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Abstract

Efforts put in overriding the inulin abundant invader nastiest category I weeds 
are infeasible that lead into its impermanent confiscation. Hence, their heedful 
exploitation is obligatory. These invasive weeds have ample amount of inulin, which 
serves as a renewable, cheap raw substrate for inulinase production. Therefore, they 
have enticed intention of many researchers toward exploring more idiosyncratic 
inulinase producing microbial strains that utilize invasive inulin-rich weeds as 
substrate for fructose liberation. Plenteous industrial applications of inulinases 
have marked it distinctly crucial in recent biotechnological epoch. This review thus 
elaborates the literature on infused footprints embedded by the substituted low 
calorie healthy sweetener in new advancing fields.
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1. Introduction

Weeds are plants that grow luxuriantly in unsolicited places with no special 
assistance of human. These plants spread rapidly by shading abundant seedlings, 
making land unfit for agriculture, forestry, and livestock. Their characterized 
adaptability to extensive range of soils and weathers has proved a boon for their 
survival at any piece of earth. They also have capabilities of tumbling inherent plant 
ecosystems and fluctuating natural biota in injurious ways. Due to the competency 
of piercing and interchanging indigenous flora, majority of them are recognized as 
environmental weeds or exotic or noxious aggressive invaders [1].

Apart from this negative side, countless constructive purposes of weeds as a part 
of their control strategies have still remained unnoticed. Therefore, this research 
theme was needed to be explored and expanded. Consequently, when seen from a 
different standpoint, such weeds have high inulin in them. Thus, this work explores 
inulin-rich weeds as a veritable and bioconvertible resource for sugary wealth 
creation, using efficient inulinase producing microbes.

2. Inulin

Inulin is an allocated polysaccharide mixture composed of α-d-glucopyranosyl-[β-
(2,1)-d-fructofuranosyl]-d-fructofuranosides linked by β-(2,1)-d-fructosyl-fructose 



Microorganisms

2

bonds, and each of this chain is terminated by fructose moiety. The linking and bond-
ing in inulin moiety are designated in Figure 1. Inulin is a reservoir of nondigestible 
carbohydrate known as fructans. It constitutes the bulk of glycosidic bonds joining 
fructosyl-fructose. The inulin-type fructans stored in Dicotyledonous species are 
connected with linear β(2→1) fructofuranosyl units, whereas monocots encompass 
branched complex-type fructans [2].

3. Plant sources of fructans

Inulin is abundant in structures such as bulbs, tubers, and tuberous roots of 
grasses and flowering plants belonging to Liliaceae (3500 species) and Compositae 
(25,000 species) families. Such plants, for example, asparagus, wheat, rye, and 
dahlias, mostly lack starch and thus synthesize inulin as energy store house. A 
wide array of inulin-rich plants with their inulin content is symbolized graphically 
(Figure 2) [3].

Figure 2. 
Schematic depiction of inulin content in variety of inulin consisting plants.

Figure 1. 
Inulin structure.



3

Bioconversion of Weedy Waste into Sugary Wealth
DOI: http://dx.doi.org/10.5772/intechopen.91316

Jerusalem artichoke (Helianthus tuberosus) and chicory (Cichorium intybus) are com-
mon commercialized inulin source available in market. The fleshy tap root of chicory 
serves as warehoused of inulin (70–80%) [4]. Depending upon the growth stage of 
chicory, either inulin or oligofructose can be obtained captivatingly. After full root 
development and inflorescence axis arrival, endoinulinase hydrolyzes inulin into oligo-
fructose, and exoinulinase further converts it into fructose. Most European countries 
have officially recognized inulin, oligofructose, and fructose as natural food ingredi-
ents, thereby having vast fascinating functional features that are beneficial to satisfy the 
needs of industries for imminent healthy food formulations. The present work currently 
focuses on two invasive home-grown (Tithonia rotundifolia and Cosmos bipinnatus) and 
one universally studied (Agave sisalana) inulin-rich weed species (Figure 3).

3.1 Agave

Agave is the most taxonomically diverse members of family Agavaceae. They are 
been surviving in extreme conditions by adapting themselves morphologically and 
physiologically. To escape transpirational water loss, they conduct crassulacean acid 
metabolism, thus liberating fructans as the chief photosynthetic product. A. sisalana 
was the common species found throughout Asia with rich inulin content, thus being 
used as substrate for alcohol and inulinase synthesis [5].

3.2 Cosmos bipinnatus

Cosmos bipinnatus of Asteraceae family is commonly famous as garden cosmos 
or Mexican aster, which is an inulin comprising weedy annual herb exotic for India. 
It has acclimatized on infertile, sandy soils along roadsides, exposed slopes, fence 
lines, hedgerows, or background areas as an ornamental plant getting transmuted 
into invasive weed [1].

3.3 Tithonia rotundifolia (Mill.) S. F. Blake

It belongs to family Asteraceae/Compositae and is commonly known as red 
sunflower, rooisonneblom, Japanese sunflower, shrub sunflower, and tree marigold. 
It is rich in inulin [6]. Thus, it serves as renewable raw material for fructose syrup 
(d-fructose) production. It is also grown as a green manure. But its high propagation 
frequency has forced to classify it as alien, invasive, competitive, allelopathic [7], nox-
ious category 1 weed. There are reports on these weeds competing with crop plants and 
shading out native vegetation in the humid and subhumid tropics of South America, 
South East Asia, and tropical and subtropical Africa. Thus, the overall deleterious 
impressions put forth by this weed need to be rectified by an ecofriendly way.

Figure 3. 
Inulin-rich weeds under present investigation: (a) Agave sisalana, (b) Cosmos bipinnatus, and (c) Tithonia 
rotundifolia.
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4. Weed management strategies

Control majors like manual irradiation of these inulin-rich weeds are a tough 
job since they induce allergic effects [8]. Chemical practice can be used, but 
there are reports reviling the incidences of herbicide resistance weed expansion. 
Additionally, a striking raise in expenditure (>30$ ha–1) of such weed remedy is 
too observed [9]. Accumulation of chemical scums in groundwater was another 
problem that emerges by the application of herbicides [10].

Thus, the pressure was to lessen herbicide usage and to reevaluate its environ-
mental safety, development of alternative weed-control options was cheered. The 
best proposed avenue is to use microbial weed treating strategy, where actively 
propagating microorganism is subjected on target weed to achieve rapid control 
by its enzymatic hydrolysis into cost-effective product. Thus, exploiting inulinase 
producing soil microbes has been crucial tool in our efforts to renovate these weeds 
into fructose: a profitable calorie condensed sweeteners [11]. Microbial bioconver-
sion finally is the best defense evident against this invasive attack.

5. Inulinase

Inulinases are fructofuranosyl hydrolases that cleave inulin into fructose 
moieties. Fructo-sugars, fructooligosaccharides (FOSs), or simply oligofructoses 
are the fructose oligomers formed after the action of inulinase on inulin [12]. 
Inulinase is an industrially crucial class of enzyme incorporated into glyco-
side hydrolase families 32 and 91. Based on their mode of action (Figure 4) 
on inulin, inulinases are alienated into dualistic types: (1) exoinulinase 
(β-d-fructanfructohydrolase, E.C. 3.2.1.80) and (2) endoinulinase (2, 1-β-d-
fructanfructanohydrolase, E.C. 3.2.1.7) [13].

5.1 Microbial sources of inulinase

Phylogentically diverse microorganisms comprising bacteria, filamentous fungi, 
yeasts, and actinomycetes were testified to synthesize inulinase enzyme [14]. Due to 

Figure 4. 
Enzymatic hydrolysis of inulin-rich weed where (*) signifies site of inulinase activity on repeating  
β-(1-2)-d-fructosyl units of inulin.
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the easy cultivation and higher enzyme yield, bacterial spp. are being commercially 
exploited to produce inulin hydrolyzing enzymes. The literature published recently 
[9, 13, 15–21] regarding the inulinase producers yielding maximum enzyme is 
embodied in Figure 5.

5.2 Substrates for inulinase production

Media complexity and culture conditions influence the enzyme production 
critically. The morphogenesis and metabolic pathway involved in enzyme induc-
tion can be noticeably affected by altering the media components and the growth 
parameters. Therefore, this substitution may accelerate biocatalysis of substrate 
into desirable products.

Inulin, starch, sucrose, and inulin-rich plant extracts are been widely utilized 
as exclusive, cheap, and best carbon source for biosynthesis of inulinase by several 
microbes. This polyfructan along with naturally occurring inulin-rich material 
and mixed substrates contributes as potent inducers for inulinase production. This 
plant-derived abundant storage polysaccharide is also present in roots and tubers 
of Compositae and Gramineae plants and numerous invader weeds. The review 
mentions a wide substrate used for inulinase production mutant [9, 19]. Dahlia 
(Dahlia pinnata), rhizosphere of Jerusalem artichoke (H. tuberosus), chicory (C. 
intybus) roots, kuth (Saussurea lappa) roots, Allium sativum, and Allium cepa have 
broadly been exploited for this perseverance. Mature C. intybus root was found to 
be the best substrate for receiving maximum extracellular inulinase from Fusarium 
oxysporum [22].

Figure 5. 
Glance on varied inulinase producing microorganisms [55–78].
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5.3 Inulinase production

Enzyme production is critically influenced by media complexity and culture 
conditions. Alterations in these two factors noticeably affect the morphogenesis and 
metabolic pathway involved in enzyme induction. It may accelerate biocatalysis of 
substrate into desirable products.

Inulinase enzymes are commercially produced consuming synthetic inulin and 
agroindustrial residues by submerged fermentation as well as by solid-state fer-
mentation (SSF). Microorganisms, substrate, and cultivation method for inulinase 
production in certain studies reported in the literature [23, 24] are described later. 
The records show a resilient inclination to substitute high value synthetic inulin by 
agroindustrial substrates so as to make this enzyme production process cost effec-
tive. Kluyveromyces genus is reported to be the excellent inulinase producers [25]. 
Researchers explained that under optimum condition, the Kluyveromyces marxianus 
NRRL Y-7571 extracellular enzyme concentration extended to 391.9 U/g of dry 
fermented bagasse. Thus, due to the high availability and low rate sugarcane and 
corn industries, deposits (sugarcane bagasse, molasses, and corn steep liquor) can 
be economically attractive [26].

5.4 Factorial design

The escalated microbial growth and enzyme yield throughout the fermentation 
need to be keenly monitored. This is well accomplished by optimizing the fermentation 
conditions. The single-dimensional traditional simple frequently employed optimiza-
tion method encompasses fluctuation of one independent variable at given level and 
maintaining others constant. Since it lacks the possible interactions among factors, 
it is least preferred. Thus, an effectual experimental scheme like response surface 
method is adopted to operate optimal conditions for multivariable systems. It aids in 
appreciating interaction of parameters and recognizing optimal range for higher yield. 
It also includes variety of statistical techniques used for experimental design and model 
erection that measures and scrutinizes the optimum conditions. Effective optimization 
of fungal, bacterial, and yeast inulinase production consuming diverse substrates such 
as Jerusalem artichoke, sugarcane bagasse, and molasses in submerged or solid-state 
cultivation was stated in the literature [27]. Diagrammatic depiction of microorgan-
isms and optimized experimental variables is accessible in Figure 6 [13, 16, 28–33].

5.5 Purification and properties of inulinases

The nature, interaction, and additional specific properties can be well under-
stood in case of pure enzymes than the crude ones. Enzyme purification thus serves 
as a crucial footstep. The efficacious purification is reliant on complexity, charge 
distribution, and physicochemical properties of enzyme. Size, polarity, ligand 
interactions, and solubility are few of the strategic factors that define the choice of 
purification techniques to be applied for purifying inulinase. Some common puri-
fication techniques hired are salt or solvent precipitation, ion exchange, affinity, 
hydrophobic interaction, gel exclusion chromatography, and ultrafiltration [34].

Implication of ammonium sulfate precipitation method followed with column 
chromatography, boosted X. oryzae endoinulinase recovery by 2.9-folds [35]. 
Thermostable endoinulinase from Bacillus smithii was purified by ammonium 
sulfate precipitation and ion exchange chromatography. The exoinulinase synthe-
sized by Arthrobacter spp., Arthrobacter globiformis, Bacillus stearothermophilus, 
Pseudomonas mucidolens, and Thermotoga maritima was recovered and purified 
for further studies. Salt precipitation functioned better in bacterial inulinase 
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purification, whereas organic solvent precipitation was preeminent for fungal 
inulinases. The extraordinary solubility of ammonium sulfate in water makes it 
more preferential for salt precipitation. This ammonium sulfate after cleavage gets 
converted into two ionic forms, thus sustaining its top most position in Hofmeister 
series. Structural integrity of protein is least exaggerated by this salt during the 
salting out progression. The increased probability of protein repression in organic 
solvent existence reduces its utility in enzyme purification. Maximum reports on 
use of ion exchange and gel exclusion chromatography followed by high selective 
affinity chromatography are noticed for biomolecule purification. The chemical 
structure and function of bacterial and fungal inulinase decide which purification 
techniques are to be employed for its purification. These techniques are reliable in 
convalescing interested protein in short time. The requisite factors like widely oscil-
lating temperature and pH stability of inulinase, along with other vital characters, 
before being exploited for industrial applications need to be thoroughly inspected.

Physical elements such as molecular weight (Mr), Michaelis-Menten constant 
(Km), and maximal velocity (Vmax) are significantly imperative to characterize an 
enzyme. Heteromeric structure and any conformational variations are well enlight-
ened by molecular weight studies of an enzyme. Km and Vmax values illuminate the 
enzyme kinetics and also emphasize on the specificity and affinity of inulinase for 
varied substrates. This affinity is designated by Km. Km is the substrate concentra-
tion that engages half of enzyme’s active site. Lower Km illustrates higher affinity of 
enzyme toward specific substrate and vice versa.

5.6 Structural peculiarities of purified inulinases

The molecular masses of bacterial and fungal inulinases oscillate in the range 
from 28 to 450 kDa as denoted in Figure 7 [36]. Most of the fungal inulinases have 

Figure 6. 
Highlight on inulinase production by various microbes under specific fermentation conditions.
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molecular weight exceeding 50.0 kDa. Three inulinases with molecular masses 
42, 65, and 57 kDa were isolated and purified from Kluyveromyces species Y 85.

Characterization of fungal and bacterial endoinulinases is also investigated 
after its purification. The purified endoinulinase harvested from Penicillium sp. 
TN-88 has molecular mass of 68.0 kDa [37]. Arthrobacter sp. S37 also produced 
extracellular endoinulinase, which was purified and found to have approximately 
75 kDa [38].

5.7 Profitable approach of inulinase efficacy

Owing to the scenarios in food, pharmaceutical and nutraceutical industries, 
microbial hydrolysis and bioconversion of inulin have established a new source of 
revenue to several workers [39].

Inulinase offers exciting perceptions in view of the budding need for the 
Ultrahigh-Fructose Syrup (UHFS) production from inulin. Approximate 95% 
pure fructose can be obtained by enzymatic hydrolysis of inulin in the pres-
ence of inulinase. Thereby, inulinase-producing microbes are been extensively 
exploited by numerous industries so as to get value-added UHFS from inulin-rich 
weeds.

Inulinase and inulinase producers along with superfluous microorganism amal-
gamation are prominently affianced for simultaneous saccharification and fermen-
tation (SSF) of diverse substrates in ethanol production methods [39–41]. Ethanol 
is the greatest hired liquid biofuel either as a fuel or as a gasoline complement [42]. 
Agave, chicory, dahlia, Jerusalem artichoke tuber, and many other inulin-rich 
weeds aid as the finest raw resources for fuel ethanol production. Certain wild-type 
microbes were mutated to offer maximum yield. Various experimentations were 
performed on sugar-beet molasses and numerous plant extracts so as to be used as 
feedstock to gain ethanol.

Inulinases are furthermore broadly subjugated in commercialization of inulo 
[43], gluconic acid, sorbitol, pullulan, acetone-butanol [44], and other key products.

Figure 7. 
Comparison of molecular masses of inulinase from numerous microbial sources obtained after SDS-PAGE 
electrophoresis.
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6. Product formed after inulinolytic hydrolysis

The hydrolysis of inulin feedstock by inulinase yields astonishing amount of 
fructose in fermented broth. Carbohydrate, particularly fructose, is an indispen-
sible chunk of the human diet. It owes exceptional properties and is nearly 1.5 times 
sweeter than sucrose, thus enhancing the palate and pleasure of several foodstuffs. 
It is recovered by passing through carpet bag filters containing activated charcoal 
and is further crystalized using chilled solvents, ethanol specifically.

Beyond 30 proceeding years, pure crystalline fructose has stood at the heights 
in the market as a health supplement in food and beverage. Purity is the pivotal 
feature that draws a distinguishing sharp line between crystalline fructose and high 
fructose corn syrup (HFCS). Crystalline fructose products are characteristically 
100% pure fructose, while HFCS comprehends nearly equivalent shares of fructose 
and glucose-like sucrose (table sugar). As pure crystalline fructose is bounteously 
sweeter than sugar, its minor amount is also adequate to accomplish the same level 
of sweetness. Thus, lower-sugar and trifling calorie foods typically contain pure 
crystalline fructose. Food genii company also favors pure crystalline fructose as it 
owns supplementary properties beyond sweetness, which marks it very lucrative in 
drinks and candy, cakes, and other food industries [45].

6.1 Purification of fructose

The separation of FOS and fructose is frequently accomplished by reckon-
able chromatographic techniques. In dietetic products, optimal FOS separation 
is done by implementing glass-packed precoated silica gel with sodium acetate. 
Liquid chromatography (LC) with acetonitrile as a mobile phase is executed to 
purify nonstructural carbohydrates such as sugars and FOS with 3–19 degrees 
of polymerization. Auxiliary cost-effective methods exploiting activated char-
coal fixed bed column with 80% degree of purification and 97.8% recovery 
of Fructose are superfluously proficient [43]. Purified fructose is assessed by 
diverse techniques such as NMR, MALDI-MS, MALDITOF, GC-MS, and ESI-MS 
[46]. The prebiotic fructose metabolism in microorganisms can be premeditated 
through microarrays [43].

6.2 Commercial applications of fructose

Pure fructose along with FOSs is finely specified to exist in voluminous 
natural foods. Gigantic companies are manufacturing these extensively applicable 
healthy and calorie-free products via hydrolyzing inulin weeds by exploiting 
microbial inulinases. Few lucrative applications of fructose emphasized in the 
review [47].

6.2.1 In food industries

Fructose serves as one of the key ingredients in food products such as energy 
and sports drinks, flavor boosted water, carbonated sodas and drinks, beverages, 
low-calorie food options, cereals, oatmeal, and yogurts and baked goods [3].

6.2.2 Fortification of nominated fruit juice beverages

Investigation reveals that sucrose employed as fruit juice sweetener, with no 
considerably quality loss can be replaced with FOS and fructose.
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6.2.3 Fructose in medicine

Fructose is very frequently found as sweetener in cough suppressants, deconges-
tant drops, rubs, and liquids for children and adults. Many pharmaceutical tablets, 
syrups, and solutions commonly have fructose as an excipient [48].

6.2.4 Proficient sweetener for diabetics

Inulinase from Aspergillus oryzae carries out hydrolysis liberating fructose and 
FOSs. Existence of mono to pentasaccharides without toxic microbial metabolites 
in the hydrolyzed product was assessed with NMR spectroscopy and LC-MS, thus 
excavating its application as a food ingredient [49].

6.2.5 Supplementing oral electrolyte solutions as diarrhea control remedy

The retrieval of overall bacterial counts amplified by ingestion of OES and 
fructose to pigs with acute diarrhea induced by cholera toxin was the most attention 
grabbing finding [50].

6.2.6 Dietary intonation of the human colonic microbiota

A trifling prebiotic effect with no gastrointestinal distress in pediatric patients 
with cancer was found to be induced by FOS, especially fructose [51].

6.2.7 Immunomodulatory effect

Clinical trials direct that fructose and FOS supplementation can reduce the 
influx of clinical inflammation, abridged level in cytokine interleukin (IL)-1α, and 
necrosis factor-α in ulcerative colitis by Bacillus longum. A shoot-up in IL10 positive 
mucosal dendritic due to inulin, fructose, and FOS intake was displayed in patients 
with Crohn’s illness [52].

6.2.8 Cancer treatment

Incidence of cancer has been rapidly decreasing due to the use of FOS and 
fructose. Tumor growth, cell differentiation, and upregulate apoptosis were vetoed 
by the Butyrate manufactured by FOS and fructose [53].

6.2.9 Antibiotic therapy

Damage of normal protective intestinal microflora was a common observation 
found to be accompanied with acute diarrhea after been treatment with penicillin, 
cephalosporin, and clindamycin antibiotics. Double-blind randomized controlled 
trials were set, which efficaciously explain that in the course of antibiotic treatment 
reoccurrence of diarrhea was shortened in patients ingesting fructose.

6.2.10 Antioxidant properties

Mesa and his coworkers studied protein glycation and cross linking along with 
the effect of elevated temperature and proteolysis on antioxidant properties of the 
Maillard reaction mixtures of soy protein isolates, FOS, and fructose with appropri-
ate controls [54].
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6.2.11 Enhancing Salmonella vaccine efficacy

An elevation in specific blood immunoglobulin G specific to Salmonella and 
fecal immunoglobulin A was recorded in mice fed on the fructose and inulin 
encompassing diet as compared with control mice when infected with LD100 of 
virulent S. typhimurium for tolerable time interlude [49].

7. Concluding remark

The current review discloses the elucidations of many global researchers spe-
cifically highlighting on the isolation of novel inulinase-producing rhizospheric 
microbial flora to hydrolyze high inulin content in weeds, thereby serving as 
a potential, abundant, and profitable avenue of fructose production with vast 
industrial applications. The food and pharmaceutical preparations with fructose 
have extended at the top in the market demand list of health conscious modern era. 
Thereby, the enzyme production expenses linger to be the logjam in understanding 
its commercial application.

Thus, this review explores the exploitation of inulin containing weeds such as 
Tithonia and Cosmos as low-value and efficacious replacement of synthetic inulin as 
substrates for inulinase production. The research embarked on the health implica-
tions of dietary and pharmaceutical fructoses was underlined in the review. Finally, 
electrifying new uses of fructan polysaccharides such as drug stabilizers, scrupu-
lous release drug delivery systems, and vaccine adjuvants proclaims evolution in 
pharmaceutical applications of this extremely multipurpose plant-derived sugar.
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