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Chapter

An Efficient Block-Based 
Algorithm for Hair Removal in 
Dermoscopic Images
Ihab Zaqout

Abstract

Hair occlusion in dermoscopy images affects the diagnostic operation of the skin 
lesion. Segmentation and classification of skin lesions are two major steps of the 
diagnostic operation required by Dermatologists. We propose a new algorithm for 
hair removal in dermoscopy images that includes two main stages: hair detection 
and inpainting. In hair detection, a morphological bottom-hat operation is imple-
mented on Y-channel image of YIQ color space followed by a binarization operation. 
In inpainting, the repaired Y-channel is partitioned into 256 nonoverlapped blocks 
and for each block, white pixels are replaced by locating the highest peak of using a 
histogram function and a morphological close operation. Our proposed algorithm 
reports a true positive rate (sensitivity) of 97.36%, a false positive rate (fall-out) 
of 4.25%, and a true negative rate (specificity) of 95.75%. The diagnostic accuracy 
achieved is recorded at a high level of 95.78%.

Keywords: dermoscopy image, melanoma, hair detection, hair removal, inpainting, 
skin lesion

1. Introduction

Melanoma, otherwise called malignant melanoma, is a kind of cancer that is 
created from the pigment-containing cells known as melanocytes. Melanomas com-
monly occur in the skin, but may rarely occur in the mouth, digestion tracts, or eye. 
Malignant melanoma is the most forceful and hazardous skin disease. It is created 
in the cells that give the skin its color (melanocytes) and has a high inclination to 
spread to different parts of the body. The cure rates depend incredibly on the phase 
of melanoma, when it is discovered. On the off-chance that melanoma is perceived 
and treated early, it is quite often repairable; however, in the event that it is not, the 
disease can progress and spread to different parts of the body, where it turns out to 
be difficult to treat and can be lethal. While it is not the most well-known of the skin 
cancers, it causes the most deaths.

The timeline of melanoma is summarized in Table 1, portraying particularly 
significant disclosures and advances in treatment against the disease. Malignant 
melanoma is the most genuine type of skin cancer. An early detection and diagnosis 
of skin cancer prevent its advancement to later stages. Menzies method, the seven-
point checklist, the CASH (Color, Architecture, Symmetry, and Homogeneity) 
algorithm, and the broadly used algorithm is the ABCD/ABCDE (Asymmetric, 
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Border, Color, and Dermatoscopic structures) method are computational algo-
rithms have been developed using image processing techniques to help derma-
tologists in early diagnosis of skin lesions [6–9]. Several methods for evaluating 
melanocytic lesions by dermoscopy are described precisely in Section 3.

Extraordinary endeavors have been done by researchers to make compelling 
and dependable computerized demonstrative techniques for skin lesions, yet very 
little research has been centered on the hair removal problem. Clearly, human body 
might be totally covered by hair, which has a scope of various surfaces, orientations, 
and colors; in this way influence incompletely/totally the presence of skin lesions as 
appeared in Figure 1.

Hair removal is an important step in dermoscopy images to classify the skin 
lesion correctly into benign, suspicious, or malignant. Various techniques were 
applied to remove hairs automatically from dermoscopic images are discussed 
in detail by [11, 12]. The rest of this research is organized as follows: Section 2 
describes an overview of related work. Section 3 describes an overview of common 

Figure 1. 
Sample of digital dermoscopic images with hair pixels are collected from PH2 dataset [10].

Year/period Key developments

Prior to 1750 Hippocrates is a Greek physician and is a standout among the most exceptional figures 

ever of. He is thought to be the first to record a depiction of melanoma, which he portrays 

as melas, which means dark, and oma, which means tumor, in Greek [1]. Various 

references to “lethal black tumors with metastases and black liquid in the body” are 

discussed precisely by [2].

1750s–1830s John Hunter is recorded as the first to work on a patient and Laennec is the first to 

recognize melanoma as a sickness isolated from others. Carswell presents the term 

melanoma [1].

1840s–1900s Information advances in treatment. Careful anesthesia is received [2], and rules for 

careful treatment against melanoma are combined. Propelled melanoma is perceived as 

untreatable [1].

Twentieth 

century

The etiology and hereditary contribution in melanoma are found. Qualities like skin, 

hair and eye shading are found to have an effect on melanoma improvement [1]. Driver 

hereditary transformations in melanoma are found [2].

1970s – 1990s A developing number of concentrates in this period recommend that sun presentation 

assumes a critical part in the improvement of a few melanomas. In the 1980s, the general 

wellbeing network and promotion bunches start forewarning the general population 

about the potential dangers of sun introduction. Dermoscopy ends up accessible in the 

1990s [3].

Present time Today, melanoma is dealt with by medical procedure, immunotherapy, directed 

treatment, chemotherapy and radiation treatment [4]. Melanoma is more typical in 

regions that are generally Caucasian [5].

Table 1. 
Timeline of melanoma.
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methods used for diagnosis of skin lesions while Section 4 describes the proposed 
technique. The implementation is presented and discussed in Section 5 followed by 
some remarks and future work.

2. Related work

The pixel-based interpolation technique was proposed by Satheesha et al. [13] 
to locate a quadratic curve, which detects bended hairs in the binary image mask 
for removal and replacement. Gabor filtering and PDE-based image reconstruction 
was proposed by Nasonova et al. [14] for hair removal problem. Moreover, for edge 
sharpening, they have utilized a warping algorithm to move pixels from the neigh-
borhood of the blurred edge closer to the edge while the overall luminosity and 
texture patterns of the skin lesions are preserved. In [15], two fundamental steps 
are proposed to automatically detect and remove hairs from dermoscopy images: 
generation of a binary image mask by isolating hairs and ruler marking. From the 
RGB dermoscopy image, a red channel is utilized to perform noise removal followed 
by a generation of the binary image mask via an adaptive canny edge detector. 
Furthermore, a repaired task in view of polygons inpainting is implemented on the 
white regions of the generated mask.

The work of [16] relied on two classes of images: gray scale and RGB images. In 
gray scale images, in light of edge property, a circular mask is used to remove the 
nonskin pixels followed by a repair operation accomplished by a normalization 
process of pixel values. In RGB images, in light of histogram values, a frequency 
of occurrence of each bin is measured followed by the calculation of minimum 
distance among neighborhood pixels. An algorithm presented by Abbas et al. [17] 
for automatically detecting and repairing hair occlusion in dermoscopy images. In 
the detection stage, hairs are segmented utilizing MF-FDOG, thresholding, and 
morphological edge-based methods connected for improvement. In the repair 
stage, to inpaint the image without loss of texture patterns of skin lesions, the fast 
marching technique is implemented. MRF-based Multi-Label Optimization and 
Dual-Channel Quaternion Tubularness Filters are proposed by Mirzaalian et al. 
[18] for hair improvements in dermoscopy images. Their method was approved 
and contrasted with different methods regarding: hair segmentation accuracy, 
image inpainting quality, and image classification accuracy. To remove hairs by 
detecting hair pixels in a binary image mask followed by replacement through pixel 
interpolation is implemented via the Generalized Radon Transform (GRT). The 
Radon Transform was chosen to locate quadratic curves characterized by rational 
angle and scaling [19].

An effective detection of artifacts proposed by Okuboyejo et al. [20] consists of a 
two-stage artifact detection termed: fast image restoration (FIR) by means of canny 
algorithm and line segment detection (LSD) operation. To remove artifacts from 
dermoscopic images, the fast marching method (FMM) was applied at each stage 
while preserving morphological features during artifacts removal. A threshold set 
model for digital hair removal from dermoscopic images proposed by Okuboyejo 
et al. and Koehoorn et al. [21, 22]. They proposed a gap-detection algorithm to find 
hairs for every threshold and merge results in a single mask image. To locate hairs in 
the generated mask, morphological filters and medial descriptors are combined. The 
proposed work of [23] automatically detects and removes hairs and ruler markings 
from dermoscopy images. In detection stage, they used a curvilinear structure 
and modeling, and additional feature guided exemplar-based inpainting stage. 
Extensions to the fast marching method are introduced by Hearn [24] with the aim 
to enhance the segmentation of medical image data. The proposed algorithm used 
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to limit the occurrence of bleeding across boundaries, including automatic starting 
point selection and statistical region combination.

Two removal hair approaches are conducted by Sultana et al. [25]. The first 
method is based on a simple morphological closing operation with a disk-shaped 
structural element while the top-hat transform combined with a bicubic inter-
polation utilized in the second approach. An effective hair removal algorithm for 
dermoscopic imagery is implemented by Bibiloni et al. [26]. They utilized soft color 
morphology operators that able to cope with color images. The hair removal filter 
used is basically made out of a morphological curvilinear object detector and a 
morphological-based inpainting algorithm. A simple approach to automatic hair 
and consequently noise removal were discussed by Acebuque-Salido and Ruiz [27]. 
The process starts with a median filter on each color space of RGB, a bottom-hat 
filter, a binary conversion, a dilation and morphological opening, and then the 
removal of small connected pixels. The detected hair regions are then filled up using 
harmonic inpainting. Their experiments were carried out on the PH2 dataset and 
compared to DullRazor method. Furthermore, they generated synthetic hair on 
skin images and measured the reconstruction quality using peak signal-to-noise 
ratio. In the work done by Al-abayechi et al. [28], a hair was removed, and reflective 
light was reduced using morphological operations and a median filter.

An algorithm for the automated hairs detection was implemented by Chakraborti 
et al. [29] to 50 dermoscopic melanoma images. They used an adaptive, canny edge-
detection method, followed by morphological filtering and an arithmetic addition 
operation. Their proposed method produced 6.57% segmentation error (SE), 96.28% 
true detection rate (TDR) and 3.47% false positive rate (FPR). The proposed algo-
rithm by Toossi et al. [30] divided into two phases: detection and removal. In detec-
tion, light and dark hairs and ruler marking are segmented via an adaptive canny 
edge detector and refinement by morphological operators. In removal, the hairs are 
repaired in view of multi-resolution coherence transport inpainting.

In addition to the above-mentioned hair removal methods, several aspects are 
captured in Table 2.

3. An overview of common methods

The purpose of this section is to review state-of-the-art melanomas diagnosis 
methods and technologies that have the potential to reduce melanoma mortality. 

Method Hair detector Inpainting method #Test images

DullRazor [31] Generalized morphological 

closing

Bilinear interpolation 5

E-shaver [32] Prewitt edge detector Color averaging 5

Fiorese et al. [33] Top-hat operator PDE-based [34] 20

Huang et al. [35] Multiscale matched filters Median filtering 20

Xie et al. [36] Top-hat operator Anisotropic diffusion [37] 40

Abbas et al. [11] Derivative of Gaussian Coherence transport [38] 100

Koehoorn et al. 

[21, 22]

Multiscale skeletons and 

morphological operators

Fast marching [39] ≅ 300

Our method Top-hat operator Block-based histogram function 

& morphological close

200

Table 2. 
Comparison of existing digital hair removal methods.
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Current methods for the recognition of melanoma go from populace-based instruc-
tive crusades and screening to the utilization of calculation driven imaging innova-
tions and execution of measures that distinguish markers of change. Each one of the 
following methods is used for the dermoscopic separation between benign melano-
cytic lesions and melanoma based on its own features.

3.1 Menzies method

The Menzies technique is an improved dermoscopy strategy for diagnosing 
melanomas [40, 41]. In the first arrangement, it had an affectability of 92% and a 
specificity of 71% for the analysis of melanoma. This strategy utilizes purported 
“negative” and “positive” highlights. For a melanoma to be analyzed, none of the 
two “negative highlights” ought to be found and no less than 1 of the 9 “positive 
highlights” must be available. An injury is suspicious of melanoma on the off chance 
that it has in excess of one shading and is hilter kilter in design. Suspect lesions 
showing any of the nine positive highlights for melanoma are thought to be mela-
noma except if demonstrated something else.

• Negative features (benign lesions): symmetrical pattern (colors and structure) 
and single color.

• Positive features (melanoma): Blue-white veil, multiple brown dots, pseu-
dopods, radial streaming, scar-like depigmentation, multiple (5–6) colors, 
multiple blue/gray dots, and broadened network.

3.2 Seven-point checklist method

In the last years, a great deal of investigative techniques in view of scored calcu-
lations have been acquainted both with streamline the dermoscopic learning and 
to enhance the early melanoma discovery. The seven-point checklist, distributed 
in 1998, speaks to a standout amongst the most and most recent approved dermo-
scopic calculations because of its high affectability and specificity, likewise when 
used by nonspecialists. The seven criteria were initially tried on 342 melanocytic 
lesions (117 melanomas and 225 atypical nevi) and were decided for their suc-
cessive relationship with melanoma [41–43]. Three of them were characterized as 
significant criteria (atypical system (score 2), blue-white veil (score 2) and atypical 
vascular pattern score 2)), though the staying four were considered to be minor 
(irregular streaks (score 1), irregular dots/globules (score 1), irregular blotches 
(score 1), and regression structures (score 1)). The seven-point checklist for the 
dermoscopic separation between benign melanocytic lesions and melanoma (scores 
in sections). At least three shows melanoma.

3.3 CASH method

The CASH [44] is used for the dermatoscopic differentiation between benign 
melanocytic lesions and melanoma (scores in brackets) as shown in Table 3. Add 
up the scores for a total CASH score (2–17): CASH score of 7 or less is likely benign, 
otherwise the lesion is suspicious of melanoma.

3.4 The ABCD method

The ABCD rule of dermoscopy was the primary dermoscopy calculation made to 
help separate benign from malignant melanocytic tumors. This calculation, which 
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was depicted by Stolz, was created to quantitatively address the significant inquiry 
in dermoscopy of whether a melanocytic skin lesion under scrutiny is considerate, 
suspicious (borderline), or malignant. Construct just in light of four dermatoscopic 
criteria, this technique is moderately simple to learn and apply. The ABCD der-
moscopy technique has been widely contemplated, and it has been demonstrated 
that it enhances the symptomatic execution of clinicians assessing pigmented skin 
injuries. It is the conclusion of some that this strategy might be especially appropri-
ate for clinicians with constrained dermoscopy encounter. The criteria that con-
solidate to make the ABCD rule of dermoscopy are asymmetry, border, color, and 
differential structures. To use these criteria, a scoring framework was produced to 
compute the total dermoscopy score (TDS) utilizing a straight condition. With this 
TDS, a reviewing of lesions is conceivable regarding the likelihood that the lesions 
under investigation are malignant [41, 42]. The likelihood of melanoma depends on 
adding up the scores of different features as shown in Table 4.

3.5 CHAOS and clues

A modified form of pattern analysis [45] looks for CHAOS (asymmetry of 
structure and/or color) and no less than one clue to diagnose malignancy. It can be 

Criteria Score Weight Result

Asymmetry, Perpendicular axes: contour, colors and structures 0–2 1.3 0–2.6

Borders, 8 segments: abrupt ending of pigment pattern 0–8 0.1 0–0.8

Colors, White, black, red, blue-gray, light-brown (tan), 

dark-brown

1–6 0.5 0.5–3.0

Dermatoscopic structures or differential structural components 

(pigment network, aggregated globules, branched streaks, 

structureless areas, dots)

1–5 0.5 0.5–2.5

Total score Benign <4.76

Suspicious 4.76–5.45

Melanoma >5.45

Table 4. 
Total dermoscopic score of ABCD rule.

Criteria Low Medium High

Colors: few vs. many

White, black, red, blue, Light brown, dark brown 

(Score: 1 point/color)

1–2 colors 

(1–2 points)

3–4 colors 

(3–4 points)

5–6 colors 

(5–6 points)

Architecture: order vs. disorder (Score: 0–2 

points)

None or mild 

disorder 

(no points)

Moderate 

disorder 

(1 point)

Marked 

disorder (2 

points)

Symmetry vs. asymmetry, Contor, colors and 

structures (Score: 0–2 points)

Symmetry 

in 2 axes 

(no points)

Symmetry 

in 1 axis 

(1 point)

No symmetry 

(2 points)

Homogeneity vs. heterogeneity, dots/globules, 

blotches, pigment network, blue-white veil, 

polymorphous vessels, regression, streaks (Score: 

1 point/structure)

One structure 

(1 point)

Two types 

of structure 

(2 points)

≥3 structures 

(3–7 points)

Table 3. 
Suspicion for melanoma.
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connected to melanocytic and non-melanocytic lesions. Patterns are portrayed by dif-
ferent components of a similar sort: lines, dots, clods, circles, pseudopods (a line with 
a bulbous end), and structureless regions. Structureless zones are comprised of colors: 
black, dark brown, light brown, gray, blue, orange, yellow, white, red, and purple.

• A single pattern or a single color is a symmetrical structure, that is, benign.

• Two patterns can have one pattern inside the other pattern or the two pat-
terns may be regularly distributed. Such lesions have a symmetrical structure. 
Two patterns can be distributed asymmetrically.

• Multiple patterns/colors may result in symmetrical structure if forming 
concentric zones. Otherwise, they result in an asymmetrical structure.

Asymmetrical patterns should prompt searching for particular clues to malig-
nancy. The clues to malignancy are: thick reticular lines, gray or blue structures of 
any kind, pseudopods or radial lines at the periphery, black dots in the periphery, 
eccentric structureless area of any color, polymorphous vascular pattern, white 
lines, parallel lines on ridges, and large polygons.

3.6 The BLINCK algorithm

The BLINCK algorithm has been conceived to recognize malignant lesions, espe-
cially nodular melanoma, as this tumor regularly needs customary dermatoscopic 
highlights. It can likewise be utilized for non-melanocytic lesions [46]. Table 5 sum-
marizes the evaluation operation of the BLINCK algorithm. Clues to malignancy are: 
atypical network, segmental streaks, irregular black dots/globules/clods, eccentric 
structureless zone, irregular blue or gray color, polymorphous/arborising/glomerular 
vessels, and parallel ridge pattern or diffuse irregular brown/black pigmentation in 
acral lesion. A score of ≥2 requires biopsy.

3.7 TADA

TADA is an acronym for Triage Amalgamated Dermoscopic Algorithm. TADA 
does not require a determination to be made to choose if the lesion ought to be 
extracted or alluded to a specialist [47]. TADA is accounted for to have sensitivity 
94.8% and specificity 72.3% for malignant skin lesions. The first step is to determine 
whether the lesion has features of: angioma, dermatofibroma, and/or seborrhoeic 
keratosis. If yes, exclude from further analysis. If no, is there any architectural disor-
der? If there is architectural disorder, does the lesion have one or more of the fol-
lowing six predictive factors?: starburst pattern, blue-black or gray structures, shiny 
white structures, negative network, ulcer/erosion, and/or vessels. If yes, consider 
excision or refer. If no, the lesion is likely to be benign. Any doubt, follow-up or refer.

Benign If not, then consider the following:

Lonely Unsightly duckling Score 1

Irregular Asymmetrical pigmentation pattern or > 1 color Score 1

Nervous Nervous patient/Changing lesion Score 1

Known Known clues to malignancy Score 1

Table 5. 
Evaluation operation of BLINCK algorithm.
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4. The proposed technique

In this research, we propose a novel technique to remove hair pixels from 
dermoscopic images. The YIQ (luminance (Y), hue (I), and saturation (Q ). The 
first component, luminance, represents gray scale information, while the last two 
components make up chrominance (color information)) or National Television 
System Committee (NTSC: the analogue television system used in North America 
and Japan) color space is chosen because the hair pixels are well demonstrated 
by only luminance (Y-channel) image, for example, compared to RGB as shown 
in Figure 2. In addition to Red, Green, and Red (RGB) color space, the Hue, 
Saturation, and Value (HSV) and YCbCr (Y is the brightness (luma), Cb is blue 
minus luma (B-Y), and Cr is red minus luma (R-Y)) color spaces present the hair 
pixels in more than one channel too. This issue complicates the hair removal task 
and may affect the performance.

The Y-channel image is partitioned into 256 non-overlapped blocks. During 
experimental studies, several block sizes are tested such as 4×4, 8×8, 16×16, and 
so on. We concluded that the implementation of block size 16×16 introduced 
better results for inpainting stage as compared with other block sizes. For each 
block, morphological operators and histogram analysis are implemented to 
detect hair pixels and inpainting operation as well to replace hair pixels by non-
hair skin pixels. This section describes the proposed algorithm for automatic hair 
detection and inpainting operations. To achieve the aims of this research,  
Figure 3 describes the work mechanism, and each step is described in the follow-
ing subsections.

4.1 Color space conversion

As depicted in Figure 4, the conversion operation from the input image (RGB) 
into YIQ color space.

4.2 Hair detection

To detect hair pixels, a morphological “bottom-hat” operation is implemented 
on Y-channel image, returning the image minus the morphological closing of the 
image (dilation followed by erosion) to highlight dark hair on a light background 
as shown in Figure 5. Because the image closing expands the white areas in an 

Figure 2. 
A digital dermoscopic image presented in RGB (a-d) and YIQ (e-h) color spaces.
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image but does not significantly alter those areas which are already white, the only 
areas left after subtracting the original are those that were originally black but 
surrounded by white. In general, bottom-hat filtering produces highlighted areas, 
which more truly follow the shape of the hair. However, the main motivation 
behind utilizing a bottom-hat filter is still the ability to better preserve the true 
shape of the hair.

Figure 3. 
Flowchart of the proposed method.

Figure 4. 
RGB (a) and YIQ (b) color spaces.
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4.3 Binary image conversion

As shown in Figure 6 is the binarization operation of the image resulted from 
the implementation of bottom-hat operation on repaired Y-channel image.

4.4 Inpainting operation

Divide the repaired Y-channel and the binarized image into 256 non-over-
lapped blocks. During experimental studies, several block sizes are tested such as 
4×4, 8×8, 16×16, and so on. We concluded that the implementation of block size 
16×16 introduced better results for inpainting stage as compared with other block 
sizes.

a. For each block do

• Apply histogram function using 32 bins. The histogram function is imhist 
constructed from the image processing toolbox in the MATLAB software. 
The first parameter used is the sub-image of size 16x16 and the second 
parameter is the number of bins which is equal to 32 bins. Based on experi-
mental studies, several number of bins tested and found that 32 bins are 
sufficiently utilized the intensity pixels ranged in [0, 1] into 32 intervals of 
size 0.0313 each. Furthermore, there were no improvements when number 
of binds was increased over 32 bins.

• Find the bin number that contains maximum occurrences (highest peak) of 
gray scale pixels in each sub-image or block.

• Find locations of white pixels in binary subimage.

• Let a = interval lower value and b = interval upper value.

• For each white pixel do

1. Generate a random number r in [0,1].

2. Replace the pixel in the Y-channel by using Eq. (1):

  a +  (b − a)  ⋅ r  (1)

Figure 5. 
Hair detection. (a) Y-channel image. (b) Result of bottom-hat operation.
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where the purpose of having r is to keep a dynamic change in the repaired 
pixel value among all repaired pixels in each block.

• End

• Perform the morphological “close” operation (dilation followed by erosion) 
on repaired Y-channel image as depicted in Figure 7(b).

b. End

4.5 Repaired RGB image

The resulted image from the inpainting process as discussed earlier in the previ-
ous subsection is subsequently used as an input image to the conversion operation to 
the RGB color space as depicted in Figure 8.

Figure 6. 
Result of the binarization operation.

Figure 7. 
Repaired Y-channel. (a) Y′-channel before close operation and (b) Y″-channel after close operation.

Figure 8. 
The repaired RGB image.
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5. Results and discussions

The experiments are executed on processor Intel, core i3-2330 M @ 2.20GHz 
and RAM 4GB. The system type is windows 7 ultimate of 64-bit OS and the software 
used for research implementation is MATLAB R2013a. The proposed methodology 
is tested on PH2 dataset [10]. It consists of 200 8-bit RGB dermoscopic images of 
melanocytic lesions with a resolution of 768×560 pixels. The dermoscopic images 
were obtained at the Dermatology Service of Hospital Pedro Hispano, Portugal 
under the same conditions through Tuebinger Mole Analyzer system using a 
magnification of 20×. The efficiency of the proposed algorithm is the detection 
and removal of thin/thick and light/dark hair from dermoscopic images with the 
preservation of the texture pattern, shape, and colors of skin lesion. Furthermore, 
any dermoscopic image does not contain hair, the algorithm preserves its features. 
Figure 9 depicts a sample of results consists of five input images as an initial stage 
sorted in the first row, and accordingly, their output images as a final stage appear in 
the last row after the implementation process of the proposed algorithm as dis-
cussed earlier represented by bottom arrows as an intermediate step.

The statistical analysis based on the metrics of sensitivity, specificity, and diag-
nostic accuracy was used to determine the performance of hair detection and inpaint-
ing operation. Our proposed algorithm reports a true positive rate (sensitivity) of 
97.36%, a false positive rate (fall-out) of 4.25%, and a true negative rate (specificity) 
of 95.75%. The diagnostic accuracy achieved is recorded at level high of 95.78%. To 
estimate the accuracy of the proposed algorithm and to quantify the automatic hair 
detection error, quantitative evaluations were performed using three statistical met-
rics: sensitivity or true detection rate (TDR), specificity or true negative rate (TNR), 
and diagnostic accuracy (DA). TDR measures the rate of pixels which were classified 
as hair by both the automatic algorithm and the medical expert, and FPR measures 
the rate of pixels which were not classified as hair by both the automatic segmentation 
and the medical expert. These metrics are calculated using Eqs. (2)–(5) as follows:

  sensitivity  (TDR)  =   TP ______ 
TP + FN

   × 100  (2)

  specificity  (TNR)  =   TN ______ 
TN + FP

   × 100  (3)

  fall‐out  (FPR)  =   FP ______ 
FP + TN

   × 100  (4)

Figure 9. 
Sample of results.
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  diagnostic accuracy  (DA)  =   TP + TN _____________  
TP + FN + FP + TN

   × 100  (5)

where TP, FP, FN, and TN stand for the number of true positive, false posi-
tive, false negative, and true negative, respectively. The quantitative results of the 
proposed algorithm are summarized in Table 6. They were calculated as follows:

• False negative (FN): find the differences between the repaired Y-channel (Y″) and 
the original Y-channel, apply a binarization operation, and then count the white 
pixels. The results of these sequence of operations are depicted in Figure 10.

• True positive (TP): apply the binarization operation on the hair segmented image 
(Y′) yields to the hair segmented binary image (BW). Visually, it is better to 
represent the white pixels which are hair pixels in red color and black pixels for 
non-hair pixels in white background as shown in Figure 11(a, c). The white pixels 
exist in BW and not exist in the images shown in Figure 10(d, h) are counted and 
preserved in another images as true positive pixels shown in Figure 11(b, d).

• True negative (TN): perform the complement operation on the hair seg-
mented binary image (as shown Figure 11(a, c)) yields to the images shown 
in Figure 12(a, b), respectively. The TN is the count of the white pixels exist in 
the complement image.

• False positive (FP): count of the remained white pixels.

Count # Hair pixels (predicted)

Class = Yes Class = No

# Hair pixels (actual) Class = Yes TP (1,924,779) FN (52,256)

Class = No FP (3,664,600) TN (82,521,688)

Table 6. 
Performance evaluation (confusion matrix).

Figure 10. 
False negative calculation. (a, e) Y-channel. (b, f) Repaired Y-Channel (Y″). (c, g) Differences between (a, b) 
and (e, f) illustrated by red dots. (d, h) Y-channel with false negative pixels represented by red dots.
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Unfortunately, we could not find a common database that can be shared with 
other researchers and there is no related work used PH2 dataset [10] to compare 
the proposed algorithm with others. However, Table 7 compares the proposed hair 
detection algorithm with some other methods.

6. Conclusion and future work

In this study, a fast and effective method is proposed for hair-occluded removal 
in dermoscopic images. The implementation of the hair removal process is divided 
into two main stages: hair detection and inpainting. In hair detection, a morpho-
logical bottom-hat operation is implemented on Y-channel image of the YIQ color 
space followed by a binarization operation. In inpainting, the repaired Y-channel 
is partitioned into 256 non-overlapped blocks and for each block, white pixels are 

Figure 11. 
True positive calculation. (a, c) Hair segmented binary image. (b, d) Truly classified hair pixels.

Figure 12. 
Results of complement operation performed on binarized images.

Artifact detection method TDR (%) TNR (%) FPR (%) DA (%) # test 

images

The proposed algorithm 97.36 95.75 4.25 95.78 200

Multi-resolution [30] 93.2 — 4 88.3 50

Top-hat operator [36] — — — 72.5 40

DullRazor [31] 70.2 — 33.4 48.6 50

Fast image restoration (FIR) + line 

segment detection (LSD) [20]

98.27 93.75 — 96.10 299

Table 7. 
Comparison of the hair detection algorithms.
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replaced by locating the highest peak of using a histogram function and a morpho-
logical close operation.

Our achieved results indicate high accuracy, and the proposed method can be 
dedicated to Dermatologists as a pre-processing stage before the lesion segmenta-
tion and classification. However, our proposed algorithm reports a true positive rate 
(sensitivity) of 97.36%, a false positive rate (fall-out) of 4.25%, and a true negative 
rate (specificity) of 95.75%. The diagnostic accuracy achieved is recorded at a high 
level of 95.78%.

The following opportunities are suggested for future work:

• Allocate a dataset to be common among researchers.

• Other artifacts such as air bubbles can be added for further studies.
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