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Chapter

Challenges and Future of Wearable 
Technology in Human Motor-Skill 
Learning and Optimization
Gongbing Shan

Abstract

Learning how to move is a challenging task. Even the most basic motor skill 
of walking requires years to develop and can quickly deteriorate due to aging and 
sedentary lifestyles. More specialized skills such as ballet and acrobatic kicks in soc-
cer require “talent” and years of extensive practice to fully master. These practices 
can easily cause injuries if conducted improperly. 3D motion capture technologies 
are currently the best way to acquire human motor skill in biomechanical feedback 
training. Owing to their tremendous promise for a plethora of applications, wear-
able technologies have garnered great interest in biofeedback training. Using wear-
able technology, some physical activity parameters can be tracked in real time and 
a noninvasive way to indicate the physical progress of a trainee. Yet, the application 
of biomechanical wearables in human motor-skill learning, training, and optimiza-
tion is still in its infant phase due to the absence of a reliable method. This chapter 
elaborates challenges faced by developing wearable biomechanical feedback devices 
and forecasts potential breakthroughs in this area. The overarching goal is to foster 
interdisciplinary studies on wearable technology to improve how we move.

Keywords: biomechanics, 3D motion capture technology, body model, real time, 
feedback training, AI, IMUs

1. Introduction

For decades, it has been known that the large and widespread anthropometrical 
diversity limits the effectiveness of a universal approach in human motor-skill 
learning and training; instead, an individualized biofeedback approach would 
significantly improve the learning process [1–4]. Recently, wearable sensors (wear-
ables) have garnered great interest in biofeedback training, owing to their tre-
mendous promise for a plethora of applications [5–8]. It seems that individualized 
biofeedback training has the potential to become an immediate reality in the motor 
learning realm. However, the absence of a reliable method of applying wearables in 
biomechanical feedback training has greatly hindered their application in human 
motor-skill learning and optimization [4].

Although wearables in sports are only a few years old, there has already been 
a consensus that wearable technology is leading a revolution in physical training 
[5, 8]. Various sensors are now fitted into sport equipment, limbs, wristbands, 
and/or clothes to collect crucial data in real time, sending it directly to trainers, 
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allowing them to implement an individualized training plan for increasing athletic 
competence. Nevertheless, the use of real-time biomechanical feedback in training 
looks currently not so optimistic. A recent review paper (2019) divulges that the 
biomechanical development is still in its infancy [4]. The paper reveals that while 
there are over 5500 published biofeedback articles in Web of Science, there are 
very few on real-time biomechanical feedback learning or training. Compared to 
the booming application of wearables in fitness as well as in health industry, the 
biomechanical investigations seem disproportionately low. The scarcity of biome-
chanical studies may due to two facts: (1) a general biomechanical body model that 
is suitable for wearable application in feedback learning and training is missing, 
and (2) a reliable method for linking biomechanical quantification and human 
motor learning in real time is still not available [4].

Clearly, the current success of wearables in sports is not yet linked to the 
human motor-skill learning. The overwhelming use of wearables in sports is 
mainly in the area of monitoring physical condition. For example, sports injuries 
are often caused by fatigue, overtraining, or dehydration [9, 10]. Wearables are 
now able to collect data related to the risk conditions from athletes’ physical 
conditions, muscle activities, and sweat [5–7]. The real-time biofeedback can help 
coaches to quickly alternate their training or competition strategies in order to 
decrease injury risk in training and competition [5, 6, 9]. One should note that the 
locomotion (e.g., distance, speed), physiological (e.g., heart rate, blood pressure), 
neurological (e.g., muscle activities), and biochemical feedback (e.g., electrolytes, 
metabolites) are only useful in analyzing the general physical condition of an 
athlete; however, they do not provide information related to the limbs’ control of 
human motor skills, and as such, the biomechanical feedback for motor control is 
still missing.

2. The uniqueness and challenges of developing biomechanical feedback

Why is the development of biomechanical feedback understudied? This is 
because of the uniqueness of biomechanical feedback. Feedbacks obtained from 
locomotion, physiological, biochemical, and neurological measurements deliver 
information of one’s general changes in speed/location, physiological and physi-
cal response, and muscle tension. The common point of these feedbacks is that 
they can be conserved across human motor skills, i.e., across different movement 
forms. Therefore, one can universally apply the feedback devices monitoring 
these parameters of all activities [4, 11]. On the contrary, biomechanical feed-
back mainly provides information related to the limb control of motor skills, 
which often differ from one skill to the other. To complicate matters further, skill 
optimization has to be adjusted depending on one’s anthropometry [4, 12–14]. In 
short, biomechanical feedback must be tailored to an individual activity being 
examined [15–18].

Ergo, in order to develop a universal biomechanical feedback device, one has 
first to obtain a thorough understanding of a variety of motor skills in order to 
determine the general key parameters for monitoring [1, 4]. Further, biofeedback 
devices (e.g., wearables) must not interfere with the motor skill being executed. 
This technical limitation alone has proven to be a major hindrance to the develop-
ment of biomechanical feedback in motor learning and training. Finally, a vital step 
in device development is to search ways/body models, which should consider the 
anthropometry-induced motor-control variations.

In short, there are three indispensable linchpin pieces in the development 
process: (1) expert knowledge obtained from extensive motion analyses of 
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diverse human motor skills, (2) sensibleness of wearables’ application in train-
ing environment, and (3) a general method for wearable-based data analysis and 
interpretation.

Summarized above, there are several challenges that must be overcome during 
the development of the universal real-time biomechanical feedback. The obvious 
are:

• Creating a new generalizable body model that can quantify various human 
motor skills

• Minimizing wearable interference with the motor skill being executed

• Developing wearable-based data analysis and interpretation method

• Adding the anthropometrical variation into motor-control identification

3. Biomechanical steps in developing wearables for feedback training

Effective human motor-skill learning can be supported by useful and timely 
biomechanical feedback to learners, helping them to target at their performance 
defects. Previous studies have shown that regular, objective, and consistent perfor-
mance monitoring and assessment through quantitative analysis of biomechanical 
variables can reinforce the biomechanical feedback training in practice [17, 19]. 
Therefore, how to increase the spatial and temporal accuracy when performing a 
quantification of a motor skill (i.e., the limbs coordination) would play a crucial 
role in developing wearables for biomechanical feedback training [20]. Considering 
the uniqueness of biomechanical feedback illustrated in the previous sections, the 
following steps have to be undergone in developing wearables for feedback training:

• Choose a motor skill.

• Perform motion analysis of the skill quantitatively.

• Identify dominate parameters for feedback training.

• Verify the effectiveness of the selected feedback(s) in practice.

• Develop a feedback device for monitoring of the critical/vital parameter(s) 
(e.g., coordination among certain segments or joints) for the given motor skill.

One should note that wearables developed through the current approach can 
only be applied to one specific motor skill. A delimitation of application in learning/
training other motor skills is impossible.

Having seen the success of physiological, neurological, and biochemical wearables 
in practice, it would be a practitioner’s desire that the biomechanical one could also be 
universally applied to all motor skills for their learning and training in sports and arts. 
One should note that a general application means that a general methodology should 
exist for motor-control data collection and interpretation, i.e., a wearable system 
should be able to track a variety of human motor skills and to identify the motor-
control patterns existing in these motor skills. Unfortunately, we are currently still far 
away from the goal. All existing studies are specific or isolated ones. So far, only a few 
studies explored the real-time biomechanical feedback application in practice [21–23].
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4.  A novel route in developing wearables for human motor-skill learning 
and biomechanical feedback training

Currently, the most reliable methodology for quantifying complicated human 
motor skills is the full-body biomechanical modeling based on 3D motion capture 
[24–27]. The biomechanical body model consists of 15 segments. The 15 segments 
are the head, upper trunk, lower trunk, upper arms, lower arms, hands, thighs, 
shanks, and feet. For establishing the model, about 40 body-surface markers are 
needed to supply 3D coordinate inputs for mechanically determining joint kinemat-
ics in order to reveal the motor-control/limbs’ coordination. The model is widely 
applied in the current 3D motion capture technologies for demystifying and opti-
mizing complex motor skills in sports and arts performance [4, 15, 17, 28–36]. This 
video-based technology uses multi-cameras to track ~40 reflective markers (their 
weights are negligible) attached on the body surface. Technically, the tracking can 
be equivalently done by using 40 wearable IMUs, a sensing technology that mea-
sures linear and angular motion with a triad of gyroscopes and triad of accelerom-
eters [21, 37–40]. As such, motion analysis could switch from labs (multi-camera 
environment) to the field (wearables) [4], i.e., quantification of limbs’ coordination 
would be no more restricted to labs and become an effortless daily routine for 
researchers and practitioners. Practically, it is not so easy.

It is wise to induce the success of the current biomechanical body model into 
wearable applications. Nevertheless, it is unrealistic and impractical to use ~40 
IMUs for rebuilding the body and its movement. Markers used in motion capture 
are small (9 mm in diameter) and almost weightless [41–43], whereas the volume 
and weight of current IMUs are still significantly larger. The ~40 IMUs can cause 
unknown experimental artifacts. Obviously, we have to search a new route. Based 
on the current development [4, 20, 21, 44], a novel approach for a potentially suc-
cessful transition to wearable applications will be introduced here.

The innovative approach will be built on previous studies on anthropometry  
[12, 13, 45], 3D motion analysis [25, 46–49], sensing technology [21, 37–40, 50], and 
artificial intelligence (AI) [44, 50–54]. This multidisciplinary approach provides a 
new route to develop a wearable-based method for data analysis and interpretation 
(motor-control depiction) as well as to distill and package new findings from vari-
ous areas in realizing the real-time biomechanical feedback training in practice.

4.1  A two-chain model as a general full-body biomechanical model for realizing 
wearable application in human motor-skill training

In 3D motion capture, the rebuilding of an individual 15-segment model is 
achieved by tracking selected body-surface markers in 3D space. Alternatively, an 
equivalent model can be built via anthropometrical approach. Previous studies show 
that, using variables such as body weight (BW), body height (BH), gender, and race, 
one can statistically determine segmental masses and lengths to build an individual 
body model [12, 45]. The difference of the two approaches is that the former is 
“born-to-move” (video-based) and the latter has to “learn-to-move” (wearable-
based). Currently, the most challenging for wearable application in sports and arts 
performances is practicality. Wearables attached to human body will create certain 
constraints for human movement and alternate the movement control in a way that 
may not reach the training goal. Therefore, the less wearables applied, the more 
practical the feedback system is. Aiming at the development of practicality, future 
researches/developments should focus on innovative designs of the body model that 
will minimize the number of wearables required yet still supply equivalent, if not 
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better, accuracy of the current 15-segment biomechanical model. Such a novel body 
model is introduced below for potential breakthroughs in the future.

Based on numerous previous 3D motion studies [15, 28–31, 37, 55–63], multitu-
dinous complicated human movements from both sports activities and arts perfor-
mances can be generally represented by using a model system with two mechanical 
chains: upper-body chain and lower-body chain (Figure 1). The upper-body chains 
consist of a base (i.e., upper trunk and head) and two sub-chains (i.e., arms) that 
are linked to the base. The lower-body chain has an equivalent structure, the base is 
the lower trunk, and the two sub-chains are the legs. With this novel design, human 
motor skills could be tracked by using much fewer IMUs. Theoretically, three IMUs 
on each chain (one on the base, one on each distal end of the chain) would likely 
track the movement of a chain (Figure 1a), i.e., six IMUs would be able to determine 
the segments’/joints’ motion and coordination as well as the orientation relationship 
between the two bases of the two chains. As such, researchers and practitioners could 
quasi-naturally track human motor skills (i.e., six wearables would minimally encum-
ber human motor control) in learning and training. This would help the development 
of the real-time biomechanical feedback training. Only the six IMUs’ inputs are not 

Figure 1. 
The two-chain model of human motor skills. (a) the possible locations of the six wearables for human  
motor-skills’ tracking; (b) grand jeté in ballet; (c) an Indian dance skill; (d) golf swing; (e) jumping side 
volley (an acrobatic kick) in soccer; and (f) baseball pitch. Note: All the three-dimensional motion data were 
generated in Shan’s biomechanics lab.
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sufficient to apply the class mechanics to quantitatively determine the model system. 
Currently, AI could alleviate this challenge due to its “learning” ability [44, 64–66].

4.2 AI for motor-control quantification

Since the inputs of the limited IMUs cannot mechanically determine the two-
chain model, AI technologies are the alternative ways for the two-chain model 
quantification. Studies have shown that AI techniques have become a powerful tool 
for helping to solve many challenging problems in human motor-skill evaluations 
and analyses [44, 52, 53, 67].

The basic idea of AI prediction is to find a way to learn general features of exist-
ing data in order to make sense of new data [64, 65]. This description highlights the 
central role of data for establishing implicit knowledge. The amount of data must 
be sufficiently large to provide many training examples from which a large set of 
parameters can be extracted. In the past decades, AI techniques have experienced 
a resurgence following concurrent advances in computer power, large amounts of 
data (big data), and theoretical understanding.

Among the AI technologies, deep learning is considered as a powerful tool 
that percolates through to all application areas of AI, such as image identification, 
speech recognition, natural language processing, and, indeed, biofeedback support 
[68–70]. The success of deep learning networks encourages their implementation in 
further applications for the enhancement of human physical activities [52, 54, 67]. 
Recently, Nature Neuroscience has published the latest developments in the area of 
markerless, video-based motion tracking, indicating that the power of deep learn-
ing will enable motion tracking to human-like accuracy [53]. This study confirms 
that motion capture/quantification of limbs’ coordination will move from an 
expensive and difficult task restricted to the laboratory to an effortless daily routine 
for researchers and practitioners.

From motor learning point of view, wearables would have much higher potential 
than video shooting in the future practice. This is not only because of the fast advance 
in miniature of wearables but also due to three inherited drawbacks of video-shooting 
approach, i.e., (1) the limited capture space, (2) the complexity of capture systems 
(from setup, calibration, to operation), and (3) the time-consuming nature of data 
processing (high cost of data processing). Reliable biomechanical feedback should be 
obtained from accurate quantification of human movement in field, with some requir-
ing large space. Even with a multi-camera setting, unexpected environmental factors 
(e.g., interactions among athletes) will create a data gap. Further, it is true that we are 
already sitting on massive movement data (e.g., YouTube, Flickr) for training of deep 
learning models; but the video datasets are uncalibrated and have very little informa-
tion on the hardware and conditions used to capture particular videos, which can bias 
the deep learning recognition algorithms [71]. Currently, the availability of reliable 
motion capture data for developing deep learning models is significantly limited.

In summary, the combination of the two-chain full-body model with six wear-
able IMUs and the deep learning prediction based on IMUs’ data shows great poten-
tial in developing real-time biomechanical feedback training for an efficient human 
motor-skill learning and optimization. The missing piece for testing the potential is 
reliable massive training data.

4.3  The key for raising the reliability of wearables: creating a diversification  
of 3D training big data

Two factors revealed by previous studies strongly influence deep learning 
performance [65, 66, 72–74]. One is the massive data, and the other one is the 
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diversity of the massive data. A systematical review article has examined 53 studies 
published before 2018. The scope of the review is the deep learning applications of 
the physiological data or signals in healthcare. The article has revealed that both the 
amount of data and the diversity of data would influence the prediction’s reliability 
[65]. This result would signify that deep learning algorithms would perform well 
with large and diverse datasets.

Judging from the current knowledge, a massive and diverse 3D motion capture 
big data, collected from sports and arts activities, is indispensable for developing 
the reliable biomechanical wearables. It is well known that sports and arts skills 
exhibit the most diverse and complicated motor controls among all human physi-
cal activities. If such big data are available for training deep learning models, the 
reliability of the trained model will be raised due to the depth and specialization 
from training the deep learning algorithms [65, 66, 72–74]. Therefore, at present, 
the vital step for developing real-time biomechanical feedback tool is to apply the 
two-chain model in simultaneous collections of a large amount of motion data, i.e., 
synchronized measurements using both 3D motion capture with ~40 markers and 
6 wearable IMUs [35]. The synchronized data collection should cover large variety 
of sports skills and arts performances. As such, the 3D motion capture data can 
be served as a “supervisor” for training deep learning model to map IMU data to 
joints’ kinematic data. Such a deep learning model could be reliably and universally 
applied in motor learning and the training of sports and arts skills.

Retrospectively, the current knowledge of anthropometry, biomechanical 
modeling, and deep learning and the technology for miniaturizing IMUs supply an 
almost perfect environment for the development of the real-time biomechanical 
feedback tool in human motor-skill learning and training, especially in learning 
complicated skills in sports and arts. The missing piece is the massive and diverse 
motor-skill big data for deep learning.

5. Conclusion

This chapter highlights the challenges and future of wearable technology in 
human motor-skill learning and optimization. It introduces a novel two-chain 
biomechanical body model with six IMUs that are powered with deep learning tech-
nology. The framework can serve as a basis for developing real-time biomechanical 
feedback training in practice. In order to create a universal biomechanical feedback 
device for learning and training of any human motor skill, the massive and diverse 
big data of multifarious human motor skills have to be created first. One realistic 
way for obtaining the big data is through a synchronized measurement from 3D 
motion capture and IMUs. Evidently, gaining high-quality, full-body motion data 
across sports and arts performances would currently be the vital step for the real-
time biomechanical feedback development.

The realization of the methodological breakthrough will allow us to transform 
the human motor learning paradigm from a largely subjective art into a precise 
scientific method. The potentials would be to (1) take scientific monitoring of 
motor skills from a lab-based environment into the field; (2) simplify a scientific 
movement quantification, transitioning from using a complicated motion cap-
ture system to easily applied wearables; and (3) transfer the vital biomechanical 
feedback in real time to prevent the worst/movement errors from happening while 
finding individual compensation/optimization. This methodology is the culmina-
tion of research programs in biomechanics, anthropometry, computer sciences, 
pedagogy, and equipment development. It aims to build innovative technologies for 
generating new knowledge as well as practical and definitive scientific methods for 
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