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Chapter

Integral Inequalities and
Ditferential Equations via
Fractional Calculus

Zoubir Dahmani and Meriem Mansouria Belhamiti

Abstract

In this chapter, fractional calculus is used to develop some results on integral
inequalities and differential equations. We develop some results related to the
Hermite-Hadamard inequality. Then, we establish other integral results related to
the Minkowski inequality. We continue to present our results by establishing new
classes of fractional integral inequalities using a family of positive functions; these
classes of inequalities can be considered as generalizations of order n for some other
classical/fractional integral results published recently. As applications on inequal-
ities, we generate new lower bounds estimating the fractional expectations and
variances for the beta random variable. Some classical covariance identities, which
correspond to the classical case, are generalised for any a >1, #>1. For the part of
differential equations, we present a contribution that allow us to develop a class of
fractional chaotic electrical circuit. We prove recent results for the existence and
uniqueness of solutions for a class of Langevin-type equation. Then, by establishing
some sufficient conditions, another result for the existence of at least one solution is
also discussed.

Keywords: fractional calculus, fixed point, Riemann-Liouville integral,
Caputo derivative, integral inequality

1. Introduction

During the last few decades, fractional calculus has been extensively developed
due to its important applications in many field of research [1-4]. On the other hand,
the integral inequalities are very important in probability theory and in applied
sciences. For more details, we refer the reader to [5-12] and the references therein.
Moreover, the study of integral inequalities using fractional integration theory is
also of great importance; we refer to [1, 13-17] for some applications.

Also, boundary value problems of fractional differential equations have occu-
pied an important area in the fractional calculus domain, since these problems
appear in several applications of sciences and engineering, like mechanics, chemis-
try, electricity, chemistry, biology, finance, and control theory. For more details, we
refer the reader to [3, 18-20].

In this chapter, we use the Riemann-Liouville integrals to present some results
related to Minkowski and Hermite-Hadamard inequalities [21]. We continue to
present our results by establishing several classes of fractional integral inequalities
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Functional Calculus

using a family of positive functions; these classes of inequalities can be considered
as generalizations for some other fractional and classical integral results published
recently [22]. Then, as applications, we generate new lower bounds estimating the
fractional expectations and variances for the beta random variable. Some classical
covariance identities, which correspond to @ = 1, are generalized for any @ >1 and
B >1; see [23].

For the part of differential equations, with my coauthor, we present a contribu-
tion that allows us to develop a class of fractional differential equations generalizing
the chaotic electrical circuit model. We prove recent results for the existence
and uniqueness of solutions for a class of Langevin-type equations. Then, by
establishing some sufficient conditions on the data of the problem, another result
for the existence of at least one solution is also discussed. The considered class has
some relationship with the good paper in [20].

The chapter is structured as follows: In Section 2, we recall some preliminaries
on fractional calculus that will be used in the chapter. Section 3 is devoted to the
main results on integral inequalities as well as to some estimates on continuous
random variables. The Section 4 deals with the class of differential equations of
Langevin type: we study the existence and uniqueness of solutions for the consid-
ered class by means of Banach contraction principle, and then using Schaefer fixed
point theorem, an existence result is discussed. At the end, the Conclusion follows.

2. Preliminaries on fractional calculus

In this section, we present some definitions and lemmas that will be used in this
chapter. For more details, we refer the reader to [2, 13, 15, 24].

Definition 1.1. The Riemann-Liouville fractional integral operator of order a > 0,
for a continuous function f on [a, b] is defined as

t

L) = %J (t — ) f(t)dr,a>0, a<t<b, "
B0 =10,
where [(a) = [e~u1du.
Note that for a > 0, > 0, we have
JIf (@) =J*f (@), (2)
and
JSTALf @] =Jal f )] (3)

In the rest of this chapter, for short, we note a probability density function by
p.df.So, let us consider a positive continuous function @ defined on [a, b]. We recall
the w—concepts:

Definition 1.2. The fractional w—weighted expectation of order a > 0, for a
random variable X with a positive p.d f. f defined on [a, b], is given by

b
Eyo(X) =] tof|(b) = ﬁj (b —7)* to(2)f (t)dr,a >0,a <t < b, (4)
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Definition 1.3. The fractional w—weighted variance of order a > 0 for a random
variable X having ap.d.f.f on [a, b] is given by

b
Gi,w(X) = Voo(X):= ﬁj b — T)ail(f — E(X))zw(f)f(T)dT,a > 0. (5)

Definition 1.4. The fractional w—weighted moment of orders» > 0,a >0 for a
continuous random variable X having a p.d.f. f defined on [a, b] is defined by the
quantity:

b
By (X7) o= ﬁj (b — 0 W o(e)f (t)dr, a > 0. ©6)

We introduce the covariance of fractional order as follows.
Definition 1.5. Let f, and f,, be two continuous on [z, b]. We define the fractional

w—weighted covariance of order a > 0 for ( f,(X), f,(X)) by

b
Covao (f1(X), f2(X)) = %J(b =0 (f1(0) = f10)) (£2(2) = f2(w))0(2)f ()dz, 0 > 0,
@)

where y is the classical expectation of X.
It is to note that when w(x) = 1,x € [a, b], then we put

Varyo(X) = Vary(X), Covge(X) := Covy(X), Eqo(X) = Eqs(X)

Definition 1.6. For a function K € C" (|4, b],R) and n — 1< a < n, the Caputo
fractional derivative of order « is defined by

DK =" & k()

1 t n—a—1y-(n
= WJ (t — )" " TK™ (5)ds.

We recall also the following properties.
Lemma 1.7. Let n € N*, and # — 1< a < n. The general solution of D% (t) = 0,
t €la,b] is given by

)= cilt—a), (8)

wherec; €R,i =0,1,2,..,n — 1.
Lemma1.8.LetneN* andn — 1< a< n. Then
n—1 )
JD(t) =y(t) + Y ci(t —a)',t €[a,b], (9)

i=0

for somec;eR,i =0,1,2,..,n — 1.
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3. Some integral inequalities
3.1 On Minkowski and Hermite-Hadamard fractional inequalities

In this subsection, we present some fractional integral results related to
Minkowski and Hermite-Hadamard integral inequalities. For more details, we refer
the reader to [21].

Theorem 1.9. Let @ > 0,p >1 and let f,g be two positive functions on
[0, oof, such that for allz > 0,7 (£) < o0, J%g? (£) < o0 If 0 < m < L <M, z€0,1),

then we have

“ B\ 1 1+Mm+2)
P OR+ el s O D e fgr . 0

Proof: We use the hypothesis i :)) <M,7€]0,t],t >0. We can write

M1
o l(t ) (o)
. (11)
W a—1
< @l@ (S + g ()
Hence, we have
IF0) < Gl P ) 1)
Thus, it yields that
1 M 1
' OF < o I (f + 2P OF. (13)
In the same manner, we have
(142 )e0< (0 +510) (14)
And then,
I @F < U(f +eP @, 15)

Combining (13) and (15), we achieve the proof.
Remark 1.10. Applying the above theorem for a = 1, we obtain Theorem 1.2 of

[25] on [0, 1].
With the same arguments as before, we present the following theorem.
Theorem 1.11. Let a > 0,p >1 and let f, g be two positive functions on [0, oo,
such that for all £ > 0, %7 (t) < o0, %P (t) < 00. If 0 < m < f(()) <M,z €]0,t], then

we have
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IO + g OF < (A U ey ) (16)

Remark 1.12. Taking a = 1 in this second theorem, we obtain Theorem 2.2 in
[26] on [0,1].

Using the notions of concave and L —functions, we present to the reader the
following result.

Theorem 1.13. Suppose that a > 0,p >1,4 >1and letf,g be two positive func-
tions on [0, oo[. If f¥, g7 are two concave functions on [0, oo[, then we have

2°779(£(0) +£(2)) (8(0) + (1)) U (*71))’
(17)

<]a ta 1Jq7 ](l ta lgq< ))
The proof of this theorem is based on the following auxiliary result.

Lemma 1.14. Let & be a concave function on [a, b]. Then for any x € [a, b], we
have

h(a)+h(b)§h(b+a—x)+h(x)§2h<a;rb>. (18)

3.2 A family of fractional integral inequalities

We present to the reader some integral results for a family of functions [22].
These results generalize some integral inequalities of [27]. We have

Theorem 1.15. Suppose that ( f z-)l.:L _ aren positive, continuous, and decreasing
functions on [a, b]. Then, the following inequality

L ] R (o )
J T ff@] ]a[(t—a)ﬁr[;;l f?"(t)}

(19)

holds foranya<t<b,a>0,6 >0, f> 7p >0, where p is a fixed integer in
{1,2, ...,n}.
Proof: It is clear that

((r=af ~ @ =a’) (7@~ () 20, 0)

for any fixed p € {1, ...n} and for any >y, >0,6>0,7,p€ [a,t;a<t<b.
Taking

K, (7, p) = @Tix);_ln "i(z )(( )5 —(r— a)5> (fg—ﬁ (7) _f}/j_yp (P)), (21)

we observe that
K,(z,p) > 0. (22)

Also, we have
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n

0< JKp(r, pdz = (p—a)J* {Hﬁf{i @} +fy ()" [(t —a) ]S <t>]

i#p
(23)
-J {(f —a)’ [ [f1f, (t)] ~(p—a)f’ ()" [Hf?" (ﬂ] :
i#p =1
Hence, we get
J? [(t —a) [ If (t)]]“ [Hf{:fﬁ @} >J" [Hf?" (t)]]“ {(t —a)’ | [f1f) <t>} :
i=1 i#p i=1 i#p
(24)

The proof is thus achieved.

Remark 1.16. Applying Theorem 1.15 for @ = 1, = b,n = 1, we obtain Theorem
3 in [27].

Using other sufficient conditions, we prove the following generalization.

Theorem 1.17. Suppose that (f;),_,  are positive, continuous, and decreasing

functions on [a, b]. Then for any fixed p in {1,2, ...,#} and for any
a<t<b,a>0,w >0,6>0,627,>0, we have

I i@l [e - a @]+ [, fif o[- o o]
J* (¢ = a T f1f 0@ P [T f 7 ) +7 | € = ) TL 1o P (T £ 0]
(25)

Proof: Multiplying both sides of (23) by (t}’(’c):;il [T, f7(p), ® > 0, then integrat-

ing the resulting inequality with respect to p over (a,t),a <t < b and using Fubini’s
theorem, we obtain the desired inequality.
Remark 1.18.

i. Applying Theorem 1.17 for @ = w, we obtain Theorem 1.15.

ii. Applying Theorem 1.17 for a = w = 1,t = b,n = 1, we obtain Theorem 3
of [27].

Introducing a positive increasing function g to the family (f,)._, ,we

-1
establish the following theorem.
Theorem 1.19. Let (f;),_,  and g be positive continuous functions on [a, ],

such that g is increasing and (f;),_, , are decreasing on [a,b]. Then, the following

=1,..
inequality

T T FEF© & @)1 £1 )]

>1 (26)
I @ OTTs, 150 [ [T 1 @)

holds foranya<t<b,a>0,6>0,5> 7p >0, where p is a fixed integer in
{1,2, ...,n}.
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Remark 1.20. Applying Theorem 1.19 for a« = 1,z = b,n = 1, we obtain Theorem
4 of [27].

3.3 Some estimations on random variables
3.3.1 Bounds for fractional moments of beta distribution

In what follows, we present some fractional results on the beta distribution [23].
So let us prove the following a—version.

Theorem 1.21. Let X, Y, U, and V be four random variables, such that X ~
B(p,q),Y ~ B(m,n),U ~ B(p,n),and V ~ B(m,q).If (p —m)(q —n) <0, then

E((XE(Y") _ B(p,mBimg)
E.(U)E(V) = B(p,q)Blm,n)" * ="

For the proof of this result, we can apply a weighted version of the fractional
Chebyshev inequality as is mentioned in [1].

Remark 1.22. The above theorem generalizes Theorem 3.1 of [7].

We propose also the following (a, #) —version that generalizes the above result.
We have

Theorem 1.23. Let X, Y, U, and V be four random variables, such that X ~
B(p,q),Y ~ B(m,n),U ~ B(p,n),and V ~ B(m,q). If (p —m)(q —n) < 0, then

E,(X)Ep(Y") + Ey(X")EL(Y") _ B(p,n)B(m,q)
Eo(U")E4(V") + E4(U")Ea(V") ~ B(p,q)B(m,n)

o, 3> 1.

Remark 1.24. If a = f# = 1, then the above theorem reduces to Theorem 3.1 of [7].

3.3.2 Identities and lower bounds

In the following theorem, the fractional covariance of X and g(X) is expressed
with the derivative of g(X). It can be considered as a generalization of a covariance
identity established by the authors of [28]. So, we prove the result:

Theorem 1.25. Let X be a random variable having a p.d.f defined on [a, b];

u = E(X). Then, we have

b x
Cov,(X,g(X)) = ﬁ Jg’(x)dx J (b — )" Hu —t)f (t)dt,a>1. (27)

We can prove this result by the application of the covariance definition in the
case where w(x) = 1.

The following theorem establishes a lower bound for Var,(g(X)) of any function
g2€C([a,b]). We have

Theorem 1.26. Let X be a random variable having a p.d.f defined on [a, b], such
that y = E(X). Then, we have

b x
Vara(g(X))> —— (Ff@jgwdxjw—t)“1<u—t>f<t>dt), (28)

- V(lVX,a

for any g € C'([a, b]).
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To prove this result, we use fractional Cauchy-Schwarz inequality established
in [29].
Remark 1.27. Let us consider Q € C([a, b)) that satisfies [* (b —)* ' (u —t)

F(t)dt = (b — x)* '6*Q(x)f (x). Then, we present the following result.
Theorem 1.28. Let X be a random variable having a p.d.f. defined on [a, b], such

that u = E(X), 6> = Var(X) and Q€ C([a, b]); [ (b — )" '(u — t)f (t)dt =

a

(b — x)*6?Q(x)f (x). Then, we have

Vard X)) 2 <2202 (g/ (x)0(X)) 29)
ara(§X0)2 g ey el |
Proof: We have
1 ( 2
Cov’(X,g(X)) = |:F(a) Jg’(x)dx(b —x)”lazg(x)f(x)dx} : (30)

On the other hand, we can see that

2

b
[F(la) Jg/(x)dx(b - x)alazﬁ(x)f(x)dx] = o"E5 (¢ (X)Q(X)) 3D

a

Thanks to the fractional version of Cauchy Schwarz inequality [29], and using
the fact that

Cov’(X,g(X)) £ Var,(X)Var,(g(X)), (32)

we obtain

' E2(g (X)Q(X)) < Vary(X)Var,(g(X)). (33)

This ends the proof.
Remark 1.29. Thanks to (30) and (31), we obtain the following fractional
covariance identity

0’Ea(g (X)Q(X)) = Cove(X,g(X)).

It generalizes the good standard identity obtained in [28] that corresponds to
a = 1 and it is given by

PE(¢ (X)Q(X)) = Cov(X,g(X)).

We end this section by proving the following fractional integral identity
between covariance and expectation in the fractional case.

Theorem 1.30. Let X be a continuous random variable with a p.d.f. having a
support an interval [a, b], E(X) = u. Then, for any a > 1, the following general
covariance identity holds

Cova(h(X),g(X)) = Ea(g' (X)Z(X)), (34)
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where g € C'([a, b]), with E|Z(X)g' (X)| < o0, h(x) is a given function and

Z(e)f () P20 [B(X)) — h(e) L f (e)de.
Proof: We have

b
Cov, (h(X),g(X)) = %)J (b —x)" " (h(x) — h(w)(g(x) —g(w))f (x)dx (35
and
) b
B¢ (0Z00) = s | (0 =) ¢ ()20 () (36)

The definition of Z(X) implies that

Hence, we obtain
E.(Z(X)g' (X)) = Cova(g(X), h(X)). (38)

Remark 1.31. Taking a = 1, in the above theorem, we obtain Theorem 2.2
of [10].

4. A class of differential equations of fractional order

Inspired by the work in [4, 20], in what follows we will be concerned with a
more general class of Langevin equations of fractional order. The considered class
will contain a nonlinearity that depends on a fractional derivative of order 6. So, let
us consider the following problem:

‘D*(D* + 2*)u(t) =f (t,u(t),"Du(t)),
tel0,1, 1€eR* (39)
O<a<1l, 0<éd<a,
associated with the conditions
u(0) =0, #"(0)=0, u(1)=_pu(n),ne(0,1), (40)
where °D” denotes the Caputo fractional derivative of fractional order a, D? is
the two-order classical derivative, f: [0,1] x R x R — R is a given function, and
p €R, such that fsin(in) # sin (4).

4.1 Integral representation

We recall the following result [20]:
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Lemma 1.32. Let 6 be a continuous function on [0, 1]. The unique solution of the
problem

‘D*(D* + 2*)u(t) = 6(t),
te[0,1, AeR? (41)

n—1<a<n, neN~*,

is given by

¢ y {7 a—1 n—1 '
u(t) = Jsinﬂ(t —5) (J(SF@()) O(z)dr + ; cis’) ds + ¢, cos(Mt) + cpi15in(At),
0 0

N

(42)

wherec,eR,i =1...n + 1.

Thanks to the above lemma, we can state that

The class of Langevin equations (39) and (40) has the following integral repre-
sentation:

u(t) = %Jsin&(t ) (J %f(f, u(), Dﬁ(f))df) ds

- Jsmm —s) (L %f(f, u(f),DfS(f))df) ds] ,
0

where

A== A(sind — Bsinin). (44)

4.2 Existence and uniqueness of solutions

Using the above integral representation (43), we can prove the following exis-
tence and uniqueness theorem.

Theorem 1.33. Assume that the following hypotheses are valid:

(H1): The functionf : [0,1] x R x R — R is continuous, and there exist two
constants A1, A; > 0, such that for allt€0,1] and u;,0;, €R,i = 1,2,

|f(t; Ui, uZ) _f(t, v, Ul)l < Allul — ‘Ull + A2|u2 — v2|- (45)
(H2): Suppose that A < ﬁ ,
where
A A T As®(a+ 1) + A+ BT - p
- F((l + z)iAl ’ - F(a + Z)AAl > = F(z _ 5) 5

A=max (A, Ny), A=A, B =1pl

10
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Then problem (39) and (40) has a unique solution on [0, 1].
Proof: We introduce the space

E = {u;uec([0,1]),D’u€C([0,1])},
endowed with the norm ||u||z := ||#|., + |ID%%]|...

Then, (E, ||.||g) is a Banach space.
Also, we consider the operator T : E — E defined by

(Tu)(¢) = %Jsin/l(t S F(s,uls), DPu(s))ds
0

n sinA(lt) [ﬁjsinﬂ(n —5) 3f(5,u(5),D5(5))d5 (46)

0

- Jsinl(l —s)Jof (s,u(s), D‘su(s))ds}

0

We shall prove that the above operator is contractive over the space E.
Let uq,u; € E. Then, for each t € [0, 1], we have

t

|Tui(t) — Tus(t)| < = Jlsml(t—s | JoIf (s,u1(s), Dus(s)) —f (s, ua(s), Dous(s))\ds

0

R {ﬁ[ sind(y =5)| Jg1(5,12(5), D'us(5)) —f (s, 12(s), DPsa(s) b

1
+ J|sin/1(1 —s) ol (s,ui(s), D°uy(s)) —f(s,uz(s),D‘suz(s))|ds =A
0

By (H1), we have

A I
AL —+—+ ”H> U1 — | + |D%uq — D’usl).
F<a+2>( ay Tjap” )~ sl + IDu — Dl

Hence, it yields that
ITur — Tuzlco < AD|lur — us|E- (47)

With the same arguments as before, we can write.

|T'us(t) — T'ua(t)| < %lsinﬂ(t — $)1J&1f (s, u1(s), Dur(s)) — f (s, ua(s), D?us(s))|ds

- |/ICTSA(I . [ﬁjs inA(n = s)J5|f (s, u1(s), D°us(s)) — f (s ua(s), D°ua(s)) lds

0

1
jmm — ) JELF s, ua(s), Dus(s)) — £ (5. 4a(s), Dua(s))ds | =B
0

11
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Again, by (H1), we obtain

Ais®(a+ 1) + 2% + By 22!
C(a+2)AA

B< A( )(!ul—u2|+|D5u1—D5u2]).

Consequently, we get
1T 41 — Tt 0o < AP|t1 — 12|
This implies that

|D°Tus — D°Tuy || oo < AY ||lug — ta |- (48)

Using (47) and (48), we can state that
ITu1 — Tusllp < AP + Y)llur — ualg.

Thanks to (H2), we can say that the operator T is contractive.
Hence, by Banach fixed point theorem, the operator has a unique fixed point

which corresponds to the unique solution of our Langevin problem.

4.3 Existence of solutions

We prove the following theorem.

Theorem 1.34. Assume that the following conditions are satisfied:
(H3): The functionf : [0,1] x R x R — R is jointly continuous.
(H4): There exists a positive constant M; [f (¢, u,v)| < M for any

te[0,1],u,veR.

Then the problem (39), (40) has at least one solution on [0, 1].
Proof: We use Schaefer fixed point theorem to prove this result. So we proceed

into three steps.

Step 1: We prove that T is continuous and bounded.
Since the function f is continuous by (H3), then the operator is also continuous;

this proof is trivial and hence it is omitted.

12

Let Q CE be a bounded set. We need to prove that T(Q2) is a bounded set.
Let u € Q. Then, for any z € [0, 1], we have

1 N 4 5 | _
mois 5+ ) [, Dus)ids + B [ i 6,00 o=

Using (H4), we get
I Tull., < PM. (49)
In the same manner, we find that
ID°Tull.. < Y M. (50)
From (49) and (50), we have
ITullg < (® + Y)M.

The operator is thus bounded.
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Step 2: Equicontinuity.
Let u € E. Then, for each t1,%; € [0, 1], we have

Jsinl(tz — $)J& £ (s,u(s), D’u(s))ds — Jsinﬂ(tl — $)J& f(s,u(s), D’u(s))ds

Tu(tz) ~ Tu(t)| < 1 {
0 0

| Sin ) — sin i) [ﬂ Jsinan — 75 £ts.u6), Douts)

0

+ Jsinxl(l - s)]‘gf(s,u(s),D‘su(s))ds] |

5]

< % | sin () — sin (4t1)] +%J‘i”/1(tz —$)Jo1 f (s, u(s), Du(s))Ids

t1

+ % Jl(sinﬂ(tz —5) —sinA(ty — s)J§| £ (s, u(s), D%u(s))\ds,
0

(51)

where

C) :=ﬁJ Isind(n — s)J1f (s, u(s), D’u(s))|ds + J Isind(1 — s)|J1f (s, u(s), D%u(s))|ds.

Analogously, we can obtain

IT'u(ty) — T'u(ty)| < lglcos(ltz) — cos(At1)| + % Isind(ta —s) — sind(tr — $)|JGIf (s, u(s), D%u(s))|.

1Al
Consequently, we can write
ID°Tu(ty) — D°Tu(t1)| < J*°|T'u(ts) — T'u(ty)] (52)

Ast; — 1, the right-hand sides of (51) and (52) tend to zero.
Therefore,

| Tu(t2) — Tu(t1)llg — O.

The operator T is thus equicontinuous.
As a consequence of Step 1 and Step 2 and thanks to Arzela-Ascoli theorem, we

conclude that T is completely continuous.
Step 3: We prove that X:={u € E;u = ATu,0 < A< 1} is a bounded set.
Let u € X. Then, for each t € [0, 1], the following two inequalities are valid:
[u(t)| = [ATu(t)| < |Tu(t)| < MO

and

|D%u(t)| = |AD°Tu(t)| < |D°Tu(t)| < MY.

13
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Therefore,

lullg < M(Y + D).

Thanks to steps 1, 2, and 3 and by Schaefer fixed point theorem, the operator T
has at least one fixed point. This ends the proof of the above theorem.

5. Conclusions

In this chapter, the fractional calculus has been applied for some classes of
integral inequalities. In fact, using Riemann-Liouville integral, some Minkowski and
Hermite-Hadamard-type inequalities have been established. Several other fractional
integral results involving a family of positive functions have been also generated.
The obtained results generalizes some classical integral inequalities in the literature.
In this chapter, we have also presented some applications on continuous random
variables; new identities have been established, and some estimates have been
discussed.

The existence and the uniqueness of solutions for nonlocal boundary value
problem including the Langevin equations with two fractional parameters have
been studied. We have used Caputo approach together with Banach contraction
principle to prove the existence and uniqueness result. Then, by application of
Schaefer fixed point theorem, another existence result has been also proved. Our
approach is simple to apply for a variety of real-world problems.
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