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Chapter

The Ising Model: Brief
Introduction and Its Application
Satya Pal Singh

Abstract

Though the idea to use numerical techniques, in order to solve complex
three-dimensional problems, has become quite old, computational techniques have
gained immense importance in past few decades because of the advent of new
generation fast and efficient computers and development of algorithms as parallel
computing. Many mathematical problems have no exact solutions. Depending on
the complexity of the equations, one needs to use approximate methods. But there
are problems, which are beyond our limits, and need support of computers. Ernst
Ising published his PhD dissertation in the form of a scientific report in 1925.
He used a string of magnetic moments; spin up (+1/2) and spin down (�1/2), and
applied periodic boundary conditions to prove that magnetic phase transition does
not exist in one dimensions. Lars Onsager, latter, exactly solved the phase transition
problem in two dimensions in 1944. It is going to be a century-old problem now.
A variety of potential applications of Ising model are possible now a days; classified
as Ising universality class models. It has now become possible to solve phase transi-
tion problems in complex three-dimensional geometries. Though the area of
spinotronics still needs more engagements of computational techniques, its limited
use have provided good insights at molecular scale in recent past. This chapter gives
a brief introduction to Ising model and its applications, highlighting the develop-
ments in the field of magnetism relevant to the area of solid state physics.

Keywords: surface-directed phase separation, wetting-dewetting, Monte Carlo
simulation

1. Introduction

Ernst Ising (Figure 1) was born on May 10, 1900, in Loe Koln. He started
schooling in 1907 and obtained his diploma at the gymnasium there in the year 1918.
After brief military training, he studied mathematics and physics at Gottingen
University in the year 1919. After a short gap, he continued his studies and learnt
astronomy apart of other subjects. He got focused to theoretical physics at the sug-
gestion of Professor W. Lenz. He started investigating ferromagnetism under super-
vision of W. Lenz by the end of the year 1922. Ising published short paper in 1925 as
a summary of his doctoral thesis [1, 2]. He exactly calculated partition function for
one-dimensional lattice system of spins. Ising had first proven that no phase transi-
tion to a ferromagnetic ordered state occurs in one dimension at any temperature.

His argument in the favor of his mathematical note was very simple. Suppose, if
one of the spins get flipped at a random position because of thermal agitation, there
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is no force available, which can stop the neighboring spins to flip in the same
direction. And this process will go on and on, and completely ordered state will not
remain stable at a finite temperature. Thus no phase transition will occur at a finite
temperature. Ideally speaking, any ordered state will always remain like a metasta-
ble state at finite temperature and nothing more. Molecular motion seizes at
absolute zero temperature. So, one may expect that no spin fluctuations may occur
at absolute zero temperature. Henceforth, the stable ordered state is a natural
outcome at absolute zero temperature. But, it cannot be said to be a critical tem-
perature in true sense. The existence of phase transition at this temperature has no
physical meaning, because there is no temperature below it. After going through
some approximate calculations, Ising purportedly showed that his model could not
exhibit a phase transition in two and three dimensions, either. Latter, his conclusion
was proven to be erroneous [1, 2] (Figure 2).

Barry Simon has quoted it very well “This model was suggested to Ising by his
thesis advisor, Lenz. Ising solved the one-dimensional model, and on the basis of the
fact that the one-dimensional model had no phase transition; he asserted that there
was no phase transition in any dimension. As we shall see, this is false. It is ironic
that on the basis of an elementary calculation and erroneous conclusion, Ising’s
name has become among the most commonly mentioned in the theoretical
physics literature. But history has had its revenge. Ising’s name, which is correctly
pronounced “E-zing”, is almost universally mispronounced “I-zing”.”

Ising’s paper credited Wilhelm Lenz for his original idea, who had first proposed
it in the year 1920. W. Lenz was Ising’s research supervisor. It has been often
rendered as Lenz-Ising model in many citations. Lenz suggested that dipolar atoms
in crystals are free to rotate in quantized manner. He proposed quantum
treatment of dipole orientations, though in its classical version, Ising considered
only two spin states, i.e., S =�½. Ising discussed his results with Professor Lenz and
Dr. Wolfgang Pauli, who was teaching at Hamburg at that time. Ising’s work was
first cited by famous contemporary scientist Heisenberg. Heisenberg was
first one to realize the failure of Lenz-Ising model. In order to explain ferromagne-
tism, he developed his own theory, using complicated interactions of spins. There

Figure 1.
Ernst (Ernest) Ising (May 10, 1900–May 11, 1998).
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are more scientists in the list, whose contribution to Lenz-Ising model or simply say
Ising model must be cited here, because of their historical relevance. They have
greatly enriched and contributed to this new model. This list includes scientists like
Gorskly (1928), R. H. Fowler (1930), Bragg and Williams (1934), R. Peierls (1936),
J. G. Krikwood (1938), Hens Bethe (1939), Kramers and Wannier (1941), and
Onsager (1942). They further extended Ising model to a new class of problems.

2. Application of Ising model

Ising model has been extensively used for solving a variety of problems [3–18].
Some of the problems are discussed, here, with appropriate examples.

2.1 Phase separation and wetting/dewetting

Ising model was first exploited for investigating spontaneous magnetization in
ferromagnetic film (i.e. magnetization in the absence of external magnetic field).
An example case of Ising model using metropolis algorithm is shown in Figure 3.
Transition temperature depends on the strength of the inter-spin exchange cou-
pling; the dominating term governs the kinetics, when long-range interactions are
introduced in the calculations. Latter, it was used to study phase separation in
binary alloys and liquid-gas phase transitions (i.e., condensation of molecule in one
region of space of the box). Binary alloys constitute of two different atoms. At
temperature T = 0, Zn-Cu alloy; known as brass, gets completely ordered. This state
is said to be β-brass. In β-brass state, each Zn atom is surrounded by eight copper

Figure 2.
Random spin flipping in one-dimensional system.

Figure 3.
Variation in critical temperature vs. next nearest exchange coupling for a bcc lattice (reproduced with
permission from Singh [3]).
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atoms, placed at the corners of the unit cell of the body-centered cubic structure
and vice versa. The occupation of each site can be represented by:

ni ¼
1 if site i is occupied by atom A

0 if site i is occupied by atom B

�

(1)

The interaction energy between A-A, B-B, and A-B type of atoms are represented
by εAA, εBB, and εAB, respectively. Phase separation has been studied vastly, using
Ising model [4–6]. A phase is simply a part of a system, separated from the other
part by the formation of an interface; that essentially means that two components
aggregate and form rich regions of A and B type of molecules with an interface in
between them. The evolution of two distinct phases, when an initial random but
homogeneous mixture is annealed below a definite temperature, is known as phase
separation. Phase separation leads to discontinuity and inhomogeneity in the sys-
tems. This happens because the phase-separated regions are energetically more
stable. Phase separation has been an old problem and has been extended to study
diverse phenomena ranging frommagnetic liquid-liquid phase separation to protein-
protein phase separation in biological systems. This process has also been studied in
the presence of external surfaces having affinity to one type of atom or molecule
(Figure 4a). Both theoretical and experimental methods have been exploited and
have been found in close agreement. Formation of long ridges and circular drops has
been reported numerous occasions using lattice-based Ising model. For example, one
may look into John W. Cahn research paper published in The Journal of Chemical
Physics in the year 1965. The TEM image taken for Vycor, in which one phase had
been leached out and the voids were filled with lead (Figure 4b).

2.2 Lattice-based liquid-gas model

Yang and Lee first coined the term lattice gas in the year 1952. A lattice should
have larger volume (V) than the number of lattice molecules (N), so that some of
the nodes or lattice vertices are left empty (i.e., N < V). No lattice vertex can be
occupied by more than one particle. The interaction potential between two atoms at
lattice sites i and j is given by Eq. (2):

U rijð Þ ¼

�∈ if Si ¼ Sj ¼ 1:0 and rij ¼ 1:0

∞ if rij ¼ 0:0

0 else

8

>

<

>

:

(2)

For surface affinity of lower surface to ith liquid molecule, we chose:

V rið Þ ¼
�

J0
r ið Þ

if Si ¼ 1:0

0 otherwise

8

<

:

(3)

The occupation number (ni) of a lattice site i is given by:

ni ¼
1 if site i is occupied

0 if site i is un� occupied

�

(4)

One example case is shown in Figure 5. Here, we chose lattice size of
128 � 128 � 48. The fluid-fluid molecule and wall-liquid molecule interactions are
defined, respectively, in Eqs. (2) and (3). In canonical ensemble, the three-
dimensional lattice is swept one by one; by choosing sites regularly with one of its
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nearest neighbor (i.e., i = n and i + 1 = n + 1). Change in energy is calculated during
exchanging of these two sites; the exchange move is accepted, if Exp [�ΔE/kBT] is
found to be greater than or equal to a random number generated between [0, 1]. For
all cases of studies here, ε = 1 and J0 = 12.0, and only the lower surface is functional,
while the upper surface has only hard-sphere interaction with the fluid molecules.
Average number density for liquid-like molecules is taken as 0.25 [16].

Figure 6 shows micrograph of self-aligned liquid columns. The system evolves
from an initial homogeneous mixture of liquid- and gas-like molecules obtained by
annealing the system at high temperature for few thousand MC cycles. Dynamic
Monte Carlo simulation has been used with continuous but random trial move-
ments of the molecules. The lattice-based Ising model using Eqs. (2) and (3) is also
supposed to give same results, at least qualitatively.

2.3 Spin glasses

Crystalline solids possess short- and long-range order along its crystal axes and
maintain its periodicity in three dimensions. Liquids possess only short-range order,
and its molecules have no long-range correlation. Liquid molecules retain only
short-range order. Gases possess neither of the two. These are the three phases, in
which any matter may exist. What are the glasses then? Glasses are solids,

Figure 4.
(a) Surface-directed phase separation and dewetting in conserved binary mixture using two-dimensional
lattices of size 200 � 100 nodes. The conserved components are taken in ratio 70:30 at T = 0.70. Majority
component is attracted by upper and lower substrates, whereas the minority component has repulsive
interaction with the two interfaces. Periodic boundary conditions are applied along X-direction. The
micrograph is taken after completion of 30,000 Monte Carlo cycles using Kawasaki exchange method (the
figure is reproduced with permission from Singh [5]). (b) Shows Transmission Electron Microscope (TEM)
image of unsintered Vycor with one phase replaced by lead (X 200000). Reproduced with permission from
W. G. Schmidt and R. J. Charles, Journal of Applied Physics 35, 2552 (1964); doi: 10.1063/1.1702905.
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possessing no long-range order. Molecules may only locally arrange themselves to
minimize its free energy. If the molecular arrangement is completely random, then
a term “random media” is assigned to that. Glasses are understood as supercooled
liquids. If a liquid is frozen abruptly, so that the molecules do not get sufficient time
to organize themselves, some local order can be retained inside the frozen liquid.
Glasses have one peculiar property. These retain relatively higher entropy even at
quite low temperatures. One example is Mn doped in metals as impurity. Mn atoms

interact with other Mn so (i.e. impurity atom) via RKKY interaction Jij rð Þ � cos 2kFrð Þ

kFrð Þ3
.

Because of the oscillations in it, the interactions remain random. Such spin systems
are classified as spin glasses. There is great deal of frustrations in spin orientations;
so on many occasions, these are also referred as “frustrated spin glasses.”

Lenz-Ising model did not remain limited to above problems only, but it was
extensively used to study liquid mixtures, ternary and quaternary alloys, polymer
and their mixtures, random walk problem, and many others. The important aspect
of Ising model is that a variety of problems (including some problems mentioned
above) can be investigated by the similar kind of modeling and approach all
together. It is no longer necessary to develop a different kind of theory for each type
of cooperative phenomenon. Despite of all the above, it has been ironical that the
inventor of the model, Ernst Ising, gave up the idea on working it, any further
presuming that his model has no physical significance. He realized after two
decades that he had become famous for his model because of the results obtained by
other scientist based on his model, rather by his own work. It has been a queer
sensation that the results of Ising model matched with any experimental data or the
model was bit artificial. As for as the exponents were concerned, they were of
universal nature, and a wide variety of systems have the same Ising exponents. The
experimental evidence in favor of it remained a challenge, for many decades. In the

Figure 5.
Micrograph for box thickness Hz = 48 after completion of 20 K M C cycles (figure is reproduced with permission
from proceedings, Singh [16]).
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year 1974, an alloy was found, which first showed that its magnetic behavior exactly
matched with the Onsager result.

3. Mathematical formulation in one dimension

Various textbooks are available nowadays, which discuss Ising model and its
applications in greater details [19–22]. Here, brief theory of one-dimensional Ising
model is presented. H, Q, and A stands for Hamiltonian, partition function, and
free energy of the system, respectively:

HN Sif g ¼ �J
X

n, n

SiSj � μ B
X

N

i¼1

Si (5)

HN Sif g ¼ �J
X

N

i ¼ 1

< i, j>

SiSiþ1 �
1

2
μB
X

N

i¼1

Si þ Siþ1ð Þ (6)

Figure 6.
Self-assembled channels formed in confined geometry; the system starts with a random mixture of square-well
fluid (A-type) and hard-sphere (B type) particles. The chemically patterned surface has affinity to (A-type)
with interaction range λA-A = 1.5, λA-B = 1.5, λWall-A = 2.0; interaction strengths were taken as εAA = 1.0,
εAB = 0.5, and εWall-A = 3.0. Average number density of the system has been taken as ρ = 0.40. Pore width
H = 4.0 and composition ratio A:B = 50:50 were taken for all cases of studies. The micrograph and density data
were taken after completion of 40 � 105 Monte Carlo cycles (the figure is reproduced with permission from
Singh et al. [14]).
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QN B,Tð Þ ¼ �
X

S1¼�1

… … … ::
X

SN¼�1

eβ
PN

i
JSiSiþ1þ

1
2μB SiþSiþ1ð Þf g (7)

Si Pj jSiþ1h i ¼ eβ JSiSiþ1þ
1
2μB SiþSiþ1ð Þf g (8)

QN B,Tð Þ ¼
X

Si¼�1

… … … …
X

SN¼�1

S1 Pj jS2h i S2 Pj jS3h i… … … … : SN�1 Pj jSNh i SN Pj jS1h i

(9)

QN B,Tð Þ ¼
X

Si¼�1

X

Siþ1¼�1

eβJSiSiþ1þ
1
2μβ SiþSiþ1ð Þ (10)

P ¼
eβ JþμBð Þ e�βJ

e�βJ eβ J�μBð Þ

0

@

1

A (11)

QN B,Tð Þ ¼
X

S¼�1

S PN
�

�

�

�S
� �

¼ Trace PN
� �

¼ γN1 þ γN2 (12)

eβ JþμBð Þ � γ e�βJ

e�βJ eβ J�μBð Þ � γ

0

@

1

A ¼ 0 (13)

γ2 � 2γeβJ cosh βμBð Þ þ 2 sinh 2βJð Þ ¼ 0 (14)

γ1

γ2

 !

¼ eβJ cosh βμBð Þ þ 2 sinh 2 βJð Þ ¼ 0 (15)

γ1

γ2

 !

¼ eβJ cosh βμBð Þ � e�2βJ þ e2βJ sinh 2
βμBð Þ

� 	1=2
(16)

γ2 < γ1;
γ2

γ1


 �N

! 0 (17)

lnQN B,Tð Þ ffi Nln γ1 (18)

1

N
lnQN B,Tð Þ ffi ln eβJ cosh βμBð Þ þ e�2βJ þ e2βJ sinh 2

βμBð Þ
� 	1=2

h i

(19)

A B,Tð Þ ¼ NJ �NkBT ln cosh βμBð Þ þ e�4βJ þ sinh 2
βμBð Þ

� 	1=2
h i

(20)

U B,Tð Þ � �kBT
2 ∂

∂T

A

kBT


 �

(21)

U B,Tð Þ � �NJ �
NμBsinh βμBð Þ

e�4βJ þ sinh 2
βμBð Þ

� 	1=2

þ
2NJe�4βJ

cosh βμBð Þ þ e�4βJ þ sinh 2
βμBð Þ

� 	1=2
h i

e�4βJ þ sinh 2
βμBð Þ

� 	1=2

(22)

Some thermodynamic functions are defined as follows:

M B,Tð Þ � �
∂A

∂B


 �

T

¼
Nμ sinh βμBð Þ

e�4βJ þ sinh 2
βμBð Þ

� 
1=2
(23)
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χ �
∂M

∂B
! χ0 Tð Þ ¼

Nμ2

kBT
e2J=kBT (24)

3.1 Case A: free boundary with zero field

Partition function is given by:

Q 0,Tð Þ ¼
X

S1

… … ::
X

SN�1

eK
PN�1

i¼1
SiSiþ1 (25)

Here, K = β J.
We now define a new variable:

σi ¼ SiSiþ1;Here i ¼ 1, 2, … … ::N � 1 (26)

Then we can assign σ to two values, i.e., �1:

σi ¼
þ1 if Si ¼ Siþ1

�1 if Si ¼ �Siþ1

�

(27)

In order to consider contributions from all possible configurations {S1, S2, S3…
… … SN}, we need to provide the set of numbers {σ1, σ2, σ3… … ..σN-1}; here each Si
can take two values as�1. Configuration in a lattice description means a particular set
of values of all spins; if there are N numbers of vertices, there will be 2N different
configurations as a result of permutation and combination of spins. The space, thus
formed with these configurations, is called configuration space. Here, summing over
σi will give only half value of Q, henceforth, we can write:

Q 0,Tð Þ ¼ 2
X

σ1

… … ::
X

σN�1

eK σ1þσ2þσ3 … … … … ::þσN�1ð Þ (28)

Q 0,Tð Þ ¼ 2
X

σ1

… … ::
X

σN�1

eK σ1þσ2þσ3 … … … … ::þσN�1ð Þ (29)

Q 0,Tð Þ ¼ 2 2coshKð ÞN�1 (30)

3.2 Case B: periodic boundary with zero field

Now, the partition function is given by:

Q 0,Tð Þ ¼
X

S1

… … ::
X

SN�1

eK
PN�1

i¼1
SiSiþ1þKSNS1 (31)

Here, SN+1 = S1

Q 0,Tð Þ ¼
X

S1

… … ::
X

SN�1

eK σ1þσ2þ… … … σN�1ð ÞþKσ1σ2 … … … σN�1 (32)

Since (Si)
2 = 1, we can write S1SN=S1. S2. S2. S3. S3… … … ... SN-1. SN-1. SN

Q 0,Tð Þ ¼ 2
X

σ1

… … ::
X

σN�1

eK σ1þσ2þ… … … σN�1ð Þ
X

∞

n¼0

Kσ1σ2σ3 … :σN�1

n!


 �n

(33)
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Here, second part in exponential has been converted into a summation series:

Q 0,Tð Þ ¼ 2
X

∞

n¼0

Kn

n!

X

σ

σneKσ

" #N�1

(34)

Q 0,Tð Þ ¼ 2
X

∞

n¼0

Kn

n!
eK þ �1ð Þne�K
� 
N�1

(35)

Q 0,Tð Þ ¼ 2 coshKð ÞN þ 2 sinhKð ÞN (36)

It can be shown that in thermodynamic limit, (i.e. N! ∞), the free energy of the
system converge to a finite value. Readers are left with the exercise. So, periodic
boundary condition, as shown in Figure 7 (invented by Ising), really helps one to get
rid of constructing infinitely large systems. Using appropriate boundary conditions,
one may obtain realistic results using large but finite number of spins.

4. Critical phenomena

A lot of research work has been dedicated to observe system behavior near
critical points [23–27]. The relevant thermodynamic variables exhibit power-law
dependences on the parameter (T � Tc) specifying the distance away from the
critical point. The critical points are marked by the fact that different physical
quantities pertaining to the system pose singularities at the critical point. These
singularities are expressed in terms of power laws of (T � Tc) characterized by
critical exponents. As, for example, magnetization <M > identified as an order
parameter in magnetism, shows dependence on critical temperature (Tc), with
exponent β as follows other exponents are also listed below.

Reduced temperature t � (T � Tc)/Tc.
α: specific heat c (t) � t�α; B � h = 0.
β: spontaneous magnetization M (t) � (�t)β,T ≤ Tc, B � h = 0.
γ: magnetic susceptibility χ = ∂M/∂ℎ,T � |t|�γ, B � h = 0.
δ: critical Isotherm M (h) � |ℎ|1/δ sgn (ℎ), t = 0.
ν: correlation length, ξ � |t|�ν, B � h = 0.
η: correlation function G (r) � r(�d+2�η), t = 0, B � h = 0.

Figure 7.
Representation of periodic boundary conditions in a one-dimensional Ising chain.
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4.1 Scaling hypothesis and renormalization group theory

Kadanoff first suggested that, when a system is near critical temperature, indi-
vidual spins may be grouped into blocks of spins [23]. It is possible because of the
fact that the spin-spin correlation length becomes exceedingly large near Tc and
details of individual spins no longer remain important. In transformed system, each
block plays the role of a single spin. Now, the spin variable associated with a single
block is denoted by symbol σi. σi can take values�1. The new system is composed of
N0 spins (Figure 8).

N0 ¼ l�dN (37)

Lattice constant:

a0 ¼ la (38)

In order to preserve the spatial density of the degrees of freedom of spins in the
system, the spatial distances are rescaled by the factor l.

r0 ¼ l�1r (39)

Now, the partition function can be updated as follows:

Q ¼
X

σif g

e �βHN σif g½ � (40)

This idea was first propounded by Kadanoff, and was later developed byWilson.
This process is also referred as decimation process. A new exchange coupling con-
stant is assigned for interaction between σi. This new construction of lattice does not
alter the free energy of the system, and it remains the same as obtained by the
original method. The rescaling process helps to find relations between various
exponents. More detailed discussion on this topic can be found in standard text-
books of Statistical Mechanics by Patharia, Huang, etc. Since this process involves

Figure 8.
Spin decimation process in a two-dimensional square lattice. A small cluster of 36 spins gets transformed into 9
nodal points.
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length transformation or a change of scale, Wilson introduced the concept of
renormalization group theory after removing certain deficiencies in Kadanoff’s
scaling hypothesis. A greater detail of this is omitted here, because that is beyond
the scope of the chapter.

5. Physical realization: simulation results based on Ising model

We now discuss some of the simulation results obtained using Ising model.
Figure 9 shows spontaneous magnetization for a simple cubic crystal (i.e., scc
lattice). As the strength of exchange coupling between spin-up and spin-down (JAB)
decreases, the critical temperature lowers down. Lower values of JAB weaken the
spin flip-flop mechanism; henceforth the system requires further cooling, so that
the spin-spin correlation overcomes the fluctuations. Spontaneous magnetization
occurs in the absence of external magnetic field [28]. The confirmation of sponta-
neous process is further confirmed in Figure 10. Figure 10 is plotted for spin

Figure 9.
Spontaneous magnetization in two-dimensional thin film (this figure is reproduced with permission from Singh [28]).

Figure 10.
Correlation function vs. temperature for a two-dimensional thin film. Spontaneous magnetization is marked by
discontinuity in it (this figure is reproduced with permission from Singh [28]).
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correlation function vs. temperature of the system [28]. The critical temperature is
marked by the presence of discontinuity in it. Above critical temperature, the
magnetization abruptly falls to zero, which is an indication of paramagnetic state.
The critical temperature in ferromagnetic thin film is known as Curie temperature.
We observe similar kind of behavior with antiferromagnetic films, though below
critical point (also known as Neel temperature), the net average magnetization
becomes zero, because opposite spins are energetically favored in this case. The
schematic diagram is shown in Figure 11 [28]. Magnetization vs. external magnetic
field curves are plotted in Figure 12(a)–(d) for different sets of parameters [28].

Simulation results obtained for a magnetically striped system as schematically
shown in Figure 13 are reported in Figures 14–17 [29]. One or two alternate
rectangular regions are created, using external field. Figure 14 shows the gradual
transition at the interface, where a definite value of external field suddenly gets
zero. The spin polarizations in two regions show sharp boundary. The magnetized
film, in presence of magnetic field, induces the magnetic zones in proximity where
its close external field is zero. Micrograph also indicates for spin-spin phase separa-
tion. The corresponding average magnetization vs. temperature and spin correla-
tion function vs. temperature are also plotted in Figures 15 and 16, respectively, but
these studies are done using Monte Carlo simulation with semi-infinite free bound-
ary conditions. It has been observed that these systems have relatively high critical
transition temperatures. Figure 17 shows the magnetization process with two alter-
nate magnetized zones [29].

Low-dimensional magnetic heterostructures play vital role in spinotronics.
Ferromagnets can induce magnetic ordering through a 40-nm-thick amorphous
paramagnetic layer, when placed in its close proximity. One has to reconcile with
long-range magnetic interaction to correctly measure the extent of induced magne-
tization. Readers may go through the Nature Communications article of F. Magnus
et al. published in the year 2016 [17]. The magnetic properties of ferromagnetic
materials with reduced dimensions get altered; when the thickness of a film is

Figure 11.
Schematic representation of ferromagnetic to paramagnetic and antiferromagnetic to paramagnetic transitions.
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reduced below a critical value, the ferromagnetic to paramagnetic transition disap-
pears [18]. Finite-size effects may also weaken or enhance magnetic interactions at
the boundaries, as well as restrict the evolution of spin-spin correlation length.
Extension of these ideas to model magnetic heterostructures, comprising
of multiple magnetic and/or nonmagnetic layers, gives insight into interfacial phe-
nomena. Many current and emerging technologies are based on this central prob-
lem. This may be very useful in understanding and exploring problems as metal-
insulator transition, which is at the core of many state-of-the-art technologies.
Henceforth, computational techniques, especially Ising model, can now be
extended to develop and enrich science, for making new technologies. Though,
its use can be said at the nascent stage, but with the advancement in computer
hardware and efficient algorithms, it’s applications in areas related to spinotronics
appears to be bright.

Figure 13.
(a) The system with one slab of size nx � ny � nz = 50 � 100 � 100 exposed to an external magnetic field.
(b) The system with two alternate slabs of size nx � ny � nz = 50 � 100 � 100 exposed to an external
magnetic field.

Figure 12.
(a) Magnetization vs. external fields at different temperature T = 0.50, 1.0, 1.5, and 2.0. (b) Magnetization
vs. external fields for different exchange couplings J = 0.0, 0.25, 0.50, 0.75, and 1.0. These cases are for
ferromagnetic thin films. (c) Magnetization vs. external fields at different temperature T = 0.50, 1.0, 1.5, and
2.0. (d) Magnetization vs. external fields for different exchange couplings J = 0.0, 0.25, 0.50, 0.75, and 1.0.
These cases are for antiferromagnetic thin films (this figure is reproduced with permission from Singh [28]).
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Figure 14.
The micrograph of the coexisting phases in the regions of close proximity of the magnetic barrier indicating for
the presence of depletion layer near the barrier.

Figure 15.
Magnetization vs. temperature for magnetically striped system. Only one region experiences the presence of
external magnetic field as illustrated in Figure 12(a). This simulation is done for simple cubic lattice with
semi-infinite free boundary conditions (the figure is reproduced with permission from Singh [29]).

Figure 16.
Spin correlation function vs. temperature for magnetically striped system. Only one region experiences the
presence of external magnetic field as illustrated in Figure 13(a). This simulation is done for simple cubic
lattice with semi-infinite free boundary conditions (the figure is reproduced with permission from Singh [29]).
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Figure 17.
Magnetization vs. temperature for magnetically striped system. Two alternate regions experience the presence of
external magnetic field as illustrated in Figure 12(b). This simulation is done for simple cubic lattice with
semi-infinite free boundary conditions (the figure is reproduced with permission from Singh [29]).
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