and success-
ful. For example, in study [32], prediction models were created using source code
metrics as in ensemble studies but by using different feature selection techniques
such as genetic algorithm (GA).

To overcome the class imbalance problem, Tomar and Agarwal [33] proposed a
prediction system that assigns lower cost to non-defective data samples and higher
cost to defective samples to balance data distribution. In the absence of enough data
within a project, required data can be obtained from cross projects; however, in this
case, this situation may cause class imbalance. To solve this problem, Ryu and Baik
[34] proposed multi-objective naïve Bayes learning for cross-project environments.
To obtain significant software metrics on cloud computing environments, Ali et al.
used a combination of filter and wrapper approaches [35]. They compared different
machine learning algorithms such as NB, DT, and MLP [29, 37, 38, 41].

10

Data Mining - Methods, Applications and Systems

3.2 Data mining in effort estimation

Software effort estimation (SEE) is critical for a company because hiring more
employees than required will cause loss of revenue, while hiring fewer employees
than necessary will result in delays in software project delivery. The estimation
analysis helps to predict the amount of effort (in person hours) needed to develop a
software product. Basic steps of software estimation can be itemized as follows:

• Determine project objectives and requirements.

• Design the activities.

• Estimate product size and complexity.

• Compare and repeat estimates.

SEE contains requirements and testing besides predicting effort estimation [42].
Many research and review studies have been conducted in the field of SEE.
Recently, a survey [43] analyzed effort estimation studies that concentrated on ML
techniques and compared them with studies focused on non-ML techniques.
According to the survey, case-based reasoning (CBR) and artificial neural network
(ANN) were the most widely used techniques. In 2014, Dave and Dutta [44]
examined existing studies that focus only on neural network.

The current effort estimation studies using DM and ML techniques are
available in Table 2. This table summarizes the prominent studies in terms
of aspects such as year, data mining task, aim, datasets, and metrics. Table 2
indicates that neural network is the most widely used technique for the effort
estimation task.

Several studies have compared ensemble learning methods with single learning
algorithms [45, 46, 48, 49, 51, 60] and examined them on cross-company (CC) and
within-company (WC) datasets [50]. The authors observed that ensemble methods
obtained by a proper combination of estimation methods achieved better results
than single methods. Various ML techniques such as neural network, support vector
machine (SVM), and k-nearest neighbor are commonly used as base classifiers for
ensemble methods such as bagging and boosting in software effort estimation.
Moreover, their results indicate that CC data can increase performance over WC
data for estimation techniques [50].

In addition to the abovementioned studies, researchers have conducted studies
without using ensemble techniques. The general approach is to investigate which
DM technique has the best effect on performance in software effort estimation. For
instance, Subitsha and Rajan [54] compared five different algorithms—MLP,
RBFNN, SVM, ELM, and PSO-SVM—and Nassif et al. [57] investigated four neural
network algorithms—MLP, RBFNN, GRNN, and CCNN. Although neural networks
are widely used in this field, missing values and outliers frequently encountered in
the training set adversely affect neural network results and cause inaccurate esti-
mations. To overcome this problem, Khatibi et al. [53] split software projects into
several groups based on their similarities. In their studies, the C-means clustering
algorithm was used to determine the most similar projects and to decrease the
impact of unrelated projects, and then analogy-based estimation (ABE) and NN
were applied. Another clustering study by Azzeh and Nassif [59] combined SVM
and bisecting k-medoids clustering algorithms; an estimation model was then
built using RBFNN. The proposed method was trained on historical use case
points (UCP).

11

Data Mining and Machine Learning for Software Engineering
DOI: http://dx.doi.org/10.5772/intechopen.91448

Ref. Year Task Objective Algorithms Ensemble

learning

Dataset Evaluation metrics and results

[45] 2008 Regression Ensemble of neural networks with
associative memory (ENNA)

NN, MLP, KNN Bagging NASA, NASA 93, USC, SDR,
Desharnais

MMRE, MdMRE and PRED(L)
For ENNA PRED(25) = 36.4
For neural network PRED(25) = 8

[46] 2009 Regression Authors proposed the ensemble of
neural networks with associative
memory (ENNA)

NN, MLP, KNN Bagging NASA, NASA 93, USC, SDR,
Desharnais

Random subsampling, t-test
MMRE, MdMRE, and PRED(L)
ENNA is the best

[47] 2010 Regression To show the effectiveness of SVR
for SEE

SVR, RBF — Tukutuku LOOCV, MMRE, Pred(25), MEMRE,
MdEMRE
SVR outperforms others

[48] 2011 Regression To evaluate whether readily
available ensemble methods
enhance SEE

MLP, RBF, RT Bagging 5 datasets from PROMISE: cocomo81,
nasa93, nasa, sdr, and Desharnais
8 datasets from ISBSG repository

MMRE, MdMRE, PRED(25)
RTs and Bagging with MLPs perform
similarly

[49] 2012 Regression To show the measures behave in
SEE and to create good ensembles

MLP, RBF, REPTree, Bagging cocomo81, nasa93, nasa, cocomo2,
desharnais, ISBSG repository

MMRE, PRED(25), LSD, MdMRE,
MAE, MdAE
Pareto ensemble for all measures,
except LSD.

[50] 2012 Regression To use cross-company models to
create diverse ensembles able to
dynamically adapt to changes

WC RTs, CC-DWM WC-DWM 3 datasets from ISBSG repository
(ISBSG2000, ISBSG2001, ISBSG) 2
datasets from PROMISE
(CocNasaCoc81 and
CocNasaCoc81Nasa93)

MAE, Friedman test
Only DCL could improve upon RT
CC data potentially beneficial for
improving SEE

[51] 2012 Regression To generate estimates from
ensembles of multiple prediction
methods

CART, NN, LR, PCR,
PLSR, SWR,
ABE0-1NN,
ABE0-5NN

Combining
top M solo
methods

PROMISE MAR, MMRE, MdMRE, MMER, MBRE,
MIBRE.
Combinations perform better than 83%

[52] 2012 Classification/
regression

DM techniques to estimate
software effort.

M5, CART, LR, MARS,
MLPNN, RBFNN, SVM

— Coc81, CSC, Desharnais, Cocnasa,
Maxwell, USP05

MdMRE, Pred(25), Friedman test
Log + OLS > LMS, BC + OLS, MARS,
LS-SVM

12 D
a
ta

M
in
in
g
-
M
eth

od
s,
A
p
p
lica

tion
s
a
n
d
System

s

Ref. Year Task Objective Algorithms Ensemble

learning

Dataset Evaluation metrics and results

[53] 2013 Clustering/
classification

Estimation of software
development effort

NN, ABE, C-means — Maxwell 3-fold CV and LOOCV, RE, MRE,
MMRE, PRED

[54] 2014 Regression ANNs are examined using
COCOMO model

MLP, RBFNN, SVM,
PSO-SVM Extreme
learning Machines

— COCOMO II Data MMRE, PRED
PSO-SVM is the best

[55] 2014 — A hybrid model based on GA And
ACO for optimization

GA, ACO — NASA datasets MMRE, the proposed method is the best

[56] 2015 Regression To display the effect of data
preprocessing techniques on ML
methods in SEE

CBR, ANN, CART
Preprocessing rech:
MDT, LD, MI, FS, CS,
FSS, BSS

— ISBSG, Desharnais, Kitchenham,
USPFT

CV, MBRE, PRED (0.25), MdBRE

[57] 2016 Regression Four neural network models are
compared with each other.

MLP, RBFNN, GRNN,
CCNN

— ISBSG repository 10-fold CV, MAR
The CCNN outperforms the other three
models

[58] 2016 Regression To propose a model based on
Bayesian network

GA and PSO — COCOMO NASA Dataset DIR, DRM
The proposed model is best

[59] 2016 Classification/
regression

A hybrid model using SVM and
RBNN compared against previous
models

SVM, RBNN — Dataset1 = 45 industrial projects
Dataset2 = 65 educational projects

LOOCV, MAE, MBRE, MIBRE, SA
The proposed approach is the best

[60] 2017 Classification To estimate software effort by
using ML techniques

SVM, KNN Boosting:
kNN and
SVM

Desharnais, Maxwell LOOCV, k-fold CV
ACC = 91.35% for Desharnais
ACC = 85.48% for Maxwell

Table 2.
Data mining and machine learning studies on the subject “effort estimation.”

13 D
a
ta

M
in
in
g
a
n
d
M
a
ch
in
e
L
ea
rn
in
g
for

Softw
a
re

E
n
gin

eerin
g

D
O
I:h

ttp
://d

x
.d
oi.org/10

.5772
/in

tech
op
en
.91448

Zare et al. [58] and Maleki et al. [55] utilized optimization methods for accurate
cost estimation. In the former study, a model was proposed based on Bayesian
network with genetic algorithm and particle swarm optimization (PSO). The latter
study used GA to optimize the effective factors’ weight, and then trained by ant
colony optimization (ACO). Besides conventional effort estimation studies,
researchers have utilized machine learning techniques for web applications. Since
web-based software projects are different from traditional projects, the effort
estimation process for these studies is more complex.

It is observed that PRED(25) and MMRE are the most popular evaluation met-
rics in effort estimation. MMRE stands for the mean magnitude relative error, and
PRED(25) measures prediction accuracy and provides a percentage of predictions
within 25% of actual values.

3.3 Data mining in vulnerability analysis

Vulnerability analysis is becoming the focal point of system security to prevent
weaknesses in the software system that can be exploited by an attacker. Description
of software vulnerability is given in many different resources in different ways [61].
The most popular and widely utilized definition appears in the Common Vulnera-
bilities and Exposures (CVE) 2017 report as follows:

Vulnerability is a weakness in the computational logic found in software and
some hardware components that, when exploited, results in a negative impact to
confidentiality, integrity or availability.

Vulnerability analysis may require many different operations to identify defects
and vulnerabilities in a software system. Vulnerabilities, which are a special kind of
defect, are more critical than other defects because attackers exploit system vul-
nerabilities to perform unauthorized actions. A defect is a normal problem that can
be encountered frequently in the system, easily found by users or developers and
fixed promptly, whereas vulnerabilities are subtle mistakes in large codes [62, 63].
Wijayasekara et al. claim that some bugs have been identified as vulnerabilities after
being publicly announced in bug databases [64]. These bugs are called “hidden
impact vulnerabilities” or “hidden impact bugs.” Therefore, the authors proposed a
hidden impact vulnerability identification methodology that utilizes text mining
techniques to determine which bugs in bug databases are vulnerabilities. According
to the proposed method, a bug report was taken as input, and it produces feature
vector after applying text mining. Then, classifier was applied and revealed whether
it is a bug or a vulnerability. The results given in [64] demonstrate that a large
proportion of discovered vulnerabilities were first described as hidden impact bugs
in public bug databases. While bug reports were taken as input in that study, in
many other studies, source code is taken as input. Text mining is a highly preferred
technique for obtaining features directly from source codes as in the studies [65–69].
Several studies [63, 70] have compared text mining-based models and software
metrics-based models.

In the security area of software systems, several studies have been conducted
related to DM and ML. Some of these studies are compared in Table 3, which shows
the data mining task and explanation of the studies, the year they were performed,
the algorithms that were used, the type of vulnerability analysis, evaluation metrics,
and results. In this table, the best performing algorithms according to the evaluation
criteria are shown in bold.

Vulnerability analysis can be categorized into three types: static vulnerability
analysis, dynamic vulnerability analysis, and hybrid analysis [61, 80]. Many studies
have applied the static analysis approach, which detects vulnerabilities from source
code without executing software, since it is cost-effective. Few studies have

14

Data Mining - Methods, Applications and Systems

Ref. Year Task Objective Algorithms Type Dataset description Evaluation metrics and results

[71] 2011 Clustering Obtaining software
vulnerabilities based on RDBC

RDBC Static Database is built by RD-Entropy FNR, FPR

[42] 2011 Classification/
regression

To predict the time to next
vulnerability

LR, LMS, MLP, RBF,
SMO

Static NVD, CPE, CVSS CC, RMSE, RRSE

[65] 2012 Text mining Analysis of source code as text RBF, SVM Static K9 email client for the Android platform ACC, PR, recall
ACC = 0.87, PR = 0.85, recall = 0.88

[64] 2012 Classification/
text mining

To identify vulnerabilities in
bug databases

— Static Linux kernel MITRE CVE and MySQL bug
databases

BDR, TPR, FPR
32% (Linux) and 62% (MySQL) of
vulnerabilities

[72] 2014 Classification/
regression

Combine taint analysis and
data mining to obtain
vulnerabilities

ID3, C4.5/J48, RF, RT,
KNN, NB, Bayes Net,
MLP, SVM, LR

Hybrid A version of WAP to collect the data 10-fold CV, TPD, ACC, PR, KAPPA
ACC = 90.8%, PR = 92%, KAPPA = 81%

[73] 2014 Clustering Identify vulnerabilities from
source codes using CPG

— Static Neo4J and InfiniteGraph databases —

[63] 2014 Classification Comparison of software
metrics with text mining

RF Static Vulnerabilities from open-source web apps
(Drupal, Moodle, PHPMyAdmin)

3-fold CV, recall, IR, PR, FPR, ACC.
Text mining provides benefits overall

[69] 2014 Classification To create model in the form of
a binary classifier using text
mining

NB, RF Static Applications from the F-Droid repository
and Android

10-fold CV, PR, recall
PR and recall ≥ 80%

[74] 2015 Classification A new approach (VCCFinder)
to obtain potentially dangerous
codes

SVM-based detection
model

— The database contains 66 GitHub projects k-fold CV, false alarms <99% at the same
level of recall

[70] 2015 Ranking/
classification

Comparison of text mining and
software metrics models

RF — Vulnerabilities from open-source web apps
(Drupal, Moodle, PHPMyAdmin)

10-fold CV
Metrics: ER-BCE, ERBPP, ER-AVG

[75] 2015 Clustering Search patterns for taint-style
vulnerabilities in C code

Hierarchical clustering
(complete-linkage)

Static 5 open-source projects: Linux, OpenSSL,
Pidgin, VLC, Poppler (Xpdf)

Correct source, correct sanitization,
number of traversals, generation time,
execution time, reduction, amount of code
review <95%

15 D
a
ta

M
in
in
g
a
n
d
M
a
ch
in
e
L
ea
rn
in
g
for

Softw
a
re

E
n
gin

eerin
g

D
O
I:h

ttp
://d

x
.d
oi.org/10

.5772
/in

tech
op
en
.91448

Ref. Year Task Objective Algorithms Type Dataset description Evaluation metrics and results

[76] 2016 Classification Static and dynamic features for
classification

LR, MLP, RF Hybrid Dataset was created by analyzing 1039 test
cases from the Debian Bug Tracker

FPR, FNR
Detect 55% of vulnerable programs

[77] 2017 Classification 1. Employ a deep neural
network
2. Combine N-gram analysis
and feature selection

Deep neural network — Feature extraction from 4 applications
(BoardGameGeek, Connectbot,
CoolReader, AnkiDroid)

10 times using 5-fold CV
ACC = 92.87%, PR = 94.71%, recall =
90.17%

[67] 2017 Text mining To analyze characteristics of
software vulnerability from
source files

— — CVE, CWE, NVD databases PR = 70%, recall = 60%

[68] 2017 Text mining Deep learning (LSTM) is used
to learn semantic and syntactic
features in code

RNN, LSTM, DBN — Experiments on 18 Java applications from
the Android OS platform

10-fold CV, PR, recall, and F-score
Deep Belief Network
PR, recall, and F-score > 80%

[66] 2018 Classification Identify bugs by extracting
text features from C source
code

NB, KNN, K-means,
NN, SVM, DT, RF

Static NVD, Cat, Cp, Du, Echo, Head, Kill,
Mkdir, Nl, Paste, Rm, Seq, Shuf, Sleep,
Sort, Tail, Touch, Tr, Uniq, Wc, Whoami

5-fold CV ACC, TP, TN
ACC = 74%

[78] 2018 Regression A deep learning-based
vulnerability detection system
(VulDeePecker)

BLSTM NN Static NIST: NVD and SAR project 10-fold CV, PR, recall, F-score
F-score = 80.8%

[79] 2018 Classification A mapping between existing
requirements and
vulnerabilities

LR, SVM, NB — Data is gathered from Apache Tomcat,
CVE, requirements from Bugzilla, and
source code is collected from Github

PR, recall, F-score
LSI > SVM

Table 3.
Data mining and machine learning studies on the subject “vulnerability analysis.”

16 D
a
ta

M
in
in
g
-
M
eth

od
s,
A
p
p
lica

tion
s
a
n
d
System

s

performed the dynamic analysis approach, in which one must execute software and
check program behavior. The hybrid analysis approach [72, 76] combines these two
approaches.

As revealed in Table 3, in addition to classification and text mining, clustering
techniques are also frequently seen in software vulnerability analysis studies. To
detect vulnerabilities in an unknown software data repository, entropy-based
density clustering [71] and complete-linkage clustering [75] were proposed.
Yamaguchi et al. [73] introduced a model to represent a large number of source
codes as a graph called control flow graph (CPG), a combination of abstract syntax
tree, CFG, and program dependency graph (PDG). This model enabled the discov-
ery of previously unknown (zero-day) vulnerabilities.

To learn the time to next vulnerability, a prediction model was proposed in the
study [42]. The result could be a number that refers to days or a bin representing
values in a range. The authors used regression and classification techniques for the
former and latter cases, respectively.

In vulnerability studies, issue tracking systems like Bugzilla, code repositories
like Github, and vulnerability databases such as NVD, CVE, and CWE have been
utilized [79]. In addition to these datasets, some studies have used Android
[65, 68, 69] or web [63, 70, 72] (PHP source code) datasets. In recent years,
researchers have concentrated on deep learning for building binary classifiers [77],
obtaining vulnerability patterns [78], and learning long-term dependencies in
sequential data [68] and features directly from the source code [81].

Li et al. [78] note two difficulties of vulnerability studies: demanding, intense
manual labor and high false-negative rates. Thus, the widely used evaluation met-
rics in vulnerability analysis are false-positive rate and false-negative rate.

3.4 Data mining in design pattern mining

During the past years, software developers have used design patterns to create
complex software systems. Thus, researchers have investigated the field of design
patterns in many ways [82, 83]. Fowler defines a pattern as follows:

“A pattern is an idea that has been useful in one practical context and will

probably be useful in others.” [84]

Patterns display relationships and interactions between classes or objects. Well-
designed object-oriented systems have various design patterns integrated into them.
Design patterns can be highly useful for developers when they are used in the right
manner and place. Thus, developers avoid recreating methods previously refined by
others. The pattern approach was initially presented in 1994 by four authors—
namely, Erich Gama, Richard Helm, Ralph Johnson, and John Vlissides—called the
Gang of Four (GOF) in 1994 [85]. According to the authors, there are three types of
design patterns:

1.Creational patterns provide an object creation mechanism to create the
necessary objects based on predetermined conditions. They allow the system
to call appropriate object and add flexibility to the system when objects are
created. Some creational design patterns are factory method, abstract factory,
builder, and singleton.

2.Structural patterns focus on the composition of classes and objects to allow the
establishment of larger software groups. Some of the structural design patterns
are adapter, bridge, composite, and decorator.

17

Data Mining and Machine Learning for Software Engineering
DOI: http://dx.doi.org/10.5772/intechopen.91448

3.Behavioral patterns determine common communication patterns between
objects and how multiple classes behave when performing a task. Some
behavioral design patterns are command, interpreter, iterator, observer, and
visitor.

Many design pattern studies exist in the literature. Table 4 shows some design
pattern mining studies related to machine learning and data mining. This table
contains the aim of the study, mining task, year, and design patterns selected by the
study, input data, dataset, and results of the studies.

In design pattern mining, detecting the design pattern is a frequent study objec-
tive. To do so, studies have used machine learning algorithms [87, 89–91], ensemble
learning [95], deep learning [97], graph theory [94], and text mining [86, 95].

In study [91], the training dataset consists of 67 object-oriented (OO) metrics
extracted by using the JBuilder tool. The authors used LRNN and decision tree
techniques for pattern detection. Alhusain et al. [87] generated training datasets
from existing pattern detection tools. The ANN algorithm was selected for pattern
instances. Chihada et al. [90] created training data from pattern instances using 45
OO metrics. The authors utilized SVM for classifying patterns accurately. Another
metrics-oriented dataset was developed by Dwivedi et al. [93]. To evaluate the
results, the authors benefited from three open-source software systems (JHotDraw,
QuickUML, and JUnit) and applied three classifiers, SVM, ANN, and RF. The
advantage of using random forest is that it does not require linear features and can
manage high-dimensional spaces.

To evaluate methods and to find patterns, open-source software projects such as
JHotDraw, Junit, and MapperXML have been generally preferred by researchers.
For example, Zanoni et al. [89] developed a tool called MARPLE-DPD by combin-
ing graph matching and machine learning techniques. Then, to obtain five design
patterns, instances were collected from 10 open-source software projects, as shown
in Table 4.

Design patterns and code smells are related issues: Code smell refers to symp-
toms in code, and if there are code smells in a software, its design pattern is not well
constructed. Therefore, Kaur and Singh [96] checked whether design pattern and
smell pairs appear together in a code by using J48 Decision Tree. Their obtained
results showed that the singleton pattern had no presence of bad smells.

According to the studies summarized in the table, the most frequently used
patterns are abstract factory and adapter. It has recently been observed that studies
on ensemble learning in this field are increasing.

3.5 Data mining in refactoring

One of the SE tasks most often used to improve the quality of a software system
is refactoring, which Martin Fowler has described as “a technique for restructuring
an existing body of code, altering its internal structure without changing its external
behavior” [98]. It improves readability and maintainability of the source code and
decreases complexity of a software system. Some of the refactoring types are: Add
Parameter, Replace Parameter, Extract method, and Inline method [99].

Code smell and refactoring are closely related to each other: Code smells repre-
sent problems due to bad design and can be fixed during refactoring. The main
challenge is to obtain which part of the code needs refactoring.

Some of data mining studies related to software refactoring are presented in
Table 5. Some studies focus on historical data to predict refactoring [100] or to
obtain both refactoring and software defects [101] using different data mining
algorithms such as LMT, Rip, and J48. Results suggest that when refactoring

18

Data Mining - Methods, Applications and Systems

Ref. Year Task Objective Algorithms EL Selected design

patterns

Input data Dataset Evaluation

metrics and

results

[86] 2012 Text
classification

Two-phase method:
1—text classification to
2—learning design patterns

NB, KNN, DT,
SVM

— 46 security patterns, 34
Douglass patterns, 23
GoF patterns

Documents Security, Douglass, GoF PR, recall, EWM
PR = 0.62,
recall = 0.75

[87] 2013 Regression An approach is to find a
valid instance of a DP or not

ANN — Adapter, command,
composite, decorator,
observer, and proxy

Set of
candidate
classes

JHotDraw 5.1 open-source
application

10 fold CV, PR,
recall

[88] 2014 Graph mining Sub-graph mining-based
approach

CloseGraph — — Java source
code

Open-source project:YARI,
Zest, JUnit, JFreeChart,
ArgoUML

No any empirical
comparison

[89] 2015 Classification/
clustering

MARPLE-DPD is developed
to classify instances
whether it is a bad or good
instance

SVM, DT, RF, K-
means, ZeroR,
OneR, NB, JRip,
CLOPE.

— Classification for
singleton and adapter
Classification and
clustering for composite,
decorator, and factory
method

— 10 open-source software
systems
DPExample, QuickUML 2001,
Lexi v0.1.1 alpha, JRefactory
v2.6.24, Netbeans v1.0.x, JUnit
v3.7, JHotDraw v5.1,
MapperXML v1.9.7, Nutch
v0.4, PMD v1.8

10-fold CV, ACC,
F-score, AUC
ACC > =85%

[90] 2015 Regression A new method (SVM-
PHGS) is proposed

Simple Logistic,
C4.5, KNN, SVM,
SVM-PHGS

— Adapter, builder,
composite, factory
method, iterator,
observer

Source code P-mart repository PR, recall,
F-score, FP
PR = 0.81, recall
=0.81,
F-score = 0.81,
FP = 0.038

[91] 2016 Classification Design pattern recognition
using ML algorithms.

LRNN, DT — Abstract factory,
adapter patterns

Source code Dataset with 67 OO metrics,
extracted by JBuilder tool

5-fold CV, ACC,
PR, recall, F-score
ACC = 100% by
LRNN

19 D
a
ta

M
in
in
g
a
n
d
M
a
ch
in
e
L
ea
rn
in
g
for

Softw
a
re

E
n
gin

eerin
g

D
O
I:h

ttp
://d

x
.d
oi.org/10

.5772
/in

tech
op
en
.91448

Ref. Year Task Objective Algorithms EL Selected design

patterns

Input data Dataset Evaluation

metrics and

results

[92] 2016 Classification Three aspects: design
patterns, software metrics,
and supervised learning
methods

Layer Recurrent
Neural Network
(LRNN)

RF Abstract factory,
adapter, bridge,
singleton,
and template method

Source code Dataset with 67 OO metrics,
extracted by JBuilder tool

PR, recall, F-score
F-score = 100%
by LRNN and RF
ACC = 100% by
RF

[93] 2017 Classification 1. Creation of metrics-
oriented dataset
2. Detection of software
design patterns

ANN, SVM RF Abstract factory,
adapter, bridge,
composite, and
Template

Source code Metrics extracted from source
codes (JHotDraw, QuickUML,
and Junit)

5-fold and 10-fold
CV, PR, recall,
F-score
ANN, SVM, and
RF yielded to
100% PR for
JHotDraw

[94] 2017 Classification Detection of design motifs
based on a set of directed
semantic graphs

Strong graph
simulation, graph
matching

— All three groups:
creational, structural,
behavioral

UML class
diagrams

— PR, recall
High accuracy by
the proposed
method

[95] 2017 Text
categorization

Selection of more
appropriate design patterns

Fuzzy c-means Ensemble-
IG

Various design patterns Problem
definitions
of design
patterns

DP, GoF, Douglass, Security F-score

[96] 2018 Classification Finding design pattern and
smell pairs which coexist in
the code

J48 — Used patterns: adapter,
bridge, Template,
singleton

Source code Eclipse plugin Web of Patterns
The tool selected for code smell
detection is iPlasma

PR, recall,
F-score, PRC,
ROC
Singleton pattern
shows no
presence of bad
smells

Table 4.
Data mining and machine learning studies on the subject “design pattern mining.”

20 D
a
ta

M
in
in
g
-
M
eth

od
s,
A
p
p
lica

tion
s
a
n
d
System

s

Ref. Year Task Objective Algorithms EL Dataset Evaluation metrics and

results

[100] 2007 Regression Stages: (1) data understanding, (2)
preprocessing, (3) ML, (4) post-processing, (5)
analysis of the results

J48, LMT, Rip, NNge — ArgoUML, Spring Framework 10-fold CV, PR, recall, F-score
PR and recall are 0.8 for
ArgoUML

[101] 2008 Classification Finding the relationship between refactoring
and defects

C4.5, LMT, Rip, NNge — ArgoUML, JBoss Cache, Liferay
Portal, Spring Framework,
XDoclet

PR, recall, F-score

[102] 2014 Regression Propose GA-based learning for software
refactoring based on ANN

GA, ANN — Xerces-J, JFreeChart,
GanttProject, AntApache,
JHotDraw, and Rhino.

Wilcoxon test with a 99%
confidence level (α = 0.01)

[103] 2015 Regression Removing defects with time series in a multi-
objective approach

Multi-objective algorithm,
based on NSGA-II,
ARIMA

FindBugs, JFreeChart, Hibernate,
Pixelitor, and JDI-Ford

Wilcoxon rank sum test with a
99% confidence level (α
< 1%)

[104] 2016 Web mining/
clustering

Unsupervised learning approach to detect
refactoring opportunities in service-oriented
applications

PAM, K-means,
COBWEB, X-Means

— Two datasets ofWSDL documents COBWEB and K-means max.
83.33% and 0%, inter-cluster
COBWEB and K-means min.
33.33% and 66.66% intra-
cluster

[105] 2017 Clustering A novel algorithm (HASP) for software
refactoring at the package level

Hierarchical clustering
algorithm

— Three open-source case studies Modularization Quality and
Evaluation Metric Function

[99] 2017 Classification A technique to predict refactoring at class level PCA, SMOTE
LS-SVM, RBF

— From tera- PROMISE Repository
seven open-source software
systems

10-fold CV, AUC, and ROC
curves
RBF kernel outperforms linear
and polynomial kernel
The mean value of AUC for
LS-SVM RBF kernel is 0.96

21 D
a
ta

M
in
in
g
a
n
d
M
a
ch
in
e
L
ea
rn
in
g
for

Softw
a
re

E
n
gin

eerin
g

D
O
I:h

ttp
://d

x
.d
oi.org/10

.5772
/in

tech
op
en
.91448

Ref. Year Task Objective Algorithms EL Dataset Evaluation metrics and

results

[106] 2017 Classification Exploring the impact of clone refactoring (CR)
on the test code size

LR, KNN, NB RF data collected from an open-
source Java software system
(ANT)

PR, recall, accuracy, F-score
kNN and RF outperform NB
ACC (fitting (98%), LOOCV
(95%), and 10 FCV (95%))

[107] 2017 — Finding refactoring opportunities in source code J48, BayesNet, SVM, LR RF Ant, ArgoUML, jEdit, jFreeChart,
Mylyn

10-fold CV, PR, recall
86–97% PR and 71–98% recall
for proposed tech

[108] 2018 Classification A learning-based approach (CREC) to extract
refactored and non-refactored clone groups
from repositories

C4.5, SMO, NB. RF,
Adaboost

Axis2, Eclipse.jdt.core, Elastic
Search, JFreeChart, JRuby, and
Lucene

PR, recall, F-score
F-score = 83% in the
within-project
F-score = 76% in the
cross-project

[109] 2018 Clustering Combination of the use of multi-objective and
unsupervised learning to decrease developer’s
effort

GMM, EM — ArgoUML, JHotDraw,
GanttProject, UTest, Apache Ant,
Azureus

One-way ANOVA with a 95%
confidence level (α = 5%)

Table 5.
Data mining and machine learning studies on the subject “refactoring.”

22 D
a
ta

M
in
in
g
-
M
eth

od
s,
A
p
p
lica

tion
s
a
n
d
System

s

increases, the number of software defects decreases, and thus refactoring has a
positive effect on software quality.

While automated refactoring does not always give the desired result, manual
refactoring is time-consuming. Therefore, one study [109] proposed a clustering-
based recommendation tool by combining multi-objective search and unsupervised
learning algorithm to reduce the number of refactoring options. At the same time,
the number of refactoring that should be selected is decreasing with the help of the
developer’s feedback.

4. Discussion

Since many SE studies that apply data mining approaches exist in the literature,
this article presents only a few of them. However, Figure 4 shows the current
number of papers obtained from the Scopus search engine for each year from 2010
to 2019 by using queries in the title/abstract/keywords field. We extracted publica-
tions in 2020 since this year has not completed yet. Queries included (“data mining”
OR “machine learning”) with (“defect prediction” OR “defect detection” OR “bug
prediction” OR “bug detection”) for defect prediction, (“effort estimation” OR
“effort prediction” OR “cost estimation”) for effort estimation, (“vulnerab*” AND
“software” OR “vulnerability analysis”) for vulnerability analysis, and (“software”
AND “refactoring”) for refactoring. As seen in the figure, the number of studies
using data mining in SE tasks, especially defect prediction and vulnerability
analysis, has increased rapidly. The most stable area in the studies is design
pattern mining.

Figure 5 shows the publications studied in classification, clustering, text mining,
and association rule mining as a percentage of the total number of papers obtained
by a Scopus query for each SE task. For example, in defect prediction, the number
of studies is 339 in the field of classification, 64 in clustering, 8 in text mining, and
25 in the field of association rule mining. As can be seen from the pie charts, while
clustering is a popular DM technique in refactoring, no study related to text mining
is found in this field. In other SE tasks, the preferred technique is classification,
and the second is clustering.

Defect prediction generally compares learning algorithms in terms of whether
they find defects correctly using classification algorithms. Besides this approach, in
some studies, clustering algorithms were used to select futures [110] or to compare
supervised and unsupervised methods [27]. In the text mining area, to extract
features from scripts, TF-IDF techniques were generally used [111, 112]. Although
many different algorithms have been used in defect prediction, the most popular
ones are NB, MLP, and RBF.

Figure 4.
Number of publications of data mining studies for SE tasks from Scopus search by their years.

23

Data Mining and Machine Learning for Software Engineering
DOI: http://dx.doi.org/10.5772/intechopen.91448

Figure 6 shows the number of document types (conference paper, book chapter,
article, book) published between the years of 2010 and 2019. It is clearly seen that
conference papers and articles are the most preferred research study type. It is
clearly seen that there is no review article about data mining studies in design
pattern mining.

Table 6 shows popular repositories that contain various datasets and their
descriptions, which tasks they are used for, and hyperlinks to download. For

Figure 5.
Number of publications of data mining studies for SE tasks from Scopus search by their topics.

Figure 6.
The number of publications in terms of document type between 2010 and 2019.

Repository Topic Description Web link

Nasa MDP Defect Pred. NASA’s Metrics Data Program https://github.com/opensciences/ope
nsciences.github.io/tree/master/re
po/defect/mccabehalsted/_posts

Android Git Defect Pred. Android version bug reports https://android.googlesource.com/

PROMISE Defect Pred.
Effort Est.

It includes 20 datasets for
defect prediction and cost
estimation

http://promise.site.uottawa.ca/SERe
pository/datasets-page.html

Software Defect
Pred. Data

Defect Pred. It includes software metrics,
of defects, etc. Eclipse JDT:
Eclipse PDE:

http://www.seiplab.riteh.uniri.hr/?
page_id=834&lang=en

PMART Design
pattern
mining

It has 22 patterns 9 Projects,
139 ins. Format: XML
Manually detected and
validated

http://www.ptidej.net/tools/desig
npatterns/

Table 6.
Description of popular repositories used in studies.

24

Data Mining - Methods, Applications and Systems

example, the PMART repository includes source files of java projects, and the
PROMISE repository has different datasets with software metrics such as
cyclomatic complexity, design complexity, and lines of code. Since these reposito-
ries contain many datasets, no detailed information about them has been provided
in this article.

Refactoring can be applied at different levels; study [105] predicted refactoring
at package level using hierarchical clustering, and another study [99] applied
class-level refactoring using LS-SVM as learning algorithm, SMOTE for handling
refactoring, and PCA for feature extraction.

5. Conclusion and future work

Data mining techniques have been applied successfully in many different
domains. In software engineering, to improve the quality of a product, it is highly
critical to find existing deficits such as bugs, defects, code smells, and vulnerabil-
ities in the early phases of SDLC. Therefore, many data mining studies in the past
decade have aimed to deal with such problems. The present paper aims to provide
information about previous studies in the field of software engineering. This survey
shows how classification, clustering, text mining, and association rule mining can
be applied in five SE tasks: defect prediction, effort estimation, vulnerability
analysis, design pattern mining, and refactoring. It clearly shows that classification
is the most used DM technique. Therefore, new studies can focus on clustering
on SE tasks.

Abbreviations

LMT logistic model trees
Rip repeated incremental pruning
NNge nearest neighbor generalization
PCA principal component analysis
PAM partitioning around medoids
LS-SVM least-squares support vector machines
MAE mean absolute error
RBF radial basis function
RUS random undersampling
SMO sequential minimal optimization
GMM Gaussian mixture model
EM expectation maximizaion
LR logistic regression
SMB SMOTEBoost
RUS-bal balanced version of random undersampling
THM threshold-moving
BNC AdaBoost.NC
RF random forest
RBF radial basis function
CC correlation coefficient
ROC receiver operating characteristic
BayesNet Bayesian network
SMOTE synthetic minority over-sampling technique

25

Data Mining and Machine Learning for Software Engineering
DOI: http://dx.doi.org/10.5772/intechopen.91448

Author details

Elife Ozturk Kiyak
Graduate School of Natural and Applied Sciences, Dokuz Eylul University, Turkey

*Address all correspondence to: elife.ozturk@ceng.deu.edu.tr

© 2020TheAuthor(s). Licensee IntechOpen. This chapter is distributed under the terms
of theCreativeCommonsAttribution License (http://creativecommons.org/licenses/
by/3.0),which permits unrestricted use, distribution, and reproduction in anymedium,
provided the original work is properly cited.

26

Data Mining - Methods, Applications and Systems

References

[1]Halkidi M, Spinellis D, Tsatsaronis G,
Vazirgiannis M. Data mining in
software engineering. Intelligent Data
Analysis. 2011;15(3):413-441. DOI:
10.3233/IDA-2010-0475

[2]Dhamija A, Sikka S. A review paper
on software engineering areas
implementing data mining tools &
techniques. International Journal of
Computational Intelligence Research.
2017;13(4):559-574

[3]Minku LL, Mendes E, Turhan B. Data
mining for software engineering and
humans in the loop. Progress in
Artificial Intelligence. 2016;5(4):
307-314

[4]Malhotra R. A systematic review of
machine learning techniques for
software fault prediction. Applied Soft
Computing. 2015;27:504-518. DOI:
10.1016/j.asoc.2014.11.023

[5]Mayvan BB, Rasoolzadegan A,
Ghavidel Yazdi Z. The state of the art on
design patterns: A systematic mapping
of the literature. Journal of Systems and
Software. 2017;125:93-118. DOI:
10.1016/j.jss.2016.11.030

[6] Sehra SK, Brar YS, Kaur N, Sehra SS.
Research patterns and trends in
software effort estimation. Information
and Software Technology. 2017;91:1-21.
DOI: 10.1016/j.infsof.2017.06.002

[7] Taylor Q, Giraud-Carrier C, Knutson
CD. Applications of data mining in
software engineering. International
Journal of Data Analysis Techniques and
Strategies. 2010;2(3):243-257

[8] Coelho RA, Guimarães FRN, Esmin
AA. Applying swarm ensemble
clustering technique for fault prediction
using software metrics. In: Machine
Learning and Applications (ICMLA),
2014 13th International Conference on
IEEE. 2014. pp. 356-361

[9] Prasad MC, Florence L, Arya A. A
study on software metrics based
software defect prediction using data
mining and machine learning techniques.
International Journal of Database Theory
and Application. 2015;8(3):179-190. DOI:
10.14257/ijdta.2015.8.3.15

[10] Zhang Y, Lo D, Xia X, Sun J.
Combined classifier for cross-project
defect prediction: An extended
empirical study. Frontiers of Computer
Science. 2018;12(2):280-296. DOI:
10.1007/s11704-017-6015-y

[11]Yang X, Lo D, Xia X, Zhang Y, Sun J.
Deep learning for just-in-time defect
prediction. In: International Conference
on Software Quality, Reliability and
Security (QRS); 3–5 August 2015;
Vancouver, Canada: IEEE; 2015.
pp. 17-26

[12] Zhang F, Zheng Q, Zou Y, Hassan
AE. Cross-project defect prediction
using a connectivity-based
unsupervised classifier. In: Proceedings
of the 38th International Conference on
Software Engineering ACM; 14–22 May
2016; Austin, TX, USA: IEEE; 2016.
pp. 309-320

[13]Di Nucci D, Palomba F, Oliveto R,
De Lucia A. Dynamic selection of
classifiers in bug prediction: An
adaptive method. IEEE Transactions on
Emerging Topics in Computational
Intelligence. 2017;1(3):202-212. DOI:
10.1109/TETCI.2017.2699224

[14] Zimmermann T, Nagappan N, Gall
H, Giger E, Murphy B. Cross-project
defect prediction: A large scale
experiment on data vs. domain vs.
process. In: Proceedings of the 7th Joint
Meeting of the European Software
Engineering Conference and the
Symposium on the Foundations of
Software Engineering (ESEC/FSE ’09);
August 2009; Amsterdam, Netherlands:
ACM; 2009. pp. 91-100

27

Data Mining and Machine Learning for Software Engineering
DOI: http://dx.doi.org/10.5772/intechopen.91448

[15] Turhan B, Menzies T, Bener AB, Di
Stefano J. On the relative value of cross-
company and within-company data for
defect prediction. Empirical Software
Engineering. 2009;14(5):540-578. DOI:
10.1007/s10664-008-9103-7

[16]Herbold S, Trautsch A, Grabowski J.
A comparative study to benchmark
cross-project defect prediction
approaches. IEEE Transactions on
Software Engineering. 2017;44(9):
811-833. DOI: 10.1109/TSE.2017.2724538

[17]Ghotra B, McIntosh S, Hassan AE.
Revisiting the impact of classification
techniques on the performance of defect
prediction models. In: IEEE/ACM 37th
IEEE International Conference on
Software Engineering; 16–24 May 2015;
Florence, Italy: IEEE; 2015. pp. 789-800

[18]Wang T, Li W, Shi H, Liu Z.
Software defect prediction based on
classifiers ensemble. Journal of
Information & Computational Science.
2011;8:4241-4254

[19]Wang S, Yao X. Using class
imbalance learning for software defect
prediction. IEEE Transactions on
Reliability. 2013;62:434-443. DOI:
10.1109/TR.2013.2259203

[20] Rodriguez D, Herraiz I, Harrison R,
Dolado J, Riquelme JC. Preliminary
comparison of techniques for dealing
with imbalance in software defect
prediction. In: Proceedings of the 18th
International Conference on Evaluation
and Assessment in Software
Engineering; May 2014; London, United
Kingdom: ACM; 2014. p. 43

[21] Laradji IH, Alshayeb M, Ghouti L.
Software defect prediction using
ensemble learning on selected features.
Information and Software Technology.
2015;58:388-402. DOI: 10.1016/j.
infsof.2014.07.005

[22]Malhotra R, Raje R. An empirical
comparison of machine learning

techniques for software defect
prediction. In: Proceedings of the 8th
International Conference on Bioinspired
Information and Communications
Technologies. Boston, Massachusetts;
December 2014. pp. 320-327

[23]Malhotra R. An empirical
framework for defect prediction using
machine learning techniques with
Android software. Applied Soft
Computing. 2016;49:1034-1050. DOI:
10.1016/j.asoc.2016.04.032

[24] Tantithamthavorn C,McIntosh S,
Hassan AE,Matsumoto K. Automated
parameter optimization of classification
techniques for defect predictionmodels.
In: Proceedings of the 38th International
Conference on Software Engineering
(ICSE ’16). Austin, Texas; May 2016.
pp. 321-332

[25] Kumar L, Misra S, Rath SK. An
empirical analysis of the effectiveness of
software metrics and fault prediction
model for identifying faulty classes.
Computer Standards & Interfaces. 2017;
53:1-32. DOI: 10.1016/j.csi.2017.02.003

[26] Yang X, Lo D, Xia X, Sun J. TLEL: A
two-layer ensemble learning approach
for just-in-time defect prediction.
Information and Software Technology.
2017;87:206-220. DOI: 10.1016/j.
infsof.2017.03.007

[27] Chen X, Zhao Y, Wang Q, Yuan Z.
MULTI: Multi-objective effort-aware
just-in-time software defect prediction.
Information and Software Technology.
2018;93:1-13. DOI: 10.1016/j.
infsof.2017.08.004

[28] Zimmermann T, Premraj R, Zeller A.
Predicting defects for eclipse. In: Third
InternationalWorkshop on Predictor
Models in Software Engineering
(PROMISE’07); 20-26 May 2007;
Minneapolis, USA: IEEE; 2007. p. 9

[29] Prakash VA, Ashoka DV, Aradya
VM. Application of data mining

28

Data Mining - Methods, Applications and Systems

techniques for defect detection and
classification. In: Proceedings of the 3rd
International Conference on Frontiers
of Intelligent Computing: Theory and
Applications (FICTA); 14–15 November
2014; Odisha, India; 2014. pp. 387-395

[30] Yousef AH. Extracting software
static defect models using data mining.
Ain Shams Engineering Journal. 2015;6:
133-144. DOI: 10.1016/j.
asej.2014.09.007

[31] Gupta DL, Saxena K. AUC based
software defect prediction for object-
oriented systems. International Journal
of Current Engineering and Technology.
2016;6:1728-1733

[32] Kumar L, Rath SK. Application of
genetic algorithm as feature selection
technique in development of effective
fault prediction model. In: IEEE Uttar
Pradesh Section International
Conference on Electrical, Computer and
Electronics Engineering (UPCON); 9-11
December 2016; Varanasi, India: IEEE;
2016. pp. 432-437

[33] Tomar D, Agarwal S. Prediction of
defective software modules using class
imbalance learning. Applied
Computational Intelligence and Soft
Computing. 2016;2016:1-12. DOI:
10.1155/2016/7658207

[34] Ryu D, Baik J. Effective multi-
objective naïve Bayes learning for cross-
project defect prediction. Applied Soft
Computing. 2016;49:1062-1077. DOI:
10.1016/j.asoc.2016.04.009

[35] Ali MM, Huda S, Abawajy J,
Alyahya S, Al-Dossari H, Yearwood J. A
parallel framework for Software Defect
detection and metric selection on cloud
computing. Cluster Computing. 2017;
20:2267-2281. DOI: 10.1007/s10586-017-
0892-6

[36]Wijaya A, Wahono RS. Tackling
imbalanced class in software defect
prediction using two-step cluster based

random undersampling and stacking
technique. Jurnal Teknologi. 2017;79:
45-50

[37] Singh PD, Chug A. Software defect
prediction analysis using machine
learning algorithms. In: 7th International
Conference on Cloud Computing, Data
Science & Engineering-Confluence; 2–13
January 2017; Noida, India: IEEE; 2017.
pp. 775-781

[38]Hammouri A, Hammad M,
Alnabhan M, Alsarayrah F. Software
bug prediction on using machine
learning approach. International Journal
of Advanced Computer Science and
Applications. 2018;9:78-83

[39] Akour M, Alsmadi I, Alazzam I.
Software fault proneness prediction: A
comparative study between bagging,
boosting, and stacking ensemble and
base learner methods. International
Journal of Data Analysis Techniques and
Strategies. 2017;9:1-16

[40] Bowes D, Hall T, Petric J. Software
defect prediction: Do different
classifiers find the same defects?
Software Quality Journal. 2018;26:
525-552. DOI: 10.1007/s11219-016-
9353-3

[41]Watanabe T, Monden A, Kamei Y,
Morisaki S. Identifying recurring
association rules in software defect
prediction. In: IEEE/ACIS 15th
International Conference on Computer
and Information Science (ICIS); 26–29
June 2016; Okayama, Japan: IEEE; 2016.
pp. 1-6

[42] Zhang S, Caragea D, Ou X. An
empirical study on using the national
vulnerability database to predict
software vulnerabilities. In: International
Conference on Database and Expert
Systems Applications. Berlin, Heidelberg:
Springer; 2011. pp. 217-223

[43]Wen J, Li S, Lin Z, Hu Y, Huang C.
Systematic literature review of machine

29

Data Mining and Machine Learning for Software Engineering
DOI: http://dx.doi.org/10.5772/intechopen.91448

learning based software development
effort estimation models. Information
and Software Technology. 2012;54:
41-59. DOI: 10.1016/j.
infsof.2011.09.002

[44]Dave VS, Dutta K. Neural network
based models for software effort
estimation: A review. Artificial
Intelligence Review. 2014;42:295-307.
DOI: 10.1007/s10462-012-9339-x

[45] Kultur Y, Turhan B, Bener AB.
ENNA: Software effort estimation using
ensemble of neural networks with
associative memory. In: Proceedings of
the 16th ACM SIGSOFT; November
2008; Atlanta, Georgia: ACM; 2008.
pp. 330-338

[46] Kultur Y, Turhan B, Bener A.
Ensemble of neural networks with
associative memory (ENNA) for
estimating software development costs.
Knowledge-Based Systems. 2009;22:
395-402. DOI: 10.1016/j.
knosys.2009.05.001

[47]Corazza A, Di Martino S, Ferrucci F,
Gravino C, Mendes E. Investigating the
use of support vector regression for web
effort estimation. Empirical Software
Engineering. 2011;16:211-243. DOI:
10.1007/s10664-010-9138-4

[48]Minku LL, Yao X. A principled
evaluation of ensembles of learning
machines for software effort estimation.
In: Proceedings of the 7th International
Conference on Predictive Models in
Software Engineering; September 2011;
Banff, Alberta, Canada: ACM; 2011.
pp. 1-10

[49]Minku LL, Yao X. Software effort
estimation as a multiobjective learning
problem. ACM Transactions on
Software Engineering and Methodology
(TOSEM). 2013;22:35. DOI: 10.1145/
2522920.2522928

[50]Minku LL, Yao X. Can cross-
company data improve performance in

software effort estimation? In:
Proceedings of the 8th International
Conference on Predictive Models in
Software Engineering (PROMISE ’12);
September 2012; New York, United
States: ACM; 2012. pp. 69-78

[51]Kocaguneli E, Menzies T, Keung JW.
On the value of ensemble effort
estimation. IEEE Transactions on
Software Engineering. 2012;38:
1403-1416. DOI: 10.1109/TSE.2011.111

[52]Dejaeger K, Verbeke W, Martens D,
Baesens B. Data mining techniques for
software effort estimation. IEEE
Transactions on Software Engineering.
2011;38:375-397. DOI: 10.1109/
TSE.2011.55

[53] Khatibi V, Jawawi DN, Khatibi E.
Increasing the accuracy of analogy
based software development effort
estimation using neural networks.
International Journal of Computer and
Communication Engineering. 2013;2:78

[54] Subitsha P, Rajan JK. Artificial neural
networkmodels for software effort
estimation. International Journal of
Technology Enhancements and Emerging
Engineering Research. 2014;2:76-80

[55]Maleki I, Ghaffari A, Masdari M.
A new approach for software cost
estimation with hybrid genetic
algorithm and ant colony optimization.
International Journal of Innovation and
Applied Studies. 2014;5:72

[56]Huang J, Li YF, Xie M. An empirical
analysis of data preprocessing for
machine learning-based software cost
estimation. Information and Software
Technology. 2015;67:108-127. DOI:
10.1016/j.infsof.2015.07.004

[57]Nassif AB, Azzeh M, Capretz LF,
Ho D. Neural network models for
software development effort estimation.
Neural Computing and Applications.
2016;27:2369-2381. DOI: 10.1007/
s00521-015-2127-1

30

Data Mining - Methods, Applications and Systems

[58] Zare F, Zare HK, Fallahnezhad MS.
Software effort estimation based on the
optimal Bayesian belief network. Applied
Soft Computing. 2016;49:968-980. DOI:
10.1016/j.asoc.2016.08.004

[59] Azzeh M, Nassif AB. A hybrid
model for estimating software project
effort from use case points. Applied Soft
Computing. 2016;49:981-989. DOI:
10.1016/j.asoc.2016.05.008

[60]Hidmi O, Sakar BE. Software
development effort estimation using
ensemble machine learning.
International Journal of Computing,
Communication and Instrumentation
Engineering. 2017;4:143-147

[61] Ghaffarian SM, Shahriari HR.
Software vulnerability analysis and
discovery using machine-learning and
data-mining techniques. ACM
Computing Surveys (CSUR). 2017;50:
1-36. DOI: 10.1145/3092566

[62] Jimenez M, Papadakis M, Le Traon
Y. Vulnerability prediction models: A
case study on the linux kernel. In: IEEE
16th International Working Conference
on Source Code Analysis and
Manipulation (SCAM); 2–3 October
2016; Raleigh, NC, USA: IEEE; 2016.
pp. 1-10

[63]Walden J, Stuckman J, Scandariato
R. Predicting vulnerable components:
Software metrics vs text mining. In:
IEEE 25th International Symposium on
Software Reliability Engineering; 3–6
November 2014; Naples, Italy: IEEE;
2014. pp. 23-33

[64]Wijayasekara D, Manic M, Wright
JL, McQueen M. Mining bug databases
for unidentified software
vulnerabilities. In: 5th International
Conference on Human System
Interactions; 6–8 June 2012; Perth, WA,
Australia: IEEE; 2013. pp. 89-96

[65]Hovsepyan A, Scandariato R, Joosen
W, Walden J. Software vulnerability

prediction using text analysis
techniques. In: Proceedings of the 4th
International Workshop on Security
Measurements and Metrics (ESEM ’12);
September 2012; Lund Sweden: IEEE;
2012. pp. 7-10

[66] Chernis B, Verma R. Machine
learning methods for software
vulnerability detection. In: Proceedings
of the Fourth ACM International
Workshop on Security and Privacy
Analytics (CODASPY ’18); March 2018;
Tempe, AZ, USA: 2018. pp. 31-39

[67] Li X, Chen J, Lin Z, Zhang L, Wang
Z, Zhou M, et al. Mining approach to
obtain the software vulnerability
characteristics. In: 2017 Fifth
International Conference on Advanced
Cloud and Big Data (CBD); 13–16
August 2017; Shanghai, China: IEEE;
2017. pp. 296-301

[68]Dam HK, Tran T, Pham T, Ng SW,
Grundy J, Ghose A. Automatic feature
learning for vulnerability prediction.
arXiv preprint arXiv:170802368 2017

[69] Scandariato R, Walden J,
Hovsepyan A, Joosen W. Predicting
vulnerable software components via
text mining. IEEE Transactions on
Software Engineering. 2014;40:
993-1006

[70] Tang Y, Zhao F, Yang Y, Lu H,
Zhou Y, Xu B. Predicting vulnerable
components via text mining or software
metrics? An effort-aware perspective.
In: IEEE International Conference on
Software Quality, Reliability and
Security; 3–5 August 2015; Vancouver,
BC, Canada: IEEE; 2015. p. 27–36

[71]Wang Y, Wang Y, Ren J. Software
vulnerabilities detection using rapid
density-based clustering. Journal
of Information and Computing Science.
2011;8:3295-3302

[72]Medeiros I, Neves NF, Correia M.
Automatic detection and correction of

31

Data Mining and Machine Learning for Software Engineering
DOI: http://dx.doi.org/10.5772/intechopen.91448

web application vulnerabilities using
data mining to predict false positives. In:
Proceedings of the 23rd International
Conference on World Wide Web
(WWW ’14); April 2014; Seoul, Korea;
2014. pp. 63-74

[73] Yamaguchi F, Golde N, Arp D,
Rieck K. Modeling and discovering
vulnerabilities with code property
graphs. In: 2014 IEEE Symposium on
Security and Privacy; 18-21 May 2014;
San Jose, CA, USA: IEEE; 2014.
pp. 590-604

[74] Perl H, Dechand S, Smith M, Arp D,
Yamaguchi F, Rieck K, et al. Vccfinder:
Finding Potential Vulnerabilities in
Open-source Projects to Assist Code
Audits. In: 22nd ACM Conference on
Computer and Communications
Security (CCS’15). Denver, Colorado,
USA; 2015. pp. 426-437

[75] Yamaguchi F, Maier A, Gascon H,
Rieck K. Automatic inference of search
patterns for taint-style vulnerabilities.
In: 2015 IEEE Symposium on Security
and Privacy; San Jose, CA, USA: IEEE;
2015. pp. 797-812

[76] Grieco G, Grinblat GL, Uzal L,
Rawat S, Feist J, Mounier L. Toward
large-scale vulnerability discovery using
machine learning. In: Proceedings of the
Sixth ACM Conference on Data and
Application Security and Privacy;
March 2016; New Orleans, Louisiana,
USA; 2016. pp. 85-96

[77] Pang Y, Xue X, Wang H. Predicting
vulnerable software components
through deep neural network. In:
Proceedings of the 2017 International
Conference on Deep Learning
Technologies; June 2017; Chengdu,
China; 2017. pp. 6-10

[78] Li Z, Zou D, Xu S, Ou X, Jin H,
Wang S, et al. VulDeePecker: A
Deep Learning-Based System for
Vulnerability Detection. arXiv preprint
arXiv:180101681. 2018

[79] Imtiaz SM, Bhowmik T. Towards
data-driven vulnerability prediction for
requirements. In: Proceedings of the
2018 26th ACM Joint Meeting on
European Software Engineering
Conference and Symposium on the
Foundations of Software Engineering;
November, 2018; Lake Buena Vista, FL,
USA. 2018. pp. 744-748

[80] Jie G, Xiao-Hui K, Qiang L. Survey
on software vulnerability analysis
method based on machine learning. In:
IEEE First International Conference on
Data Science in Cyberspace (DSC);
13–16 June 2016; Changsha, China:
IEEE; 2017. pp. 642-647

[81] Russell R, Kim L, Hamilton L,
Lazovich T, Harer J, Ozdemir O, et al.
Automated vulnerability detection in
source code using deep representation
learning. In: 17th IEEE International
Conference on Machine Learning and
Applications (ICMLA). Orlando, FL,
USA: IEEE; 2018, 2019. pp. 757-762

[82]Mayvan BB, Rasoolzadegan A,
Yazdi ZG. The state of the art on design
patterns: A systematic mapping of the
literature. Journal of Systems and
Software. 2017;125:93-118. DOI:
10.1016/j.jss.2016.11.030

[83]Dong J, Zhao Y, Peng T. A review of
design pattern mining techniques.
International Journal of Software
Engineering and Knowledge
Engineering. 2009;19:823-855. DOI:
10.1142/S021819400900443X

[84] Fowler M. Analysis Patterns:
Reusable Object Models. Boston:
Addison-Wesley Professional; 1997

[85] Vlissides J, Johnson R, Gamma E,
Helm R. Design Patterns-Elements of
Reusable Object-Oriented Software. 1st
ed. Addison-Wesley Professional; 1994

[86]Hasheminejad SMH, Jalili S. Design
patterns selection: An automatic two-
phase method. Journal of Systems and

32

Data Mining - Methods, Applications and Systems

Software. 2012;85:408-424. DOI:
10.1016/j.jss.2011.08.031

[87] Alhusain S, Coupland S, John R,
Kavanagh M. Towards machine learning
based design pattern recognition. In:
2013 13th UK Workshop on
Computational Intelligence (UKCI);
9–11 September 2013; Guildford, UK:
IEEE; 2013. pp. 244-251

[88] Tekin U. Buzluca F, A graph mining
approach for detecting identical design
structures in object-oriented design
models. Science of Computer
Programming. 2014;95:406-425. DOI:
10.1016/j.scico.2013.09.015

[89] Zanoni M, Fontana FA, Stella F. On
applying machine learning techniques
for design pattern detection. Journal of
Systems and Software. 2015;103:
102-117. DOI: 10.1016/j.jss.2015.01.037

[90] Chihada A, Jalili S, Hasheminejad
SMH, Zangooei MH. Source code and
design conformance, design pattern
detection from source code by
classification approach. Applied Soft
Computing. 2015;26:357-367. DOI:
10.1016/j.asoc.2014.10.027

[91]Dwivedi AK, Tirkey A, Ray RB,
Rath SK. Software design pattern
recognition using machine learning
techniques. In: 2016 IEEE Region 10
Conference (TENCON); 22–25
November 2016; Singapore, Singapore:
IEEE; 2017. pp. 222-227

[92]Dwivedi AK, Tirkey A, Rath SK.
Applying software metrics for the
mining of design pattern. In: IEEE
Uttar Pradesh Section International
Conference on Electrical, Computer and
Electronics Engineering (UPCON); 9–11
December 2016; Varanasi, India: IEEE;
2017. pp. 426-431

[93]Dwivedi AK, Tirkey A, Rath SK.
Software design pattern mining using
classification-based techniques. Frontiers
of Computer Science. 2018;12:908-922.
DOI: 10.1007/s11704-017-6424-y

[94]Mayvan BB, Rasoolzadegan A.
Design pattern detection based on the
graph theory. Knowledge-Based
Systems. 2017;120:211-225. DOI:
10.1016/j.knosys.2017.01.007

[95]Hussain S, Keung J, Khan AA.
Software design patterns classification
and selection using text categorization
approach. Applied Soft Computing.
2017;58:225-244. DOI: 10.1016/j.
asoc.2017.04.043

[96] Kaur A, Singh S. Detecting software
bad smells from software design
patterns using machine learning
algorithms. International Journal of
Applied Engineering Research. 2018;13:
10005-10010

[97]Hussain S, Keung J, Khan AA,
Ahmad A, Cuomo S, Piccialli F.
Implications of deep learning for the
automation of design patterns
organization. Journal of Parallel and
Distributed Computing. 2018;117:
256-266. DOI: 10.1016/j.
jpdc.2017.06.022

[98] Fowler M. Refactoring: Improving
the Design of Existing Code. 2nd ed.
Boston: Addison-Wesley Professional;
2018

[99] Kumar L, Sureka A. Application of
LSSVM and SMOTE on seven open
source projects for predicting
refactoring at class level. In: 24th
Asia-Pacific Software Engineering
Conference (APSEC); 4–8 December
2017; Nanjing, China: IEEE; 2018.
pp. 90-99

[100] Ratzinger J, Sigmund T, Vorburger
P, Gall H. Mining software evolution to
predict refactoring. In: First
International Symposium on Empirical
Software Engineering and Measurement
(ESEM 2007); 20–21 September 2007;
Madrid, Spain: IEEE; 2007. pp. 354-363

[101] Ratzinger J, Sigmund T, Gall HC.
On the relation of refactoring and

33

Data Mining and Machine Learning for Software Engineering
DOI: http://dx.doi.org/10.5772/intechopen.91448

software defects. In: Proceedings of the
2008 International Working Conference
on Mining Software Repositories; May
2008; Leipzig, Germany: ACM; 2008.
pp. 35-38

[102] Amal B, Kessentini M, Bechikh S,
Dea J, Said LB. On the Use of Machine
Learning and Search-Based software
engineering for ill-defined fitness
function: A case study on software
refactoring. In: International
Symposium on Search Based Software
Engineering; 26-29 August 2014;
Fortaleza, Brazil; 2014. pp. 31-45

[103]Wang H, Kessentini M, Grosky W,
Meddeb H. On the use of time series and
search based software engineering for
refactoring recommendation. In:
Proceedings of the 7th International
Conference on Management of
Computational and Collective
intElligence in Digital EcoSystems.
Caraguatatuba, Brazil; October 2015.
pp. 35-42

[104] Rodríguez G, Soria Á, Teyseyre A,
Berdun L, Campo M. Unsupervised
learning for detecting refactoring
opportunities in service-oriented
applications. In: International Conference
on Database and Expert Systems
Applications; 5–8 September; Porto,
Portugal: Springer; 2016. pp. 335-342

[105]Marian Z, Czibula IG, Czibula G. A
hierarchical clustering-based approach
for software restructuring at the package
level. In: 9th International Symposium
on Symbolic and Numeric Algorithms
for Scientific Computing (SYNASC);
21–24 September 2017; Timisoara,
Romania: IEEE; 2018. pp. 239-246

[106]Mourad B, Badri L, Hachemane O,
Ouellet A. Exploring the impact of clone
refactoring on test code size in object-
oriented software. In: 16th IEEE
International Conference on Machine
Learning and Applications (ICMLA);
18-21 December 2017; Cancun, Mexico.
2018. pp. 586-592

[107] Imazato A, Higo Y, Hotta K,
Kusumoto S. Finding extract method
refactoring opportunities by analyzing
development history. In: IEEE 41st
Annual Computer Software and
Applications Conference (COMPSAC);
4–8 July 2017; Turin, Italy: IEEE; 2018.
pp. 190-195

[108] Yue R, Gao Z, Meng N, Xiong Y,
Wang X. Automatic clone
recommendation for refactoring based
on the present and the past. In: IEEE
International Conference on Software
Maintenance and Evolution (ICSME);
23–29 September 2018; Madrid, Spain:
IEEE; 2018. pp. 115-126

[109] Alizadeh V, Kessentini M.
Reducing interactive refactoring effort
via clustering-based multi-objective
search. In: 33rd ACM/IEEE
International Conference on Automated
Software Engineering; September 2018;
Montpellier, France: ACM/IEEE; 2018.
pp. 464-474

[110]Ni C, Liu WS, Chen X, Gu Q, Chen
DX, Huang QG. A cluster based feature
selection method for cross-project
software defect prediction. Journal of
Computer Science and Technology.
2017;32:1090-1107. DOI: 10.1007/
s11390-017-1785-0

[111] Rahman A, Williams L.
Characterizing defective configuration
scripts used for continuous deployment.
In: 11th International Conference on
Software Testing, Verification and
Validation (ICST); 9–13 April 2018;
Vasteras, Sweden: IEEE; 2018. pp. 34-45

[112] Kukkar A, Mohana R. A supervised
bug report classification with
incorporate and textual field knowledge.
Procedia Computer Science. 2018;132:
352-361. DOI: 10.1016/j.procs.2018.
05.194

34

Data Mining - Methods, Applications and Systems

