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Chapter

Trajectory Tracking Using
Adaptive Fractional PID Control
of Biped Robots with Time-Delay
Feedback
Joel Perez Padron, Jose P. Perez, C.F. Mendez-Barrios

and V. Ramírez-Rivera

Abstract

This paper presents the application of fractional order time-delay adaptive
neural networks to the trajectory tracking for chaos synchronization between Frac-
tional Order delayed plant, reference and fractional order time-delay adaptive neu-
ral networks. For this purpose, we obtained two control laws and laws of adaptive
weights online, obtained using the fractional order Lyapunov-Krasovskii stability
analysis methodology. The main methodologies, on which the approach is based,
are fractional order PID the fractional order Lyapunov-Krasovskii functions meth-
odology, although the results we obtain are applied to a wide class of non-linear
systems, we will apply it in this chapter to a bipedal robot. The structure of the
biped robot is designed with two degrees of freedom per leg, corresponding to the
knee and hip joints. Since torso and ankle are not considered, it is obtained a 4-DOF
system, and each leg, we try to force this biped robot to track a reference signal
given by undamped Duffing equation. To verify the analytical results, an example
of dynamical network is simulated, and two theorems are proposed to ensure the
tracking of the nonlinear system. The tracking error is globally asymptotically
stabilized by two control laws derived based on a Lyapunov-Krasovskii functional.

Keywords: biped robot, fractional time-delay adaptive neural networks, fractional
order PID control, fractional Lyapunov-Krasovskii functions, trajectory tracking

1. Introduction

Fractional calculus is a generalization of differential and integral calculus which
involves generalized functions. The first to work this new branch of mathematics
was Leibniz. Due to the growing interest in the applications of fractional calcula-
tion, in this work we obtain conditions that guarantee the tracking of trajectories of
nonlinear systems generated by differential equations of fractional order which we
will call plants (This term is widely used in engineering), which in our case will be a
mechanical arm, a helicopter, a plane or limbs of a humanoid, all of fractional order.

The problem of tracking control of trajectories is very important, since the
control function allows the non-linear system to carry out a previously assigned
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task, work or trajectory, for example, a mechanical arm and its objective is to cut a
piece with a previously generated form, or the coupling of two aircraft in space.

In this chapter we use adaptive recurrent neural networks with time delay, since
its use allows us to work with systems whose mathematical model is unknown and
with the presence of uncertainties, this is a well-known problem of robust control.

We include mathematical models with time delay, since the processing and trans-
mission of information is important in this type of systems, which depending on the
delay, these systems can generate undesirable oscillatory or chaotic dynamics, and
cause instability in themathematical model that describes the trajectory tracking error.

The chapter is organized as follows: first, the general mathematical model of
non-linear systems is proposed, as a second part, the Neural Network is proposed
that will adapt to the non-linear system and the reference signal that both must
follow, as a third part obtains the dynamics of the tracking error between the non-
linear system and the reference, after obtaining conditions in the laws of adaptation
of weights in the Neural Network and obtaining the control law that guarantees that
the tracking error converges to zero, so that the non-linear system will follow the
indicated reference signal, which is what was wanted to be demonstrated. Finally
simulations are presented, which illustrate the theoretical results previously dem-
onstrated. The proposed new control scheme is applied via simulations to control of
a 4-DOF Biped Robot [1].

We use the scheme of Figure 1 to indicate the procedure used in the obtaining of
the laws of adaptation of weights and the laws of control that guarantee that the
tracking error between the non-linear system, the neural network and the reference
signal converges to zero.

2. Time-delay adaptive neural network and the reference

2.1 List of variables

W ∗ is the matrix weights.
e ¼ xp � xr, error between the plant and the reference.

Ŵ is part of the approach, given by W ∗ :

Ωu1, Ωu2, up, un are the controls

PIλDα ¼ Kpe tð Þ þ KiaD
�λ
t e tð Þ þ KdaD

α
t e tð Þ control law

τ is time delay

Figure 1.
Adaptive recurrent control diagram.
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tr aDα
t
~W

T
~W

n o

¼ �eT ~Wσ x t� τð Þð Þ, learning law from the neural networkweights
Ð t
t�τ

ØT
σ sð ÞŴ

T
ŴØσ sð Þ

h i

ds, Lyapunov-Krasovskii Function

D q tð Þ€q tð Þð Þ þ C q tð Þ, _q tð Þð Þ _q tð Þ þG q tð Þð Þ ¼ Bτ tð Þ, dynamics of the bipedal robot
D q tð Þð ) is the inertia matrix
C q tð Þ, _q tð Þð Þ is the matrix of Coriolis and centripetal forces
G q tð Þð Þ represents a matrix of gravitational effects
B defines the input matrix
There are several ways to define the fractional calculation, in this research we

will use the well-known derivative of Caputo, which has the following notation:

aDα
t f tð Þ ¼

1

Γ α� nð Þ

ð

t

a

f nð Þ
τð Þ

t� τð Þα�nþ1 dτ (1)

For n� 1< α< nð Þ:

The nonlinear system, Eq. (2), which is forced to follow a reference signal:

aDα
t xp ¼ f p t, xp tð Þ þ xp t� τð Þ

� �

, t∈ 0, T½ �, 0< α≤ 1, (2)

xp tð Þ ¼ g tð Þ

xp, f p ∈
n, u∈

m, gp ∈
nxn

:

The differential equation will be modeled by the neural network [2]:

aDα
t xp ¼ A xð Þ þW ∗Γz x t� τð Þ þ Ωu:ð

The tracking error between these two systems:

wper ¼ x� xp (3)

We use the next hypotheses.

aDα
t wper ¼ �kwper (4)

In this research we will use k ¼ 1, so that, Eq. (5), aDα
t wper ¼ aDα

t x� aDα
t xp, so:

aDα
t xp ¼ aDα

t xþwper

The nonlinear system is [3]:

aDα
t xp ¼ aDα

t xþ wper ¼ A xð Þ þW ∗Γz x t� τð Þ½ � þwper þΩu (5)

where the W ∗ is the matrix weights.

3. Tracking error problem

In this part, we will analyze the trajectory tracking problem generated by

aDα
t xr ¼ f r xr, urð Þ,wr, xr ∈

n (6)
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are the state space vector, input vector and f r, is a nonlinear vectorial function.
To achieve our goal of trajectory tracking, we propose the error between the plant

and the reference as: e ¼ xp � xr ¼ xp � xn
� �

þ xn � xrð Þ ¼ xp � x
� �

þ x� xrð Þ.
Let ep ¼ xp � x, and en ¼ x� xr, be the trajectory tracking error and e ¼ ep þ er

en ¼ x� xr (7)

The time derivative of the error is:

aDα
t en ¼ aDα

t x� aDα
t xr ¼ A xð Þ þW ∗Γz x t� τð Þ½ � þwper þΩu � f r xr, urð Þ (8)

Eq. (8), can be rewritten as follows, adding and subtracting, the next terms

ŴΓz xrx t� τð Þð Þ, αr t, Ŵ
� �

, Ae and wper ¼ x� xp, then,

aDα
t e ¼ A xð Þ þW ∗Γz x t� τð Þð Þ þ x� xp þ Ωu � f r xr, urð Þ þ ŴΓz xr t� τð Þð Þ

�ŴΓz xr t� τð Þð Þ þΩαr t, Ŵ
� �

� Ωαr t, Ŵ
� �

þ Ae� Ae

aDα
t e ¼ AeþW ∗Γz x t� τð Þð Þ þΩu � f r xr, urð Þ þ ŴΓz xr t� τð Þð Þ (9)

þΩαr t, Ŵ
� �

�Ωαr t, Ŵ
� �

� e� xr � Aeþ xþ A xð Þ � ŴΓz xr t� τð Þð Þ

The unknown plant will follow the fractional order reference signal, if:

Axr þ ŴΓz xr t� τð Þð Þ þ xr � xp þΩαr t, Ŵ
� �

¼ f r xr, urð Þ,

where

Ωαr t, Ŵ
� �

¼ f r xr, urð Þ � Axr � ŴΓz xr t� τð Þð Þ � xr þ xp (10)

aDα
t e ¼ AeþW ∗Γz x t� τð Þð Þ � ŴΓz xr t� τð Þð Þ � Aeþ Aþ Ið Þ x� xrð Þ

þΩ u� αr t, Ŵ
� �� �

(11)

Now, Ŵ is part of the approach, given by W ∗ . Eq. (11) can be expressed as

Eq. (12), adding and subtracting the term ŴΓz x t� τð Þð Þ and if Γz x t� τð Þð Þ ¼
Γ z x t� τð Þð Þ � z xr t� τð Þð Þð Þ

aDα
t e ¼ Aeþ W ∗ � Ŵ

� �

Γz x t� τð Þð Þ þ ŴΓ z x t� τð Þð Þ � z xr t� τð Þð Þð Þ

þ Aþ Ið Þ x� xrð Þ � Aeþ Ω u� αr t, Ŵ
� �� �

(12)

If

~W ¼ W ∗ � Ŵ and ~u ¼ u� αr t, Ŵ
� �

(13)

And by replacing Eq. (13) in Eq. (12), we have:

aDα
t e ¼ Aeþ ~WΓz x t� τð Þð Þ þ ŴΓ z x t� τð Þð Þ � z xr t� τð Þð Þð Þ

þ Aþ Ið Þ x� xrð Þ � Aeþ Ω~u

aDα
t e ¼ Aeþ ~WΓz x t� τð Þð Þ

þ ŴΓ z x t� τð Þð Þ � z xp t� τð Þ
� �

þ z xp t� τð Þ
� �

� z xr t� τð Þð Þ
� �

þ Aþ Ið Þ x� xp þ xp � xr
� �

� Aeþ Ω~u (14)
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And:

~u ¼ u1 þ u2 (15)

So, the result for Ωu1 is

Ωu1 ¼ �ŴΓ z x t� τð Þð Þ � z xp t� τð Þ
� �� �

� Aþ Ið Þ x� xp
� �

(16)

and Eq. (14), is simplified:

aDα
t e ¼ Aeþ ~WΓz x t� τð Þð Þ þ ŴΓ z xp t� τð Þ

� �

� z xr t� τð Þð Þ
� �

þ Aþ Ið Þ xp � xr
� �

� AeþΩ~u

Taking into account that e ¼ xp � xr, shortening notation a little bit by setting

σ ¼ Γz, and defining Øσ t� τð Þ ¼ σ xp t� τð Þ
� �

� σ xr t� τð Þð Þ, the equation for aDα
t e is

aDα
t e ¼ Aþ Ið Þeþ ~Wσ x t� τð Þð Þ þ ŴØσ t� τð Þ þΩu2 (17)

Now, the problem is to find the control law Ωu2, which it stabilizes to the
system Eq. (20). The control law, we will obtain using the fractional order
Lyapunov-Krasovskii methodology.

4. Study of trajectory tracking error

Our mathematical model of the dynamics in the tracking error is described in (17).

In this equation we can see that an equilibrium state of this system is e, Ŵ
� �

¼ 0.
Without loss of generality we can assume that the matrix A is given A ¼ �λI,

λ>0, where I is the identity matrix of order nxn.
For the study of the stability of the tracking error we propose the following PID

control law [4], widely used in science and engineering.
We will determine conditions in the parameters that guarantee that the tracking

error converges to zero, and we will also use the following control law [5].

Ωu2 ¼ Kpeþ KiaD
�α
t eþ KvaD

α
t e� γ

1

2
þ

1

2
Ŵ
�

�

�

�

2
L2
ϕ

� �

e (18)

We also include the following control law, PIλDα [6]:

u tð Þ ¼ Kpe tð Þ þ KiaD
�λ
t e tð Þ þ KdaD

α
t e tð Þ

Substituting Eq. (18) in Eq. (17):

aDα
t e ¼ Aþ Ið Þeþ ~Wσ x t� τð Þð Þ þ ŴØσ t� τð Þ

þKpeþ KiaD
�α
t eþ KvaD

α
t e� γ

1

2
þ

1

2
Ŵ
�

�

�

�

2
L2
ϕ

� �

e,

then

1� Kvð ÞaDα
t e ¼ Aþ Ið Þeþ ~Wσ x t� τð Þð Þ þ ŴØσ t� τð Þ

þKpeþ KiaD
�α
t e� γ

1

2
þ

1

2
Ŵ
�

�

�

�

2
L2
ϕ

� �

e:
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If a ¼ 1� Kvð Þ, then

aDα
t e ¼

1

a
Aþ Ið Þeþ

1

a
~Wσ x t� τð Þð Þ þ

1

a
ŴØσ t� τð Þ þ

1

a
Kpeþ

1

a
KiaD

�α
t e

�
γ

a

1

2
þ

1

2
Ŵ
�

�

�

�

2
L2
ϕ

� �

e (19)

aDα
t e ¼

�1

a
λ� 1þ Kp

� �

eþ
1

a
~Wσ x t� τð Þð Þ þ

1

a
ŴØσ t� τð Þ þ

1

a
KiaD

�α
t e

�
γ

a

1

2
þ

1

2
Ŵ
�

�

�

�

2
L2
ϕ

� �

e (20)

And if w ¼ 1
aKiaD

�α
t e, then aDα

t w ¼ 1
aKie tð Þ, [7], then Eq. (20) we rewrite as:

aDα
t en ¼

�1

a
λ� 1þ Kp

� �

eþ
1

a
~Wσ x t� τð Þð Þ þ

1

a
ŴØσ t� τð Þ þ w

�
γ

a

1

2
þ

1

2
Ŵ
�

�

�

�

2
L2
ϕ

� �

e (21)

We will show, the new state en,wð ÞT is asymptotically stable, and the equilibrium

point is ene,wð ÞT ¼ 0, 0ð ÞT, when ~Wσ xr t� τð Þð Þ ¼ 0, as an external disturbance.
Let V be, the next candidate Lyapunov function as [8, 9]:

V ¼
1

2
en

T,wT
� �

en,wð ÞT þ
1

2a
tr ~W

T
~W

n o

(22)

þ
1

a

ð

t

t�τ

ØT
σ sð ÞŴ

T
ŴØσ sð Þ

h i

ds

The fractional order time derivative of (22) along the trajectories of Eq. (21) is:

aDα
tV ¼ eTaDα

t eþ wTaDα
t wþ

1

a
tr aDα

t
~W

T
~W

n o

þ
1

a
ØT

σ tð ÞŴ
T
ŴØσ tð Þ � ØT

σ t� τð ÞŴ
T
ŴØσ t� τð Þ

h i

(23)

aDα
t V ¼ eT

 

�1

a
λ� 1þ Kp

� �

eþ
1

a
~Wσ x t� τð Þð Þ þ

1

a
ŴØσ t� τð Þ þ w

�
γ

a

1

2
þ

1

2
Ŵ
�

�

�

�

2
L2
ϕ

� �

e

!

þ
1

a
~W

T
Kieþ

1

a
tr aDα

t
~W

T
~W

n o

þ
1

a
ØT

σ tð ÞŴ
T
ŴØσ tð Þ �ØT

σ t� τð ÞŴ
T
ŴØσ t� τð Þ

h i

(24)

In this part, we select the next learning law from the neural network weights as
in [10, 11]:

tr aDα
t
~W

T
~W

n o

¼ �eT ~Wσ x t� τð Þð Þ (25)
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Then Eq. (24) is reduced to

aDα
t V ¼

�1

a
λ� 1þ Kp

� �

eTeþ
eT

a
ŴØσ t� τð Þ

þ 1þ
Ki

a

� �

eTw�
γ

a

1

2
þ

1

2
Ŵ
�

�

�

�

2
L2
ϕ

� �

eTe

þ
1

a
ØT

σ tð ÞŴ
T
ŴØσ tð Þ �ØT

σ t� τð ÞŴ
T
ŴØσ t� τð Þ

h i

(26)

Next, let us consider the following inequality proved in [12]

XTY þ YTX ≤XTΛX þ YTΛ�1Y (27)

Which holds for all matrices X,Y ∈
nxkand Λ∈

nxn with Λ ¼ ΛT
>0. Applying

(27) with Λ ¼ I to the term eT

a ŴØσ t� τð Þfrom Eq. (26), where

eT

a
ŴØσ t� τð Þ≤

1

a
eTeþ ØT

σ t� τð ÞŴ
T
ŴØσ t� τð Þ

h i

we get

aDα
t V ≤

�1

a
λ� 1þ Kp

� �

eTeþ
1

a

eTe

2
þ

1

2
Ŵ
�

�

�

�

2
L2
ϕ

� �

eTe

þ 1þ
Ki

a

� �

eTw�
γ

a

1

2
þ

1

2
Ŵ
�

�

�

�

2
L2
ϕ

� �

eTe

(28)

Here, we select 1þ Ki

a

� �

¼ 0 and Kv ¼ Ki þ 1, with Kv ≥0 then Ki ≥ � 1, with

this selection of the parameters from Eq. (28) is reduced to:

aDα
t V ≤

�1

a
λ� 1þ Kp

� �

eTe�
γ� 1ð Þ

a

1

2
þ

1

2
Ŵ
�

�

�

�

2
L2
ϕ

� �

eT (29)

From the previous inequality, we need to guarantee that Eq. (29) is less than
zero, for which we select,

λ� 1þ Kp >0, a>0, γ� 1ð Þ>0, so that: aDα
t V ≤0,∀e,w, Ŵ 6¼ 0, e 6¼ 0, is

wanted to be demonstrate.
The control law is given by Eq. (30)

un ¼ Ω† �ŴΓ z xn t� τð Þð Þ � z xp t� τð Þ
� �� ��

� Aþ Ið Þ x� xp
� �

þ Kpeþ KiaD
�α
t eþ KvaD

α
t e (30)

�Γ
1

2
þ

1

2
Ŵ
�

�

�

�

2
L2
ϕ

� �

en þ f r xr, urð Þ � Axr

�ŴΓz xr t� τð Þð Þ � xr þ xp�

Theorem: The control law Eq. (30) and the neuronal adaptation law given by
Eq. (25) guarantee that the fractional tracking error converges to zero, by which the
tracking of trajectories of the non-linear system is guaranteed Eq. (5).

Corollary 2: If aDα
tV ≤ �1

a λ� 1þ Kp

� �

en
T

� �

enð Þ � γ�1ð Þ
a

1
2 þ

1
2 Ŵ
�

�

�

�

2
L2
ϕ

� 	

en
T

� �

enð Þ

<0, ∀e 6¼ 0, ∀Ŵ, where V is decreasing and bounded from below by V 0ð Þ, and:
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V ¼
1

2
en

T,wT
� �

en,wð ÞT þ
1

2a
tr ~W

T
~W

n o

þ
1

a

ð

t

t�τ

ØT
σ sð ÞŴ

T
ŴØσ sð Þ

h i

ds,

then we conclude that e, ~W ∈L1; this means that the weights remain bounded.

5. Modeling of the time-delay adaptive neural network and the
delayed plant

The nonlinear delayed unknown plant and the neural network are given as:

aDα
t xp ¼ fp xp t� τð Þ

� �

þ gp xp tð Þ
� �

up,

aDα
t xn ¼ A xð Þ þW ∗Γz x t� τð Þ½ � þwper þΩu

where xp, f p ∈
n, u∈

m, gp ∈
nxn. And f p, is unknown and gp ¼ I,A ¼ �λI,

with Γ Lypschitz function, W ∗ are the fixed weigths but unknown from the neural
networks, which minimize the modeling error.

Theorem:We will show that epand en tend to zero and therefore e tends to zero,
that is, the neural network follows the plant.

For this proposal, we first define the modeling error between the neural network
and the plant: ep ¼ xp � xn, whose derivative in the time is

aDα
t ep ¼ aDα

t xp � aDα
t xn (31)

Adding and subtracting, to the right hand side from (34) the terms

ŴΓz xrx t� τð Þð Þ, αp t, Ŵ
� �

aDα
t ep ¼ A ep

� �

� ~WΓz xn t� τð Þ½ � þ ŴØ ep t� τð Þ
� �

þ ~up (32)

6. Identification of the unknown non-linear system by the neural
network

First, it is easy to see that e, Ŵ
� �

¼ 0 is a state of equilibrium (equilibrium
point). Previous, so we propose to demonstrate that this point of equilibrium is
asymptotically stable; for this, be:

~up ¼ �γ
1

2
þ

1

2
Ŵ
�

�

�

�

2
L2
ϕ

� �

ep (33)

We will show, the feedback system is asymptotically stable. Replacing (36)
in (35)

aDα
t ep ¼ A ep

� �

� ~WΓz xn t� τð Þ½ � þ ŴØ ep t� τð Þ
� �

� γ
1

2
þ

1

2
Ŵ
�

�

�

�

2
L2
ϕ

� �

ep (34)

We will show, the new state ep is asymptotically stable, and the equilibrium

point is ep ! 0, when Ŵσ xn t� τð Þð Þ ¼ 0, as an external disturbance.
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Let V be, the next candidate Lyapunov function as

V ¼
1

2
ep

T,wT
� �

ep,w
� �T

þ
1

2a
tr ~W

T
~W

n o

(35)

þ
1

a

ð

t

t�τ

ØT
σ sð ÞŴ

T
ŴØσ sð Þ

h i

ds

Then, (35) is reduced to

aDα
tV ≤

�1

a
λ� 1þ Kp

� �

ep
T

� �

ep
� �

�
γ� 1ð Þ

a

1

2
þ

1

2
Ŵ
�

�

�

�

2
L2
ϕ

� �

ep
T

� �

ep
� �

<0 (36)

The previous inequality guarantees that the identification of the non-linear
system is satisfied, that is, the approach error converges to zero asymptotically

up ¼ Ω† ŴΓz xr t� τð Þð Þ � ŴΓ z xn t� τð Þð Þ � z xp t� τð Þ
� �� ��

� Aþ Ið Þ x� xp
� �

þ Kpeþ KiaD
�α
t eþ KvaD

α
t e (37)

�Γ
1

2
þ

1

2
Ŵ
�

�

�

�

2
L2
ϕ

� �

en � Γ
1

2
þ

1

2
Ŵ
�

�

�

�

2
L2
ϕ

� �

ep þ f r xr, urð Þ

�f p xp
� �

þ Axp � Axr þ ŴΓz xp
� �

� xr þ xp�

7. Simulation

The mathematical model, which describes the movement dynamics of the
bipedal robot, is obtained using the Euler-Lagrange equations [1, 13] (Figure 2).

D q tð Þ€q tð Þ þ C q tð Þ, _q tð Þð Þ _q tð Þ þG q tð Þð Þ ¼ Bτ tð Þð

where q tð Þ ¼ q31 tð Þq32 tð Þq41 tð Þq42 tð Þ
� 
T

, is the generalized coordinates vector. As
usual, D q tð Þð ) is the inertia matrix, bounded and positive definite, and C q tð Þ, _q tð Þð Þ
is the matrix of Coriolis and centripetal forces. G q tð Þð Þ represents a matrix of

gravitational effects and B defines the input matrix. The vector τ tð Þ ¼

τ31 tð Þτ32 tð Þτ41 tð Þτ42 tð Þ½ �T, defines the applied joint torques of the robot.
To illustrate the theoretical results obtained, we propose an example, which, as

can be seen in the simulations, trajectory tracking is guaranteed.
The neural network is described by:

aDα
t xp ¼ A xð Þ þW ∗Γz x t� τð Þð Þ þΩu, with τ = 25 s, A ¼ �20I, I∈

4x4, and,
W ∗ is estimated using the learning law given in (28).

Γz x t� τð Þð Þ ¼ tanh x1 t� τð Þð Þ, tanh x2 t� τð Þð Þ, … , tanh xn t� τð Þð Þð ÞT, Ω ¼

0 0 1 0

0 0 0 1

 !T

and the u is obtained using (33).

and the reference signal that they have to follow, both the non-linear system and
the neural network is given by the Duffing equation [14].
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€x� xþ x3 ¼ 0:114 cos 1:1tð Þ : x 0ð Þ ¼ 1, _x 0ð Þ ¼ 0:114

x tð Þ

dt
¼ y tð Þ

y tð Þ

dt
¼ x tð Þ � x3 tð Þ � αy tð Þ þ δ cos ωtð Þ
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Figure 3.
Time evolution for the angular position Leg 1 and Leg 2 (rad) of link 1.

Figure 2.
Dynamic model of biped robot.
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Here, the conventional derivatives are replaced by the fractional derivatives as
follows:

aDα
t x tð Þ ¼ y tð Þ

aDα
t x tð Þ ¼ x tð Þ � x3 tð Þ � αy tð Þ þ δ cos ωtð Þ

where α,ω, δ, are the parameters of the Duffing differential equation, which we
will use as a reference trajectory, that the non-linear system and the neural network
have to follow.

As can be seen in Figures 3–6, the tracking of trajectories in the states of the
system are performed with satisfaction, Figure 7 shows the phase plane of the
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Figure 4.
Time evolution for the angular position Leg 1 and Leg 2 (rad) of link 2.

Figure 5.
Time evolution for the angular position Leg 1 and Leg 2 (rad) of link 1.
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Duffing equation, while Figure 8 shows the plane phase of the same fractional order
differential equation.

Figures 9–12 show the torques applied to the ends of the bipedal robot.
Parameter values of the fractional order, alpha (0.001) and beta (0.0001) are

included.

α ¼ 1, β ¼ 1

α ¼ 0:001, β ¼ 0:001

8. Conclusions

In this chapter we study the mathematical model and control of non-linear
systems, which are modeled by differential equations of fractional order, where it is

Figure 6.
Time evolution for the angular position Leg 1 and Leg 2 (rad) of link 2.
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Figure 7.
A phase space trajectory of Duffing equation.
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observed that these systems have a better performance than the systems modeled
by ordinary differential equations, those of fractional order they produce responses,
solutions at simulation level, softer, by varying the order of the derivative.

The magnitude of the fractional order systems are smaller than the responses of
the systems of ordinary differential equations, and with smaller control signals,
which implies, less energy in the control process.

In this research work, conditions have been obtained in the parameters of the
adaptive recurrent neural network, as well as laws of control and laws of neuronal
adaptation, which, together, guarantee that the tracking error of trajectories
between the non-linear system and the reference signal converges asymptotically to
zero, so that trajectory tracking is develops with satisfaction.

Figure 8.
A phase space trajectory of Duffing equation.

Figure 9.
Torque (Nm) applied to Leg 1 and Leg 2 of link 1.
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Figure 10.
Torque (Nm) applied to Leg 1 and Leg 2 of link 2.

Figure 11.
Torque (Nm) applied to Leg 1 and Leg 2 of link 1.

Figure 12.
Torque (Nm) applied to Leg and Leg 2 of link 2.
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