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Chapter

Digital Sorting of Optical Vortices
in Perturbed Singular Beams
Alexander Volyar, Mikhail Bretsko, Yana Akimova

and Yuriy Egorov

Abstract

The chapter provides a brief overview of shaping and measuring techniques of
the vortex spectra (squared amplitudes and initial phases of vortex modes) includ-
ing radial indices. The main physical mechanisms causing the formation of laser
beams with a complex vortex composition, in particular, in biological media, are
indicated, and the need for a digital analysis of vortex spectra is substantiated. It is
the analysis of vortex spectra that allows us to find the orbital angular momentum
and informational entropy (Shannon’s entropy) of perturbed laser beams in real
time. In the main part of the chapter, we consider in detail a new approach for
measuring vortex spectra without cuts and gluing of the wavefront, based on digital
analyzing high-order intensity moments of complex beams and sorting the vortex
beam in computer memory sells. It is shown that certain types of weak local
inhomogeneities cause a vortex avalanche causing a sharp dips and bursts of the
orbital angular momentum spectra and quick ups and downs of the informational
entropy. An important object of analysis is also the vortex spectra of beams
scattered by simple opaque obstacles such as a hole, a disk, and a sector aperture.

Keywords: optical vortex, moment’s intensity, orbital angular momentum,
medical optics

1. Introduction

As is well known, optical vortices [1] accompany light scattering processes due
to both simple and complex medium inhomogeneities (see, e.g., [2] and references
therein). Scattered light carries a huge array of information, both on the composi-
tion and structure of scattering (diffraction) centers, and on the structure of the
initial light beam. At the same time, optical information can be read off both by
analyzing the frequency spectrum [3–5] and the spectrum of optical vortices [6, 7].
An important aspect of this problem is the study of biomedical objects [8, 9], for
example, the composition of the blood or the reflection of a vortex beam from the
skin surface [10] for express diagnostics of skin diseases. The fact is that a vortex
beam scattered by the skin is transformed into a speckle-like structure resembling
one that occurs when light passes through a medium with weak turbulence [11, 12].
At the same time, the speckle structure is formed by the skeleton of optical vortex
array [13–15]. In turn, the analysis of such a complex vortex structure is conve-
niently carried out on the basis of vortex fractal techniques [16] (see also [17] and
references therein). There are a variety of approaches for the fractal vortex models
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of laser beams scattered by biological tissues [18, 19] based on the light scattering by
nonspherical particles [20] that involves the representation of the wave field in
terms of Legendre polynomials. However, a real optical experiment for measuring
the vortex spectrum requires the use of particular approaches to the orthogonal
basis for the scattered beam expansion in terms of special functions, which can
differ significantly from the corresponding theoretical models.

The problem of using the properties of optical vortices in various areas of science
and technology requires the development of reliable but simple techniques for
measuring the spectrum of optical vortices in complex beams scattered by various
objects. Therefore, the attention of many researchers is drawn to measuring the
orbital angular momentum (OAM) of vortex beams [7, 21–30] that is directly
related to the spectrum of optical vortices. Really, the complex amplitude Ψ x, y, zð Þ
of a composite paraxial beam can be written in the form of a superposition of the
orthogonal vortex modes ψm x, y, zð Þ

Ψ x, y, zð Þ ¼
X

N

m¼�N

CmΨm x:y, zð Þ, (1)

where Cm ¼ Ψh jψmi stands for the mode amplitudes specified by the normaliz-

ing condition
PN

m¼�N Cmj j2 ¼ 1, and 2N is a total number of vortex modes, Then the
average on photon OAM of the composite beam is found by the formula [31].

ℓz ¼
X

N

m¼�N

m Cmj j2: (2)

The basis of this expression is an implicit connection between the topological
charge m and the OAM ℓzm of a single mode in the beam. However, expression (2)

includes the squared modulus Cmj j2 of a complex number while we are talking
about measuring the complex number Cm itself, i.e., its amplitude and the initial
phase. The known for us approaches to measuring OAM sorting modes can be
divided into four groups according to the methods used. All known for us approaches
to measuring OAM spectrum and mode sorting can be conditionally divided into four
groups according to the methods used and the effect on the internal beam structure.
The most widely used method of holographic spatial filtering of the Laguerre-
Gaussian, Hermite-Gaussian, Bessel-Gaussian, Airy-Gaussian and other mode types
[22–24, 30]. At that, this method allows modes sorting, both by topological charge
(azimuthal numbersm) and by radial numbers n. The holographic mode sorting
resembles the effect of a “white light” decomposition into a color spectrum by means
of a prism or diffraction grating. The second type of measurements requires the use
of a so-called log-polar transparency and diaphragms [6, 7, 24] placed along the path
of a complex beam. Such a structured transparency converts the beam into a set of
horizontal or vertical fringes, the pattern analysis of which allows one to obtain the
OAM spectrum. The direct application of digital processing of interference patterns
of a composite vortex beam [32] and a collinear phase-shifting holography [33] can
be considered as the third interference technique. However, measurements in the
listed above approaches lead to complete or partial damage of the combined beam
and losses of useful information. At the same time, an original approach presented in
the papers [26, 27, 34] to measuring the OAM in the vortex beams with a fractional
topological charge enables one to avoid the beam damage in the result of employing
cylindrical lenses and analyzing the second order intensity moments [35]. Unfortu-
nately, such a simple approach is not applicable for both sorting and measuring the
spectrum of vortex modes. In [26, 27], the technique analyzes a fractional OAM [36]
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of the combined beam as a whole at the focal plane of the cylindrical lens without
cutting and gluing the wavefront while the first two techniques distorts radically the
initial beam structure. In the technique [26], the measurement of second-order
intensity matrix elements was used that enables the authors to devoid breaking down
the beam structure. However, it makes sense to use such an approach only if the
modes of a complex beam have axial symmetry. The authors of [34] improved the
technique by using two cylindrical lenses whose axes are rotated by the angle π=2
relative to each other. This made it possible to measure the fractional OAM for any
type of the mode beam symmetry.

At the same time, the measurement of the fractional OAM does not give com-
plete information about the combined beam content. As can be seen from expres-
sion (2), the same value of the OAM can correspond to a different composition of

vortex modes with squared amplitudes C2
m. For example, in a weakly turbulent

medium [37] or optical fibers [38], there is an intense energy exchange between the
vortex modes of the singular beam. It makes to change both the magnitude and the
spectrum of the vortex modes including their initial phases. To measure the vortex
spectrum, a special technique was developed based on the analysis of higher-order
intensity moments [25] at the focal plane of a spherical lens. A characteristic feature
of this technique is the ability to measure not only amplitudes but also the initial
phases of the vortex modes. The point is that the intensity moments at the focal
plane of the spherical lens are degenerate with respect to the sign of the vortex
topological charge. Therefore, the authors of [25] note that the technique is appli-
cable only for nondegenerate spectra of combined singular beams. In [39], the
authors expanded the possibilities of measuring the vortex spectrum, also covering
optical vortices with different signs of topological charges due to additional
transformations of the Laguerre-Gauss beams (LG) into Hermite-Gauss ones (HG)
via astigmatic conversions at a cylindrical lens [40]. However, the method of
measuring optical vortices in LG beams of higher orders remained uncovered.

In this chapter, we consider in detail the technique of measuring the vortex
spectrum based on the analysis of high-order intensity moments that excludes cuts
and gluing of the beam without losses of information on initial mode phases. Unlike
the method of holographic gratings that transforms a combined beam into vortex
modes with different propagation directions, just as a prism converts “white” light
into a spatial frequency spectrum, we will try to demonstrate how a perturbed
singular beam can be sorted into vortex modes sited in computer memory cells and
then reproduce the beam main characteristics: OAM, information entropy, and
initial topological charge in real time. Moreover, knowing the digital spectrum, the
beam can be recovered again, and by adjusting the spectral vortex amplitudes we
can improve the structure of the transmitted field.

2. Preliminary remarks

As far as we know, the first theoretical and experimental studies of optical
vortex arrays refer to 1991, when the authors of [41] succeeded in reproducing
holographically individual letters and words due to ordering optical vortex array in
typical phase skeleton on the base of the technique that had been developed back in
the early 1980s [29]. However, only after the article [42] by Berry did the studies of
the vortex array properties become widespread. As a result, it was shown that the
diffracted beam turns into a combined beam containing a large number of optical
vortices with integer topological charges. These are sometimes called the beams
with fractional topological charges. Using Eq. (2), we can verify that beams with a
fractional topological charge also have fractional OAM ℓz. However, in the process
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of shaping such beams, Eq. (2) requires careful use. Indeed, it is assumed that the
functions Ψm of mode beams in Eq. (2) are normalized; otherwise, misunderstand-
ings arise. For example, in [43] considers a Bessel beam diffracted by a holographic
grating with a fractional topological charge (see the callout in Figure 1).

If the Bessel beam is represented in the form of a conical beam of plane waves
with fractional phase bypath p, then after the inverse Fourier transform we get the
non-normalized superposition of Bessel-Gauss modes, including vortices with both
positive and negative topological charges:

Ψ ¼ 2NGeipπ sin pπð Þ
X

∞

m¼�∞
imJm KRð Þeimφ= p�mð Þ, (3)

where Jm xð Þ stands for a Bessel function of the first kind and m order, R ¼ r=w0,

r and φ are polar coordinates, N ¼ exp iK2=2kZ
� �

,G ¼ exp ikr2=2Z
� �

, Z ¼ z� i z0,

w0 is a beam waist at z ¼ 0, K is a scale parameter, k is a wavenumber. After the
corresponding transformations, we find the OAM of the perturbed beam

ℓz ¼
X

∞

m¼�∞
mIm Kj j2w2

0=4
� �

= p�mð Þ2=
X

∞

m¼�∞
Im Kj j2w2

0=4
� �

= p�mð Þ2: (4)

The result of the plotting is represented by the curve 1 in Figure 1(a). The OAM
oscillates at large values of the topological charge p. The integer values of the
topological charge p correspond to sharp bursts of the OAM ℓz. However, a small
deviation of the parameter p from the integer value causes sharp OAM dips. A
completely different situation occurs if the elementary beams in Eq. (3) are nor-
malized, as the authors of [44] do, the OAM oscillations disappear (see Figure 1(b)
and curve 2 in Figure 1(c)). In this case, OAM ℓz pð Þ obeys a simple relation (see
also [45])

ℓz ¼ p� sin 2πpð Þ=π: (5)

The OAM oscillations disappear (see Figure 1(c), curve 2). As the authors of
[45] revealed, a gradual increase in OAM is observed only at small values of the
fractional topological charge. In fact, we are dealing with different beams, although
the basis for their shaping is the same physical process. As we will see later, the

Figure 1.
(a) Dependence of the OAM ℓz on the fractional topological charge p: curve 1 is calculated according to Eq. (3)
with K ¼ 2 � 104m�1, curve 2 presents Eq. (5), leader—diffraction grating for p ¼ 5=2. (b and c) Computer
modeling of the OAM curves ℓz mð Þ related with combined beams in Eq. (4): (b) total value of the OAM curves
at Ω ¼ 10; (c) the characteristic spectral bursts of OAM; curve 1—the OAM bursts Ω ¼ 0:4ð Þ, curve 2—dips
of the OAM Ω ¼ 14ð Þ.
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choice of the normalization of vortex modes endows the combined beam with
special properties.

3. Theoretical background of the digital vortex sorting and
experimental results

3.1 Nondegenerate case

For a simplest model for our studies, we choose a scalar field of wave in the form
of superposition LGm

n of the lowest order with the N monochromatic beams, where
m>0 and n ¼ 0 are the azimuthal and radial indices, respectively, so that all the
vortex modes in superposition have the same waist radius w0 at z ¼ 0. Let us
consider the wave field in the waist plane z ¼ 0 in the form [25].

Ψ r,φ, z ¼ 0ð Þ ¼
X

N�1

m¼0

CmLG
m
n¼0 ¼

X

N�1

m¼0

Cmr
mei mφþβmð ÞG r, zð Þ=Nm, (6)

where Nm ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2�m�1m!π
p

stands for the normalization factor, Cm is the mode
amplitude, βm is the initial mode phase. We consider the nondegenerate case of the
field representation m≥0 orm≤0ð Þ due to the axial symmetry; combined beams
with different topological signs �m are indistinguishable in intensity moments.

Our goal is to analyze the distribution of the wave field intensity ℑ r,φ, z ¼ 0ð Þ in
such a way as to express the squared amplitudes and the initial phases of the vortex
modes in terms of physically measured quantities in the region of the beam waist.
For this, we make use of the intensity moments approach [35] in the form

Jp,q ¼
ðð

S

Mp,q r,φð Þℑ r,φð Þrdrdφ=
ðð

S

ℑ r,φð Þrdrdφ, (7)

where the intensity distribution is written as

ℑ ¼ Ψ
∗
Ψ ¼

X

N�1

m¼0

C2
m

N2
m

r2mG rð Þ2 þ 2
X

N�1

m,m0¼0,

m>m‘

Cm0Cm

NmNm0
rmþm0

cos m�m0ð Þφ½ � cos βm,m0G rð Þ2

�2
X

N�1

m,m0¼0,

m>m‘

Cm0Cm

NmNm0
rmþm0

sin m�m0ð Þφ½ � sin βm,m0G rð Þ2,

(8)

Mp,q r,φð Þ stands for the intensity moments function, p, q ¼ 0, 1, 2, … . Now the
problem is to choose a combination of intensity moments Jp,q in such a way as to

exclude all terms of the last two sums and leave only the first one in Eq. (7). The
equations for the squared amplitudes and the initial phases are separated if the
moment function is written as Mp r,φð Þ ¼ rp. Then the equations for the squared
amplitudes take the form
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X

N�1

m¼0

N � 1þmð Þ!
m!

C2
m ¼

X

p

j¼0

p
j

� �

J2j,2 p�jð Þ, p≤N � 2,

X

N�1

m¼0

mþ 1=2

4
ffiffiffi

2
p

m!
Γ mþ 1=2ð ÞC2

m ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

J2,0 þ J0,2
p

:

(9)

The right-hand sides of the linear Eq. (9) are easy to calculate, and the left-hand
sides are directly measured experimentally using the Eq. (7) that gives the desired

values of the squared amplitudes С2
m.

As intensity of array of the beams depends only on the difference of phase
between two pairs of modes, in computation of the initial phases we will assume
that one of beams phase is given (let us say β0 ¼ 0). Now it is important to select
the combination of moments of intensity Jp,q that so either the second or the third

sum in Eq. (2) is considered in the calculation. It is natural to calculate not all
differences of phase βm,m0 , but only β0,m. However, we did not find such combina-
tions Jp,q that could filter out only terms with β0,m. Generally speaking, to calculate

the phase difference βm,m0 it is required to find the M equations for variables
Xm,m0 ¼ CmCm0 cos βmm0 and Ym,m0 ¼ CmCm0 sin βm,m0 in Eq. (2) the second and third
sum, number of which is equal to the number of 2-combinations of N elements. It
turns out that the number of equations can be significantly decreased if using the
moments J2 pþ1ð Þ,1 for Xm,m0 variables and J1,2 pþ1ð Þ for Ym:m0 variables. The system of

linear equations for the phase difference are written in the form

J2 pþ1ð Þ,1 ¼
1

22 pþ1ð Þ

X

N�1

m¼0,

X

p

k¼0

2p

k

� �

Mm,n1

NnNn1

Xm,n1 þ
Mm,n2

NmNn2

Xm,n2

	 


, (10)

J1,2 pþ1ð Þ ¼
1

22 pþ1ð Þ

X

N�1

m¼0,

X

p

k¼0

�1ð Þp�k 2p

k

� �

Mm,n1

NmNn1

Ym,n1 þ
Mm,n2

NmNn2

Ym,n2

	 


: (11)

where n1 ¼ m� 2 p� kð Þ � 3j j, n2 ¼ m� 2 p� kð Þ � 1j j,Mm,n1,2 ¼
Ð

∞

0 rmþn1,2þ1G2dr. The number of linear equations in each system Eqs. (10) and (11) is
K ¼ 3 N � 3ð Þ, N ≥ 6. It is noteworthy that Eqs. (10) and (11) contain only the terms
with an odd difference of indices, including β0,m, so that a finite solution enables us to
obtain all phases of the partial beams in the form tan βm,m0 ¼ Ym,m0=Xm,m0 .

A key element of the experimental setup in Figure 2(a) was a spatial light
modulator SLM (Thorlabs EXULUS-4K1), which converted the fundamental
TEM00 mode of the He-Ne laser (wavelength λ ¼ 0:6328mcm and power 1 mW)
into a composite beam with mode amplitudes Cm and initial phases βm. To make this
possible, the laser beam was additionally filtered by the system FF. The beam
splitter BS formed two working arms of the experimental setup. The beam in the
first arm projected by a spherical lens onto the input pupil of the CCD1 camera
(Thorlabs DCC1645) is subjected to the image computer processing. The result of
the computer processing is a digitization of the beam intensity distribution and
calculations of high-order intensity moments Jpq. Additional computer software

made it possible to compose a system of linear Eqs. (9)–(11) and calculate both the
mode amplitudes Cm and their initial phases βm in real time. The second arm was in
use for the control measurement of the OAM of the composite beam. For this
purpose, the beam was focused by a cylindrical lens CL onto the input pupil of the
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second CCD2 camera (Thorlabs DCC1645) then the second-order intensity moment
Jxy was measured and the average OAM per photon was calculated in accordance

with the technique described in detail in the paper [26].
Before proceeding to the current measurements, it was necessary to adjust the

experimental setup. For this, a number of calibration measurements were carried
out. The digitization of the intensity distribution ℑ x, yð Þ required normalization of
the transverse coordinates x, y in units of the Gaussian beam waist at the plane of
the CCD camera. To measure the initial beam waist radius w0, the second-order
intensity moments J12 were used in accordance with the beam quality measurement
method [46]. In order to ensure calibration measurements, a special computer
program was developed that assigned random values of the amplitudes and initial
phases of the vortex modes in Eq. (1) due to the random-number generator. Then,
an appropriate diffraction grating was formed on the liquid crystal element of the
SLM modulator and the calibration beam was restored. A typical intensity distribu-
tion of the calibration beam is shown in the callout of Figure 2(c). The

corresponding spectra of the squared amplitudes Сmj j2 and initial phases βm are
presented in Figure 2(b) and (c). Red and blue colors in Figure 2(a) and (b)
present experimental and theoretical data, respectively. Note that the OAM mea-
sured in the second arm was ℓz ¼ 4:2 and the first arm calculated according to
Eq. (2) was ℓz ¼ 4:5, while the theory gives ℓz ¼ 4:9. The measurement error for
N ¼ 10 beams did not exceed 3–4% for amplitudes and 5–6% for phases. The most
interesting effect is observed in the region of OAM oscillations in Figure 1(a)with a
characteristic perturbation of the holographic grating in Figure 2(c). This effect is
accompanied by a sharp restructuring of the vortex spectrum. For small perturba-
tions of the singular beam, additional vortex modes arise only near the initial value
of the topological charge m ¼ M (see [47]). However, in general case of the holo-
gram perturbation, vortex modes with opposite signs of topological charges appear.
Such a vortex spectrum reconstruction cannot be detected using the above
approach. It is required to expand the measurement technique.

3.2 Degenerate case and vortex avalanche

We consider the case when the initial LG beam with a zero radial index n ¼
0,m 6¼ 0 is subjected to local perturbation at the central region of the holographic
grating. As a result of the perturbation, vortex modes with various types of topo-
logical charges appear in the beam. The method of the beam expansion in a series
over the vortex modes depends on the type of the grating perturbation. We suppose

Figure 2.
(a) Model of experimental setup for real-time vortex measurement and value of the OAM, P—polarizer, FF—
light filter of space, SLM—space light modulator, L1, L2—spherical lenses with focal length f sh, BS—beam
splitter, CL—cylindrical lens with a focal length f cyl, CCD1,2—CCD-color cameras; (b and c) the vortex

spectrum of the beam array with N ¼ 10: (b) С2
m mð Þ, (c) βm mð Þ the OAM: theory ℓz ¼ 0:39, experiment

ℓz ¼ 0:42; callout: the intensity distribution and corresponding diffraction grating.
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(and then prove) that the chosen perturbation does not excite LG modes with radial
indices n ¼ 0, but only modes with different topological charges m appear [39].
Then we write the complex amplitude of the perturbed beam in the form

Ψ R,φ, zð Þ ¼
X

N

m¼�N

CmR
mj jei m φG Rð Þ

Mmσ mj jþ1 zð Þ , (12)

where Mm is a normalized factor and σ zð Þ ¼ 1� i z=z0.
It is important to notice the intensity moments Jp:q are degenerate with respect

to the sign of the vortex topological charge m in the case of axial symmetry of the
modes in Eq. (12). To remove degeneracy of the intensity moments, it is important
to change symmetry of singular beams, but without destroying of structure beams
so that the vortex modes with opposite topological charges in sign have distinct
geometric contours. Such a requirement provides by the astigmatic transformation
with a cylindrical lens of the Laguerre-Gauss beam, which was considered detail in
[34] (the general theory of paraxial astigmatic transformations can be found in
[41]). We suppose that the cylindrical lens with a focal length f is located at the
plane z ¼ 0. A paraxial beam with complex amplitude (12) is projected at the lens
input. The plane of the beam waist is matched with the plane of the lens. Besides,
we restrict our study to zero initial phases of mode beams, i.e., amplitudes Cm are
real values. Then, following [34], we write the complex amplitude of a combined
beam at the wave diffraction zone as

ΨCL x, y, zð Þ ¼
X

N

m¼�N

AmHm Fð Þ exp Φð Þ, (13)

where Am ¼ �i z0z
1

qq0
� w0

q0

� �m
1� q20

q2

� �

, Φ ¼ i k
2z x2 þ y2ð Þ � z0

zw0q

� �2
x2 �

z0
zw0q0

� �2
y2, F ¼ z0

w0z

i
q0
q x�

q
q0
y

ffiffiffiffiffiffiffiffiffiffi

q2�q20

p , q20 ¼ 1� i z0z , q
2 ¼ 1þ i z0z1 , z1 ¼

z f
z�f :.

Let us consider new normalized coordinates so that the beam axes are directed
by an angle π=4 relative to the axes of the cylindrical lens: u ¼ xþ yð Þ=w0, v ¼
x� yð Þ=w0, we will consider field of paraxial beam in double focus plane z ¼ 2f , and
also require that z0=2f ¼ 1. Then distribution of the beam intensity is written as

ℑ ¼ ΨCLj j2 ¼
X

N

m, n¼0

C�nС�m
Am,n

Nm,n
Hn

u
ffiffiffi

2
p
� �

Hm
u
ffiffiffi

2
p
� �

þ
X

N

m, n¼1

CnСm
Am,n

Nm,n
Hn

v
ffiffiffi

2
p
� �

Hm
v
ffiffiffi

2
p
� �

(

þ
X

N

n¼0,

m¼1

C�nСm
Am,n

Nm,n
Hn

u
ffiffiffi

2
p
� �

Hm
v
ffiffiffi

2
p
� �

þ
X

N

n¼1,

m¼0

CnС�m
Am,n

Nm,n
Hn

v
ffiffiffi

2
p
� �

Hm
u
ffiffiffi

2
p
� �

9

>

>

>

>

=

>

>

>

>

;

exp � u2 þ v2

2

� �

(14)

where Hn xð Þ is Hermite polynomials, Am,n ¼ �1ð Þ nj jþ mj jei
mj j� nj j

4 π, N2
n,m ¼

π
4

wo

2

� �nþm
2nþmþ1n!m!. As can be seen from Eq. (14), the terms corresponding to

optical vortices with positive and negative topological charges are only partially
divided. The last two terms characterize the cross terms C�nСm and CnС�m. Besides,
the first two terms also contain cross amplitudes C�nС�m and CnСm nj j 6¼ mj jð Þ.
On the other hand, our task is to measure only the squared amplitudes C2

m. It is
important to note, that the factors Am,n ¼ �An,m ¼ i with the difference of the
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indices m� nj j ¼ 2 in Eq. (14) are imaginary, therefore the cross terms of the beam
intensity distribution with such indices difference disappear.

It seems that for solving this problem it is reasonable to choose intensity moment

functions in the form of Hermite polynomials Eq. (14) as Mp,0 uð Þ ¼ Hp u=
ffiffiffi

2
p� �

and

M0,q vð Þ ¼ Hq v=
ffiffiffi

2
p� �

. Next, one can use the orthogonality condition of the HG beams
and write a system of linear equations, the number of which is equal to the number of
variables, as was done above for a non-degenerate vortex array. However, as shown
by the assessed computations, as the indices p and q increase along with the 2N

variables C2
m, the 2N � 6 cross terms C�nС�m and C�nС∓m are also added. The system

of Eq. (14) cannot be closed. However, one can act otherwise. First, we make two
Fourier transforms of the intensity distribution ℑ x, yð Þ in the form

ℑ ξð Þ ¼
ð

∞

�∞

ð

∞

�∞

cos ξ
u
ffiffiffi

2
p

� �

ℑ x:yð Þdxdy, ℑ ηð Þ ¼
ð

∞

�∞

ð

∞

�∞

cos η
v
ffiffiffi

2
p

� �

ℑ x:yð Þdxdy:

(15)

In particular, the terms ℑ�m:�n in the intensity distribution ℑ are

ℑ�m:�n ξð Þ ¼
ð

∞

�∞

ð

∞

�∞

cos ξ
u
ffiffiffi

2
p

� �

ℑ x:yð Þdxdy ¼
X

N

n¼0

C2
�n

2nþ1=2

Nn,n
ξ2nLn

ξ2

2

� �

e�
ξ2

4

þ
X

N

m, n¼0,

m�nj j6¼0, 2

C�nС� nþ2mð Þ
�1ð Þnþ2m2nþ1=2

Nm,n
ξ2mL2m

n

ξ2

2

� �

e�
ξ2

4 ,
(16)

Thus, after the Fourier transform the distribution of intensity ℑ ξ, ηð Þ contains all
the squared amplitudes, and, also, the cross terms with the difference mj j � nj j ¼
�4. The cross terms ℑ�т,m and ℑm,�n refer to vortices with positive and negative

charges. Besides, the terms ℑ�т,� nþ2mð Þ ξð Þ includes amplitudes С2
�n with the similar

coefficients, and the member ℑт, nþ2mð Þ ξð Þ includes amplitudes С2
n with only differ-

ent coefficients. The expressions are received for the terms, that ℑ�т,� nþ2mð Þ ηð Þ and
ℑт, nþ2mð Þ ηð Þ, if we swap the signs of the indices.

The equations for squared amplitudes С2
�n will be found, if we will make use the

full basis of the Laguerre-Gaussian modes for expansion of the intensity moments:

J
þð Þ
p,2q ¼

ð

∞

�∞

ξL2q
p

ξ2

2

� �

ℑ ξð Þdξ=J00, J
�ð Þ
p,2q ¼

ð

∞

�∞

ηL2q
p

η2

2

� �

ℑ ηð Þdη=J00, (17)

where J00 is a total beam intensity and Lq
p xð Þ is Laguerre polynomials. Then,

using [39], we find a system of linear equations

J∓p,q ¼
X

N

n¼1

C2
∓n þ

2qþ pð Þ! 1=2ð Þp

p!4� 2qþpþ1ð Þ

X

N

m, n¼1

2mþ nð Þ! 1=2ð Þn

n!4� 2mþnþ1ð ÞNnm

C�nC∓m

 !

=J00, (18)

The system of Eq. (18) enables us to find the values of the squared amplitudes

via the measured values of the intensity moments J�p,q. Each equation contains 2N

terms for amplitudes C2
m and N � 3 cross terms CmCn. Increasing the value of the
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indices p and q does not change the number of variables, so the system of Eq. (18)
can be closed. Note that each of the Eq. (18) can be solved independently of each

other and find the amplitudes C2
m and C2

�m. The total number of linear equations is
relative to signs �ð Þ, so that the systems can be easy solved for finding the squared
amplitudes in real time using modern computer software.

For measurements, the experimental setup shown in Figure 2(a) was used.
However, in contrast to the non-degenerate case, the main experimental data were
measured in the second arm, provided that the detection plane was located at the
double focus region of the cylindrical lens, while the first arm was used for general
adjustment [39].

We will implement the above technique for a new type of combined beams
with conspicuous dips and bursts in the OAM spectrum similar to that shown in
Figure 1(a) and (b). Let us write the complex amplitude of the combined vortex
beam in the form

Ψ r,φ, zð Þ ¼ sin pπð Þei Pπ
X

N

m¼�N

cos mπ=2ð Þ
sin mπ=2ð Þ

� �

Ω
mj j

mj j! M�mþ δpð Þ
R mj jei m φ

σ zð Þ mj jþ1
exp �R2

� �

,

(19)

where Ω is a scale parameter, δp stands for the perturbation of the holographic
grating responsible for shaping the beam, M is a topological charge of the non-
perturbed forked grating. Factors cos mπ=2ð Þ or sin mπ=2ð Þ thin out the vortex
spectrum remaining the modes with either even or odd m� indices. This makes the
dips in the OAM spectrum more distinct. The complex amplitude (12) corresponds
to the OAM in the form

ℓz ¼
X

N

m¼�N

m
cos 2 mπ=2ð Þ
sin 2 mπ=2ð Þ

� �

Ω
2 mj j

mj j!2 M�mþ δpð Þ2
=
X

N

m¼�N

cos 2 mπ=2ð Þ
sin 2 mπ=2ð Þ

� �

Ω
2 mj j

mj j!2 M�mþ δpð Þ2
:

(20)

Figure 1(b) and (c) displays the case of even vortices beams in the curves of
ℓz pð Þ. The spectrum of OAM in Figure 1(b) characterizes the general view of
resonant bursts and dips. The Ω parameter of scale admits displace along the axis of
the resonant regions p ¼ Mþ δp. Figure 1(c) (curves 1 and 2) describes their
characteristic features. In the even vortex modes of integer topological charge are
located resonant dips. Swaps of the cosine with the sine in Eq. (19) displaces along
the axis p of the resonant regions by one. Increase of the topological charge M is
accompanied by resonances compression, until their depth gets become approxi-
mately equal to M at Ω ¼ 18 and p< 6. For large parameters Ω> > 20, the OAM is
doubled ℓz ¼ 2M in range of the initial topological charges M. As was shown in
[47, 48], a perturbation δp causes a local distortion of the forked grating defect for
the large values parameter p shown in Figure 3(a).

As the perturbation grows the area of the hologram defect increases (Figure 3(b)).
Small variations in the holographic grating structure lead to a cardinal reconstruction

of the vortex spectrum (Figure 4(а)). Weak perturbations δp � 10�2 of the grating
cause an avalanche of optical vortices. The satellites appear in the OAM spectrum, the
maxima of which has topological charges less than the initialM. The energy of the
basic modeM flows partially into the spectral satellites, that are generated both in the
region of positivem>0 and negativem>0 topological charges.

For large perturbations δp � 0:1, a vortex avalanche picks almost all the energy
out of the basic mode. The vortex avalanche at small deviations δp of the topological
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charge from integer values M immediately causes a resonance dip in the OAM
spectrum (Figure 5(a)). With increasing M the depth of the dip decreases while its
shape is distorted (see Figure 5(b)).

Absolutely other situation arises when the holographic grating withM> 10 and a
forked defect is subjected to a small perturbation. As shown in Figure 3(c), even a
weak perturbation δp ¼ �0:001 changes drastically the entire relief of the holo-
graphic grating although the intensity distribution. In the result, even small differ-
ences in the grating relief affects inevitably the shape of the vortex spectrum

Figure 3.
Forked defect perturbations of the holographic gratings with (a and b) M ¼ 20, Ω ¼ 2:1, (c and d) M ¼ 4,
Ω ¼ 14: (а) δp ¼ 10�3, (b) δp ¼ 0:1, (c) δp ¼ �10�3 (d) δp ¼ �0:5, callouts: intensity distributions of the
beams restored by the perturbed holograms.

Figure 4.
Experimental vortex spectra C2

m mð Þ for perturbed singular beams with (a) M ¼ 20, Ω ¼ 3:5 and (b) Ω ¼
18,M ¼ 4; callouts: intensity distributions at the beam waist after spherical (sph) with focal length f ¼ 0:1m
and cylindrical (cyl) lens with f cyl ¼ 0:5 m; red color—an initial mode.

Figure 5.
Dips and bursts in the OAM spectrum ℓz pð Þ at various beam parameters Ω and M, p ¼ Mþ δp: (a and b)
M ¼ 20, (c and d) M ¼ 4; solid lines—theory, circles—experiment.
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Cm mð Þj j2 and Ω> 10 induce the vortex avalanche (see Figure 4(b)). However, the
avalanche type differs significantly from that in the previous case. Indeed, as well as
in the above case, the perturbation provokes appearing resonance satellites with
both positive and negative topological charges (TC). However, their values are
always greater than those of the initial TC. In this case, energy is also pumped from
the basic mode to the satellites but with higher topological charges under the
condition of the resonance m ¼ p. In the OAM spectrum, it looks like the OAM
burst at the resonance as shown in Figure 5(c) and (d) but the maxima ℓz are at the
region of fractional values p. As the scale parameter increases, the height of the flash
decreases, and the resonance circuit broadens (Figure 5(d)).

Further increasing the parameter p (Ω ¼ const) is accompanied by smoothing
the curve ℓz pð Þ so that ℓzjmax ! 2p except for the OAM dips at the integer values
m ¼ p.

4. OAM, informational entropy and topological charge of truncated
vortex beams

A special case is represented by natural changes of the vortex spectrum due to
external influences on the laser beam (diffraction by opaque obstacles, external
interference in the beam, etc.). The simplest opaque obstacles are the sector, circu-
lar and annular apertures where we stop our attention using a simple technique of
the vortex digital sorting.

4.1 Sector aperture

Let us consider propagation a scalar beam of Laguerre-Gaussian LGm
0 with a zero

radial index p ¼ 0 and an azimuthal index (a topological charge) m through the
rough regular sector aperture obstacle, that an angle shown in Figure 1. The edge of
sector touches axis of the beam. The field of beam at the initial plane z ¼ 0 can be
represented as [49].

Ψm r,φ, αð Þ ¼ ρ=wð Þ mj jei mφe�ρ2=w2 ¼ r mj jei mφe�r2 , α<φ< 2π � α, (21)

where r ¼ ρ=w. w is a beam waist radius at the plane z ¼ 0, ρ and φ represent
polar coordinates. We rewrite the beam field (1) formed by the rigid-edges aperture
with the half angle α as a sum of non-normalized Laguerre-Gauss beams LGm

p in the

form

Ψm r,φ, αð Þ ¼
X

∞

n¼�∞
Cm,n αð ÞLGn

0 r,φð Þ ¼
X

∞

n¼�∞
Cm,n αð Þr nj jei nφe�r2 , (22)

where the beam amplitudes are

Сm,n αð Þ ¼ �1ð Þm�n
Γ

mj j þ nj j
2

þ 1

� �

sin m� nð Þ π � αð Þ½ �
m� n

= π 2
mj j� nj j

2 nj j!
� �

, (23)

where Γ xð Þ is a Gamma function. The terms in the series (23) with radial indices
p 6¼ 0 disappear due to orthogonality of the LG modes.

The complex amplitude (22) can describe the spatial evolution of the perturbed
beam if we replace r ! r=σ and multiply the sum by σ where σ ¼ 1� i z=z0.
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Figure 6(b) and (c) shows a computer simulation (Figure 6(b)) and experiment
(Figure 6(c)) of the intensity distribution ℑ r,φ, zð Þ ¼ ΨΨ

∗ along the vortex beam
length with m ¼ 15 modulated by the sector aperture with α ¼ π=4. It is important
to note, that the cut out dark sector from the beam intensity distribution does not
lead to its self-healing. When the beam propagates, the dark sector rotates synchro-
nously. We showed, both theoretically and experimentally, that beam self-healing
does not occur at any beam length z even at a very small sector angle α.

4.1.1 The vortex spectrum

We consider vortex beams spectra for topological charge that most clearly
reflect properties of the sector perturbation. Computer simulation and experimental
data of typical vortex spectra is shown in Figure 7. We revealed a clear maximum of

vortex mode intensity С
2
m,n for the initial topological charges n ¼ m ¼ 5 with α ¼

45°. The short part of the beam intensity redistributed symmetric at the neighbor-
ing vortices orders. But, if we increase the angle α, we see a violation of the
symmetric distribution of intensity among the vortex modes. There formed a sec-
ond maximum in the spectrum range of negative topological charges n<0. It is
important to note, that the authors of Ref. [50], taking into consideration the optical
uncertainty principle, also plotted the vortex spectrum for a topologically neutral
beam m ¼ 0 and a beam with a small topological charge m ¼ 2 at the angle of
aperture α ¼ 45°. The authors did not detect a maximum of spectra in the negative
region of topological charges. As we presented above, the emergence of the second

Figure 6.
(a) Sketch of the hard-edged aperture (D) installed at the cylindrical lens plane (CL). Images LG and HG
beams illustrate the astigmatic transformation of a single vortex beam. (b and c) Intensity distribution ℑ r,φ, zð Þ
of the vortex beam with m ¼ 15 along length Z ¼ z=z0 perturbed by a hard-edged sector diaphragm with
α ¼ π=4: (b) theory, (c) experiment.

Figure 7.

Distribution of vortex beams spectrum C2
m,n with charges m ¼ 5 perturbed by the hard-edged aperture with the

sector adjacent angle β ¼ π � α, the solid line is spectrum outline.
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intensity maximum is possible only at sufficiently large angles of overlap of beam α

and also large topological charges m of the initial singular beam.

4.1.2 The orbital angular momentum

The OAM per photon of a complex perturbed beam can be calculated in accor-
dance with Eq. (23). The mode amplitudes are given by the normalized field Ψm of

the Laguerre-Gauss beams so that the squared amplitudes С2
m,n and С

2
m,n are obeyed

a simple relation С
2
m,n ¼ 2� nj j�2 nj j!С2

m,n. The changes of OAM ℓz α,mð Þ after increas-
ing the aperture angle α (decreasing the adjacent angle β ¼ π � α) is presented by
Figure 7(a) for topological charges m ¼ 5,m ¼ 10 and m ¼ 15 of the initial vortex
beam.

The OAM is practically unchanged a wide range of angles and remains almost
equal to the initial OAM, despite the rapid increase in the number of vortex states
(see Figure 8(a)). After the second spectral maximum is formed in the negative
region of topological charges Figure 7, there is a sharp decrease of the OAM. The
OAM is equal to zero already at the angle β≈ 2°.

4.1.3 Informational entropy (Shannon’s entropy)

The normalized squared amplitude С2
n ∈ 0, 1ð Þ in the Eq. (23) can be treated as a

conditional probability P n=mð Þ of finding out a vortex beam in the state nj i among
of 2N states (see, e.g., [51] and references therein). This approach to counting a
number of vortex states can be used for the Shannon Entropy [51] and is written as

HI ¼ �
X

N

n¼0

P n=mð Þ log 2P n=mð Þ ¼ �
X

N

n¼0

C2
n α,mð Þ log 2C

2
n α,mð Þ>0: (24)

The Shannon entropy (24) characterizes the amount of uncertainty (random-
ness) that arises when a perturbation acts on a vortex beam. For example, in the
case of the same amplitudes of the mode beams, the Shannon entropy of HI ¼ 2
means that to remove the uncertainty it is necessary to expend 1 bit of information.

In Figure 8(b) presents the dependence of the Shannon Entropy HI on the angle
α for various of number topological charges m. In a broad range of aperture angles
0< α< 7π=8, the informational entropy HI increases equally for any topological
charges m while the OAM ℓz does not change (see Figure 8(a)) which corresponds
to the same changes in the spectrum of vortex states in Figure 7.

Figure 8.
Computer simulation of (a) the OAM ℓz α,mð Þ and (b) information entropy HI α,mð Þ for the initial
topological charges, m ¼ 5, 10, 15; (c) transformation of the vortex TC Mof the perturbed beam via variation
TC of the initial beam; (d) maximal TC mmax of the spectral vortex satellites via perturbation Ω of the
perturbed holographic gratings; (solid lines); crosslets �ð Þ, circlets ⊙ð Þ and squares (□) are correspondent
experimental data.
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4.1.4 The topological charge

According to Berry [42], the topological charge of the vortex array is defined as
the difference of the fluxes of vortex trajectories through the beam cross section
taking into account vortex directions and “weights,” and is calculated as

M ¼ 1

2π
Im lim

r!∞

ð

2π

0

∂φΨm=Ψmdφ

8

<

:

9

=

;

: (25)

Berry showed [42] that the vortex beam TC has always integer values when the
spiral phase plate is perturbed equal to the integer value of the unperturbed plate
step. We investigated the changes of the TC under the beam sector perturbations
[52] and perturbation of the holographic grating [47]. Note that all further calcula-
tions are based on the requirement that the perturbation does not introduce changes
in the mode phases. We performed a series of computer TC estimations of the
perturbed beam (20) for various initial TC. The following restrictions were used. As
the spectra of vortices in Figure 7 show, the squared mode amplitudes quickly tend
to zero as their TC increases. Therefore, we can restrict ourselves to a finite mode

numbers С2
mn � 10�3. The half-width beam radius can be estimated at the maxi-

mum intensity of the initial vortex beam rM ¼
ffiffiffiffiffiffiffiffiffiffiffiffi

mj j=2
p

. Therefore, in Eq. (25) we
replaced the limit r ! ∞ by r ! 3rN. The results of computer simulation are shown
in Figure 8(c). It can be seen from the figure that the total topological charge M at
α ¼ 3π:4 remains equal to the initial TC of the unperturbed beamM ¼ m. Computer
calculations for sector aperture angles α ¼ π=4, π=2, 30π=31 show similar results.
Therefore, we assume that, in the general case of arbitrary angles, the initial TC will
be preserved under sector perturbations. We also examined the constancy condition
TC under the perturbation of the holographic grating considered above and made
sure that this condition is strictly satisfied. Moreover, we traced the maxima dis-
placement of the spectral satellites in the vortex avalanche in Figure 4 [47] and
convinced (see Figure 8(d)) that their TC cannot take fractional values.

4.2 Circular and annular apertures

The problem of the birth and annihilation of phase singularities has been con-
sidered as far back as at the beginning of the last century in connection with the
peculiarities of light diffraction at the edges of the half-plane or lenses and micro-
objectives of telescopes and microscopes (see [53] and references therein). As a
rule, the discussion came down to the technique of suppressing the corresponding
aberrations. In this section, we focus on the digital vortex sorting after beam dif-
fraction by the circular and annular apertures addressing the Shannon entropy
problem of the diffracted combined vortex beams.

Note also that recently, special attention has been paid to studies on increasing
the information capacity of optical channels due to LGm

n modes with various radial
indices n, but a constant topological charge m [54]. Such modes are sorted using the
holographic grating techniques and a single phase screen [55]. In this section, we will
focus on the digital sorting of LG modes with various radial indices.

We consider the perturbation of the vortex LGm
0 beam at the z ¼ 0 plane with

a ring aperture so that its complex amplitude is written in the form (see also
Figure 10a)

Ψm ¼ r mj jei mφ exp �r2
� �

, R< r<Rþ h: (26)
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If the axis of the annular aperture coincides with the beam axis then the pertur-
bation excites only LG beams with the same TC (m ¼ const) but different radial
indices n (this follows from the condition of orthogonally of LG beams). The
perturbed beam field can be represented as an expansion over LG beams

Ψm ¼
X

∞

n¼0

Cm,nr
mLm

n 2r2
� �

ei mφe�r2 : (27)

The LG vortex modes amplitudes restricted by the ring of thickness h, we find
for the field difference the beams passing simultaneously through the circular
aperture of radius Rþ h and the opaque disk of radius R. As a result we obtain

Сm,n Rð Þ ¼
ð

∞

0

Ψm LGm
n

� � ∗
rdr

¼ 2 Rþ hð Þ2
� �mþ1

e�2 Rþhð Þ2
1F1 1� n,mþ 2;�2 Rþ hð Þ2
� �

= mþ 1ð Þm!

� 2R2
� �mþ1

e�2R2

1F1 1� n,mþ 2;�2R2
� �

= mþ 1ð Þm!,

(28)

where 1F1 is a confluent hypergeometric function and we used the integrals from
[56]. The expression (28) together with Eq. (27) allows covering three cases: (1) a
circular aperture, R ¼ 0, h ¼ R0; (2) an opaque disk R ¼ R0, h ¼ 0; and (3) an
annular aperture R, h 6¼ 0. An important property of mode amplitudes (28) is that
the perturbation of a singular beam with a defined TC via these types of axial
apertures does not excite vortex modes with other TC. This means that the OAM ℓz

does not change due to such a perturbation process. Does this mean that the
perturbed vortex beam completely restores its initial properties during propagation,
i.e., possesses the self-healing effect? We will peer into this process carefully.

Recall that under the action of axial perturbation, vortex modes with new topo-
logical charges do not appear in the perturbed beam. Therefore, the digital sorting
of vortex modes in a perturbed beam can be carried out in accordance with Eq. (15)
for the nondegenerate case (see Section 3.1). In this case, as a function of moments

Mp,q r,φð Þ should choose the forms Mp,q ¼ sin rLk
p 2r2ð Þ or Mp,q ¼ cos rLk

p 2r2ð Þ
while in the intensity distribution ℑ r,φð Þ use the complex amplitude (26). Variation
of the indices p and k enables us to obtain a closed system of linear equations for the

squared amplitudes C2
m,n.

The experimental results of measuring the vortex spectra are shown in Figure 9,
where the average values of the squared amplitudes are plotted along the ordinate

axis. A characteristic feature of the dependences C2
m,n nð Þ is long spectral tails, which

are omitted in the figures, but which make a significant contribution to the calcula-
tion of information entropy. Truncation of a topologically neutral beam (m ¼ 0)
with a circular aperture in Figure 9(Ia) leads to overlapping many side rings,
resulting in a wave-like form of the spectral tail. In the perturbed vortex beams
shown in Figure 9(Ibc), a broadening of the vortex spectrum and a decrease in the
tail amplitudes are observed. Such characteristic features of the vortex spectra
insert significant uncertainty into information carried by the vortex beam, which is
represented as the dependence of information entropy HI on the aperture radius R0

in Figure 9(Id). It is noteworthy that even small variations in the aperture radius
lead to changes in the entropy HI that grow with increasing TC. Similar changes in
the entropy HI hð Þ shown in Figure 9(IId) occur when a vortex beam is perturbed
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by a annular aperture, which are the result of transformations in the vortex spectra
in Figure 9(a–c). The presented results show that any external interference in the
beam immediately affects the uncertainty of the vortex beam state, the magnitude
of which can be estimated by measuring informational entropy.

Another interesting feature of the axial aperture action is manifested under the
combined vortex beam perturbation consisting of two vortex beams with the same
values but different TC signs (m and �m). If the amplitudes of the beams are the
same, then the complex amplitude of such a combined beam is described by
Eq. (28) when replacing the phase factor exp imφð Þ ! 2 cos mφ. Figure 10(b–d)
illustrates the intensity distribution of such perturbed beams at the measurement
plane. Each of these beams receives the same perturbations, regardless of the sign of
their TC. Even if the beam amplitudes are different, they receive the same amount
of the vortex state uncertainty. However, this apparent indistinguishability of the
modes can be easily detected experimentally due to opposite phase circulation of
the fields, and the modes can be sorted out in different memory cells.

Figure 9.
The vortex spectra C2

m,n and the Shannon entropy HI hð Þ of the perturbed singular beams with different TC m:
(I) the circular aperture; (II) the annular aperture; (Id) the Shannon entropy HI via the aperture radius R0;
(IIh) the Shannon entropy HI via the annular width, curves 1 and 3 correspond to the TC m ¼ 0,m ¼ 2,m ¼ 4,
respectively; callouts: corresponding intensity distributions.

Figure 10.
(a) Sketch of the annular aperture. (b–d) Intensity distributions of the singular beams with TC m ¼ 5 and
m ¼ �5 perturbed by the circular aperture with the radius (b) R0 ¼ 0:5, (c) R0 ¼ 0:1 and (d) the annular
aperture with R0 ¼ 0:5, h ¼ 0:2.
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5. Conclusions

We examined the technique of digital sorting of vortex modes that makes it
possible to measure in real time the vortex spectrum (squared amplitudes and initial
phases) including radial indices, OAM, and informational entropy of perturbed
singular beams. The considered approach is based on the measurement of intensity
moments of higher orders and a digital solution of a linear equations system that
eliminates the cuts and gluing of the beam wavefront without losing information on
the modes initial phases. Moreover, the digital vortex spectrum also enables us to
restore the initial combined beam and, correcting parameters of the spectral modes,
to improve its characteristics.

The digital approach has been tested on vortex beams free of wave defects
perturbed both by local defects of holographic gratings responsible for the beam
generation and by the sectorial, circular and annular aperture. We revealed that a
local perturbation of the holographic grating near the central forked defect causes
bursts and dips in the OAM spectrum. The depth and height of the spectral dips and
bursts are controlled by the parameters of the holographic grating and can vary over
a wide range. The perturbation inserted by the sector aperture is regulated by the
sector angle. Over a wide range of sector angles, the beam OAM remains almost
unchanged. However, when the sector angle is relatively large, so that most of the
light flux is cut off by the aperture, the optical uncertainty principle begins to act,
and the OAM sharply decreases to almost zero that is accompanied by a rapid
growth of the Shannon entropy. At the same time, the beam topological charge
remains unchanged for any sectorial perturbations. The axial perturbation via a
circular and annular aperture does not change either the OAM or topological charge.
However, a wide range of Laguerre-Gauss modes with the same topological charges
but different radial indices leads to a rapid increase in information entropy as the
pupil of the circular aperture or the ring thickness of the annular aperture decreases.
This allows not only to estimate the noise level in the optical information transmis-
sion line, but also to record external interference in the information flow. We also
note that the digital sorting of optical vortices in a perturbed light flux opens up
broad prospects for its employment for medical express-diagnostics of skin dis-
eases, since, for example, this allows us to detect slight changes in the vortex
spectrum of a laser beam scattered by inflamed or dehydrated skin areas.
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