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Chapter

G-Jitter Effects on Chaotic
Convection in a Rotating Fluid
Layer
Palle Kiran

Abstract

The effect of gravity modulation and rotation on chaotic convection is investigated.
A system of differential equation like Lorenz model has been obtained using the
Galerkin-truncated Fourier series approximation. The nonlinear nature of the prob-
lem, i.e., chaotic convection, is investigated in a rotating fluid layer in the presence of
g-jitter. The NDSolve Mathematica 2017 is employed to obtain the numerical solutions
of Lorenz system of equations. It is found that there is a proportional relation between
Taylor number and the scaled Rayleigh number R in the presence of modulation. This
means that chaotic convection can be delayed (for increasing value of R) or advanced
with suitable adjustments of Taylor number and amplitude and frequency of gravity
modulation. Further, heat transfer results are obtained in terms of finite amplitude.
Finally, we conclude that the transition from steady convection to chaos depends on
the values of Taylor number and g-jitter parameter.

Keywords: g-jitter effect, nonlinear theory, rotation, chaos,
truncated Fourier series

1. Introduction

The study of chaotic convection is of great interest due to its applications in
thermal and mechanical engineering and in many other industry applications. It was
introduced by Lorenz [1] to illustrate the study of atmospheric three-space model
arising from Rayleigh-Benard convection. Some of the applications are production
of crystals, oil reservoir modeling, and catalytic packed bed filtration. He developed
a simplified mathematical model for atmospheric convection given below:

x0 ¼ Pr y� xð Þ, (1)

y0 ¼ x R� zð Þ � y, (2)

z0 ¼ xy� βz: (3)

This model is a system of three ordinary differential equations known as the
Lorenz equations. These equations are related to the properties of a two-
dimensional Rayleigh-Benard convection. In particular, the system describes the
rate of change of three quantities convection, temperature variation vertically with
respect to time. These equations are related to the properties of two-dimensional
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flow model warmed uniformly from below and cooled from above. In particular,
the system describes the rate of change of three quantities of time, x is proportional
to the rate of convection, y is the horizontal temperature variation, and z is the
vertical temperature variation. The constants Pr,R and β are the system parameters
proportional to the Prandtl number, Rayleigh number, and certain physical dimen-
sions of the media. If R< 1 then there is only one equilibrium point at the origin
which is represented as no convection point. Further, all orbits converge to the
origin, which is a global attractor. When R = 1, then a pitchfork bifurcation occurs,
and for R1, two additional critical points arise and are known as convection points,
and there the system loses its stability. In addition to this model, I would like to add
the concept of modulation either to suppress or to enhance nonlinearity. The liter-
ature shows that there are different types available; some of them are temperature
modulation (Venezian [2]), gravity (Gresho and Sani [3] and Bhadauria and Kiran
[4, 5]), rotation (Donnelly [6], Kiran and Bhadauria [7]), and magnetic field modu-
lation (Bhadauria and Kiran [8, 9]). Their studies are mostly on thermal convection
either considering fluid or porous medium. Their ultimate idea behind the research is
to find external regulation to the system to control instability and measure the heat
mass transfer in the system. But what happens when we consider the external con-
figuration to system Eq. (1). The external configurations are like thermal, gravity,
rotation, and magnetic field modulation. In this direction, no data are reported so far.
With this, I would like to extend the work of Lorenz along with modulation.

The studies on chaos with respect to the different types of parameters like Ray-
leigh number and Prandtl number are mostly investigated by the following studies.
The transition from steady convection to chaos occurs by a subcritical Hopf bifurca-
tion producing a solitary cycle which may be associated with a homoclinic explosion
for low Prandtl number is investigated by Vadasz and Olek [10]. The work of Vadasz
[11] suggests an explanation for the appearance of this solitary limit cycle via local
analytical results. The effect of magnetic field on chaotic convection in fluid layer is
investigated by Mahmud and Hasim [12]. They found that transition from chaotic
convection to steady convection occurs by a subcritical Hopf bifurcation producing a
homoclinic explosion which may limit the cycle as Hartman number increases. For
the moderate values of Prandtl number, the route to chaos occurs by a period of
doubling sequence of bifurcations given by Vadasz and Olek [13]. Feki [14] proposed
a new simple adaptive controller to control chaotic systems. The constructed linear
structure of controller may be used for chaos control as well as for chaotic system
synchronization. Yau and Chen [15] found that the Lorenz model could be stabilized,
even in the existence of system external distraction. For non-Newtonian fluid case,
Sheu et al. [16] have shown that stress relaxation tends to accelerate onset chaos. A
weak nonlinear solution to the problem is assumed by Vadasz [17], and it can
produce an accurate analytical expression for the transition point as long as the
condition of validity and consequent accuracy of the latter solution is fulfilled.
Narayana et al. [18] investigated heat mass transfer using truncated Fourier series
method. They have also discussed chaotic convection under the effect of binary
viscoelastic fluids. The studies related to gravity modulation are given by Kiran et al.
[19–25]. These studies show that the gravity modulation can be used to control heat
and mass transfer in the system in terms of frequency and amplitude of modulation.

The above paragraph demonstrated the earlier work on chaotic convection with
different configurations and models to control chaos. Recently Vadasz et al. [26]
and Kiran et al. [27] have investigated the effect of vertical vibrations and temper-
ature modulation on chaos in a porous media. Their results show that periodic
solutions and chaotic solutions alternate as the value of the scaled Rayleigh number
changes in the presence of forced vibrations. The root to chaos is also affected by
three types of thermal modulations.
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The effect of rotation on chaos is investigated by Gupta et al. [28] without any
modulation. They found that rotation has delay in chaos and controls nonlinearity.
It is also concluded that there are suitable ranges over Ta and R to reduce chaos in
the system. Based on the above studies in this chapter, I would like to investigate the
study of chaotic convection in the presence of rotation and gravity modulation.

2. Mathematical model

An infinitely extended horizontal rotating fluid layer about its vertical z-axis is
considered. The layer is gravity modulated and the lower plate held at temperature
T0 while the upper plate at T0 þ ΔT. Here ΔT is the temperature difference in the
medium. The mathematical equation of the flow model is given by

∇:q ¼ 0, (4)

∂q

∂t
þ 2Ω ∗ q ¼ � 1

ρ0
∇pþ ρ

ρ0
g þ νΔ2q, (5)

∂T

∂t
þ q:∇ð ÞT ¼ kT∇

2T, (6)

ρ ¼ ρ0 1� αT T � T0ð Þ½ �: (7)

The thermal boundary conditions are given by

T ¼ T0 þ ΔT at z ¼ 0 and T ¼ T0 at z ¼ d, (8)

where q� > is the velocity of the fluid, Ω� > is the vorticity vector, p� > is
the fluid pressure, ρ� > is the density, ν� > is the kinematic viscosity, KT � > is
the thermal diffusivity ratio, and αt � > is the thermal expansion coefficient. We
consider in our problem the externally imposed gravitational field (given by Gresho
and Sani [3]):

g
! ¼ g0 1þ δg sin ωgt

� �� �

k̂, (9)

where δg, ωg are the amplitude and frequency of gravity modulation.

2.1 Basic state

The basic state of the fluid is quiescent and is given by

qb ¼ 0, 0, 0ð Þ, p ¼ pb zð Þ,T ¼ Tb zð Þ: (10)

Using the basic state Eq. (10) in the Eqs. (4)–(6), we get the following relations

∂qb
∂t

þ 2Ω ∗ qb ¼ � 1

ρ0
∇pb þ

ρb

ρ0
g þ νΔ2qb, (11)

o ¼ � 1

ρ0
∇pb þ

ρb

ρ0
g, (12)

∇pb ¼ ρbg, (13)

∂pb
∂z

¼ ρbg, (14)

and from Eq. (6)
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∂Tb

∂t
þ qb:∇
� �

T ¼ kT∇
2Tb, (15)

kT∇
2Tb ¼ 0, (16)

Tb ¼ T0 þ ΔT 1� z

d

� �

: (17)

2.2 Perturbed state

On the basic state, we superpose perturbations in the form

q ¼ qb þ q0, ρ ¼ ρb zð Þ þ ρ0, p ¼ pb zð Þ þ p0,T ¼ Tb zð Þ þ T0 (18)

where the primes denote perturbed quantities. Now substituting Eq. (18) into
Eqs. (4)–(7) and using the basic state solutions, we obtain the equations governing
the perturbations in the form

∇:q0 ¼ , 0 (19)

∂ Tb þ T0ð Þ
∂t

þ qb þ q0
� �

:Δ
� �

Tb þ T0ð Þ ¼ KT∇
2 Tb þ T0ð Þ, (20)

∂T0

∂t
þ q0:∇ð Þ Tb þ T0ð Þ ¼ KT∇

2 T0ð Þ, (21)

∂T0

∂t
þ u0

∂

∂x
þ w0 ∂

∂z

� 	

Tb þ T0ð Þ ¼ KT∇
2 T0ð Þ, (22)

simplifying the above equation, then we get

∂T0

∂t
� ∂ψ

∂x

∂Tb

∂z
þ ∂ ψ ,T0ð Þ

∂ x, zð Þ ¼ KT∇
2 T0ð Þ: (23)

Similarly we can derive the same for momentum equation of the following form

∂q0

∂t
þ 2Ω ∗ q0 ¼ � 1

ρ0
∇p0 þ ρ0

ρ0
g þ νΔ2q0: (24)

We consider only two-dimensional disturbances and define the stream functions
ψ and q by

u0,w0ð Þ ¼ � ∂ψ

∂z
,
∂ψ

∂x

� 	

, g ¼ 0, 0,�gð Þ, (25)

which satisfy the continuity Eq. (19). While introducing the stream function ψ

and non-dimensionalizing with the following nondimensional parameters (x0,y0,z0)

= d x ∗ , y ∗ , z ∗ð Þ, t0 = d2

KT
t ∗ , T0 ¼ ΔTð ÞT ∗ , and p0 ¼ μKT

d2
p ∗ , then the resulting Eq. (19)

becomes

∂T0

∂t
� ∂ψ

∂x

∂Tb

∂z
þ ∂ ψ ,T0ð Þ

∂ x, zð Þ ¼ KT∇
2 T0ð Þ,

after simplifying the above equation, we get
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∂

∂t
� ∇2

� 	

T ¼ ∂ψ

∂x
� ∂ ψ ,Tð Þ

∂ x, zð Þ : (26)

Similarly while eliminating the pressure term and using the dimensionless
quantities, from the momentum equation (24), we get the following:

1

Pr

∂

∂t
� ∇2

� 	2

∇2 þ Ta
∂
2

∂z2

" #

∂ψ

∂x
¼ Ra 1þ δg sin ωgt

� �� � ∂
2

∂x2
1

Pr

∂

∂t
� ∇2

� 	

T, (27)

where Pr = ν
KT

is the Prandtl number, Ta ¼ 4d4Ω2

ν2
is the Taylor number, and Ra ¼

α ΔTð Þd3g0
νKT

is the Rayleigh number. The assumed boundaries are stress free and iso-

thermal; therefore, the boundary conditions are given by

w ¼ ∂
2w

∂z2
¼ T ¼ 0 at z ¼ 0 and z ¼ 1: (28)

The set of partial differential Eqs. (26) and (27) forms a nonlinear coupled
system of equations involving stream function and temperature as a function of two
variables in x and z. We solve these equations by using the Galerkin method and
using Fourier series representation.

3. Truncated Galerkin expansion

To obtain the solution of nonlinear coupled system of partial differential equa-
tions (26) and (27), we represent the stream function and temperature in the form

ψ ¼ A1 sin axð Þ sin πzð Þ, (29)

T ¼ B1 cos axð Þ sin πzð Þ þ B2 sin 2πzð Þ (30)

The above are the Galerkin expansion of stream function and temperature. Now
substituting these equations in Eqs. (26) and (27) and applying the orthogonal
conditions to Eqs. (30) and (31) and finally integrating over the domain [0,1] �
[0,1] yield a set of equations:

∂B1

∂t
cos ax sin πzþ ∂B2

∂t
sin 2πzþ k2B1 cos ax sin πzþ 4B2π

2 sin 2πz (31)

¼ A1a cos ax sin πz� A1B1aπ cos πz sin πz (32)

�2A1B2aπ cos 2πz cos ax sin πz: (33)

Now multiply with cos ax sin πz on both sides, and apply integration from 0 to 1
with respect to x and 0 to 2π

a :

∂B1

∂t

ð1

0

ð2π
a

0
cos 2ax sin 2πzdxdzþ ∂B2

∂t

ð1

0

ð2π
a

0
cos ax sin πz sin 2πzdxdz (34)

þk2B1

ð1

0

ð2π
a

0
cos 2ax sin 2πzdxdz (35)
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þ4B2π
2

ð1

0

ð2π
a

0
sin 2πz cos ax sin πzdxdz (36)

¼ A1a

ð1

0

ð2π
a

0
cos 2ax sin 2πzdxdz (37)

�A1B1aπ

ð1

0

ð2π
a

0
cos ax cos πz sin 2πzdxdz (38)

�2A1B2aπ

ð1

0

ð2π
a

0
cos 2πz cos 2ax sin 2πzdxdz: (39)

∂B1

∂t

π

2a
þ k2B1

π

2a
¼ A1a

π

2a
� 2A1B2aπ � π

2a

� �

, (40)

∂B1

∂t
¼ A1aþ A1B2aπ � k2B1: (41)

Now we consider τ ¼ k2t ) t ¼ τ

k2
.

∂B1

∂τ
¼ A1a

k2
þ aπ

k2
A1B2 � B1: (42)

Now let us consider Eq. (30) and multiply with sin 2πz on both sides of the
equation and apply integration from 0 to 1 with respect to x and 0 to 2π

a :

∂B1

∂t

ð1

0

ð2π
a

0
cos ax sin πzsin2πzdxdzþ ∂B2

∂t

ð1

0

ð2π
a

0
sin 22πzdxdz (43)

þk2B1

ð1

0

ð2π
a

0
cos ax sin πz sin 2πzdxdz (44)

þ4B2π
2

ð1

0

ð2π
a

0
sin 22πzdxdz (45)

¼ A1a

ð1

0

ð2π
a

0
cos ax sin πz sin 2πzdxdz (46)

�
ð1

0

ð2π
a

0
�
ð1

0

ð2π
a

0
A1B1aπ cos πz sin πz sin 2πzdxdz (47)

�
ð1

0

ð2π
a

0
2A1B2aπcos2πz cos ax sin πzsin 2πzdxdz, (48)

then by simplifying the above equation, we get

∂B2

∂τ
¼ �4π2

k2
B2 �

aπ

2k2
A1B1: (49)

Similarly from Eq. (50)
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∂
2A1

∂τ2
¼ �2Pr

∂A1

∂τ
þ a

K6
a2Ra 1þ δg sin ωgt

� �� �

� π2TaPr� k6Pr
� �

A1 þ
πa2PrRa

k6
A1B2

þ aRaPr Pr� 1ð Þ
k4

B1,

(50)

where k2 ¼ π2 þ a2 is the total wavenumber and τ ¼ k2t is the rescaled time.
Introducing the following dimensionless quantities

R ¼ a2Ra

K6
,T ¼ π2Ta

k6
 and γ ¼ � 4π2

k2
, σ ¼ Pr, (51)

and rescale the amplitudes in the form of

X ¼ πa

k2
ffiffiffi

2
p A1,Y ¼ πR

ffiffiffi

2
p B1 and Z ¼ �πRB2: (52)

To provide the following set of equations, we consider the following equations

γ ¼ � 4π2

k2
, 1
k2
¼ � γ

4π2

∂B1

∂τ
¼¼ γa

4π2
A1 �

γaπ

4π2
A1B2 � B1, (53)

∂

∂τ

Y
ffiffiffi

2
p

πR

� 	

¼ γaR

4π2
Xk2

ffiffiffi

2
p

πaR

 !

� γa

4π

Xk2
ffiffiffi

2
p

πa

 !

� z

πR

� �

� Y
ffiffiffi

2
p

πR
, (54)

and then simplifying the above equation, we get

Y 0 ¼ RX � XZ � Y, (55)

now from the Eq. (50)

∂B2

∂τ
¼ γB2 �

1

2
� γ

4π2

� �

πaA1B1, (56)

∂

∂τ

Z

πR

� 	

¼ γ
z

πR

� �

� 1

2
� γ

4π2

� �

πa
Xk2

ffiffiffi

2
p

πR

 !

Y
ffiffiffi

2
p

πR

� 	

, (57)

Z0 ¼ γZ þ XY: (58)

Similarly from Eq. (28),

X0 ¼ W, (59)

W 0 ¼ �2σwþ σ R 1þ δg sin ωgt
� �� �

� σ T þ 1ð Þ
� �

X � σXZ þ σ σ � 1ð ÞY, (60)

where the symbol (/) denotes the time derivative dðÞ
dτ . Eqs. (56), (59), and (61)

are like the Lorenz equations (Lorenz (13), sparrow (14)), although with different
coefficients. The final nonlinear differential equations are given by
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X0 ¼ W, (61)

Y 0 ¼ RX � XZ � Y, (62)

Z0 ¼ γZ þ XY, (63)

W 0 ¼ �2σW þ σ R 1þ δg sin ωgτ
� �� �

� σ T þ 1ð Þ
� �

X � σXZ þ σ σ � 1ð ÞY: (64)

4. Stability analyses

To understand the stability of the system, we determine the fixed points of the
system and will try to find the nature of these fixed points through eigen equation.
The nonlinear dynamics of Lorenz-like system (62)–(65) has been analyzed and
solved for σ = 10, γ ¼ � 8

3 corresponding to convection. The basic properties of the

system to obtain the eigen function are described next.

4.1 Dissipation

The system of Eqs. (62)–(65) is dissipative since

∇V ¼ ∂X0

∂X
þ ∂Y 0

∂Y
þ ∂Z0

∂Z
þ ∂W 0

∂W
¼ � 2σ þ 1� γð Þ<0: (65)

If the set of initial solutions is the region of V(0), then after some time t, the
endpoints of the trajectories will decrease to a volume:

V tð Þ ¼ V 0ð Þ exp � 2σ þ 1� γð Þt½ �: (66)

The above expression shows that the volume decreases exponentially with time.

4.2 Equilibrium points

System (62)–(65) has the general form, and the equilibrium (fixed or stationary)
points are given by:

X0 ¼ W, (67)

W ¼ 0: (68)

From Eq. (83) we got

X ¼ Y

R� Z
, (69)

and similarly we also got the following from Eq. (64):

Z ¼ �Y2

γ R� Zð Þ , (70)

and similarly we also got the following from Eq. (65) for the momentum case:

R ¼ T þ 1, (71)
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then we get a relation

X2,3 ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

T þ 1� Rð Þγ
p

ffiffiffiffiffiffiffiffiffiffiffiffi

T þ 1
p (72)

the remaining Y2,3,Z2,3 will be accessed. The fixed points of rescaled system for
modulated case are X1,Y1,Z1ð Þ ¼ 0, 0, 0ð Þ corresponding to the motionless solution

and X2,3,Y2,3,Z2,3ð Þ ¼ �
ffiffiffi

Z
c

q

,�c
ffiffiffi

Z
c

q

, RI1�cð Þ
R�1ð Þ2

h i

corresponding to the convection solu-

tion. The critical value of R, where the motionless solution loses their stability and
the convection solution takes over, is obtained as Rcr ¼ c

I1
, which corresponds to

Ra ¼ 4π2 c
I1
where c ¼ 1þ C π2

γ

� �

and I1 ¼
Ð 1
0 sin

2 πzð Þf 2dz. This pair of equilibrium

points is stable only if R<

ffiffiffi

Z
c

q

; beyond this condition the other periodic, quasi-

periodic, or chaotic solutions take over at R>

ffiffiffi

Z
c

q

. The corresponding stability of the

fixed points associated with the motionless solution X1,Y1,Z1ð Þ ¼ 0, 0, 0ð Þ is
controlled by the zeros of the following characteristic polynomial:

5. Stability of equilibrium points

The Jacobian matrix of Eqs. (62)–(65) is as follows:

J ¼ DF X,Y,Z,Wð Þ ¼

0 0 0 0

R� Z �1 �X 0

Y X γ 0

σ R� σ T þ 1ð Þ � Z½ � σ σ � 1ð Þ �σX �2σ

2

6

6

6

6

6

4

3

7

7

7

7

7

5

:

The characteristic values of the above Jacobian matrix, obtained by solving the
zeros of the characteristic polynomial, provide the stability conditions. If all the
eigenvalues are negative, then the fixed point is stable (or in the case of complex
eigenvalues, they have negative real parts) and unstable, when at least one
eigenvalue is positive (or in the case of complex eigenvalues, it has positive real
part):

DF 0,0,0,0ð Þ ¼

0 0 0 0

R �1 0 0

0 0 γ 0

σ R� σ T þ 1ð Þ½ � σ σ � 1ð Þ 0 �2σ

2

6

6

6

6

6

4

3

7

7

7

7

7

5

:

The characteristic equation for the above system at origin is given by ∣A� λI∣ ¼ 0
which implies the following

γ ¼ λ, λ3 þ 2σ þ 1ð Þλ2 þ 2� Rð Þσ þ σ2 T þ 1ð Þ
� �

λþ σ2 T � Rþ 1ð Þ ¼ 0:

The first eigenvalue γ is always negative as γ ¼ �8
3 , but the other three eigen-

values are given by equation
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λ3 þ 2σ þ 1ð Þλ2 þ 2� Rð Þσ þ σ2 T þ 1ð Þ
� �

λþ σ2 T � Rþ 1ð Þ ¼ 0:

The stability of the fixed points corresponding to the convection solution
X2,3,Y2,3,Z2,3ð Þ is controlled by the following equation for the eigenvalues
λi, ¼ 1, 2, 3, 4:

λ4 þ λ3 2σ þ 1� γð Þ þ λ2 2σ � γ � 2γσγ � σT þ σ2T � σ þ σ2 þ X2
� �

þ λ X2σ T þ 1ð Þ
�

(73)

�σγ þ Tσγ � σ2γT � σ2γÞ þ 2X2σ2 T þ 1ð Þ ¼ 0, (74)

λ4 þ λ3 2σ þ 1� γð Þ þ λ2 þ �γR

T þ 1
þ 2σ 1� γð Þ þ σ σ � 1ð Þ T þ 1ð Þ

� �

λ2 (75)

þ �2σγR

T þ 1
þ σγ 2� σð Þ T þ 1ð Þ � R

� �

λþ 2σ2Y T þ 1� Rð Þ ¼ 0, (76)

σγ2 T þ 3ð Þ 1� γ � σ � σTð Þ
T þ 1ð Þ2

R2 � σγ 2σ þ 1� γð Þfγ 2� σð Þ þ 2σ 1� γð Þ T þ 3ð Þ
T þ 1

�

(77)

þσ T þ 3ð Þ σ � 1ð Þ � 2σ 2σ þ 1� γð Þg � 2σγ T þ 3ð Þ 2� σð Þ�R, (78)

þσ2γ T þ 1ð Þ 2� σð Þ 2σ þ 1� γð Þ2 1� γð Þ þ 1� σð Þ T þ 1ð Þ � γ T þ 1ð Þ 2� σð Þ½ � ¼ 0:

(79)

The loss of stability of the convection fixed points for σ ¼ 10, γ ¼ � 8
3 using

Eq. (80) is evaluated to be Rc2 ¼ 25:75590 for system parameters T = 0, Rc2 for
T = 0.1, Rc2 ¼ 25:75590 for T = 0.2, Rc2 ¼ 29:344020 for T = 0.45, and Rc2 ¼
32:775550 for T = 0.6.

5.1 Nusselt number

According to our problem, the horizontally averaged Nusselt number for an
oscillatory mode of convection is given by

Nu τð Þ ¼ conductionþ convection

conduction
: (80)

¼
a

2π

Ð

2π
ac
0

∂Tb

∂z þ ∂T2

∂z

� �

dx
h i

z¼0

ac
2π

Ð

2π
ac
0

∂Tb

∂z

� �

dx
h i

z¼0

: (81)

¼ 1þ
a

2π

Ð

2π
ac
0

∂T2

∂z

� �

dx
h i

z¼0

ac
2π

Ð

2π
ac
0

∂Tb

∂z

� �

dx
h i

z¼0

: (82)

In the absence of the fluid motions, the Nusselt number is equal to 1. And
simplifying the above equation, we will get the expressions for heat transfer
coefficient:

Nu ¼ 1� 2πB2 τð Þ: (83)
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6. Result and discussion

In this section we present some numerical simulation of the system of Eqs. (62)–
(65) for the time domain 0≤ τ≤40. The computational calculations are obtained by
using Mathematica 17, fixing the values σ ¼ 10, γ ¼ �8=3, and taking in the initial
conditions X(0) = Y(0) = 0.8, Z(0) = 0.9. In the case of T = 0, it is found that at
Rc1 ¼ 1, obtained from Eq. (80), the motionless solution loses stability, and the
convection solution occurs. Also the eigenvalues from Eq. (80) become equal and
complex conjugate when R varies from 24.73684209 to 34.90344691 given by Gupta
et al. [28]. The evolution of trajectories over a time domain in the state space for
increasing the values of scaled Rayleigh number and modulation terms is given in
the figures. The projections of trajectories onto Y-X, Z-Y, Z-Y, and W-Z planes are
also drawn (Figure 1). In Figure 2, we observe that the trajectory moves to the
steady convection points on a straight line for a Rayleigh number (R = 1:1) just
above motionless solutions. It is clear from Figure 3a that the trajectories of the
solutions approach the fixed points at R = 12, which means the motionless solution
is moving around the fixed points. As the value of R changes around R = 25.75590,
there is a sudden change and transition to chaotic solution (in Figure 3b).

In the case of gravity modulation in Figure 4, just keeping the values
δg ¼ 0:05,ωg ¼ 10 in connection with Figure 3, the motionless solution loses
stability, and convection solution takes over. Even at the subcritical value of
R = 25.75590, transition to chaotic behavior solution occurs, but one can develop
fully chaotic nature with suitably adjusting the modulation parameter values
δg ¼ 0:05,ωg ¼ 10.

To see the effect of rotation on chaotic convection for the value of T = 0.45, we
get Rc1 ¼ 1:45 from Eq. (80), which concludes that the motionless solution loses
stability at this stage and the convection solution takes over. The other second and
third eigenvalues become equal and complex conjugate at R = 31.44507647. In this
state the convection points lose their stability and move onto the chaotic solution.
The corresponding projections of trajectories and evolution of trajectories are
presented in Figure 5a and b, planes Y-X, Z-X, Z-Y, and W-Z. At the subcritical
value of R = 31.44507647, transition to chaotic behavior solution occurs. Observing
Figure 5b it is clearly evident that in the presence of modulation σ ¼ 20, δg ¼ 0:2,

Figure 1.
Physical configuration of the problem.
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Figure 2.
Phase portraits for the evolution of trajectories over time in the state space for increasing the value of rescaled
Rayleigh number (R). The graphs represent the projection of the solution data points onto Y-X, Z-X, Z-Y, and
W-Z planes for γ = �8/3; σ = 10,T = 0.1, R = 1.1 ωg = 0, δg = 0.0.
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Figure 3.
(a) Phase portraits for the evolution of trajectories over time in the state space Y-X, Z-X, Z-Y, and W-Z planes
for γ = �8/3, σ = 10,T = 0.1, R = 12, ωg = 2, δg = 0.0. (b) Phase portraits for the evolution of trajectories
over time in the state space Y-X, Z-X, Z-Y, and W-Z planes for γ = �8/3, σ = 10,T = 0.1, R = 25.75590,
ωg = 2, δg = 0.0.
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Figure 4.
Phase portraits for the evolution of trajectories over time in the state space modulation. The graphs represent the
projection of the solution data points onto Y-X, Z-X, Z-Y, and W-Z planes for γ = �8/3; σ = 10,T = 0.1, R =
1.1, ωg = 10, δg = 0.05.
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ωg ¼ 20, the trajectories are manifolds around the fixed points. Which are the
interesting results to see that the system is unstable mode with rotation and buoy-
ancy. But with gravity modulation, the system becomes stable mode.

For the value of T = 0.6, we obtain the motionless solution (where the system
loss stability) given in Figure 5b. The values of the second and third eigenvalues
become equal and complex conjugate when the value of R = 24.73684209; at this
point the convection points lose their stability, and chaotic solution must occur.
But due to the presence of modulation, the trend is reversed given in Figure 6.
Observing that in the presence of modulation δg ¼ 0:1,ωg ¼ 2, the system will
come to stable mode for large values of R. The effect of frequency of modulation
for the values ωg ¼ 2 and ωg ¼ 20 on chaos is presented in Figure 7a and b. It is clear
that low-frequency-modulated fluid layer is in stable mode and high-frequency-
modulated fluid layer in unstable mode. The reader may have look on the studies
of [29–33] for the results corresponding to the modulation effect on chaotic
convection.

Figure 5.
(a) Phase portraits for the evolution of trajectories over time in the state space Y-X, Z-X, Z-Y, and W-Z planes
for γ = �8/3, σ = 10,T = 0.2, R = 31.44507647, ωg = 2, δg = 0.0. (b) Phase portraits for the evolution of
trajectories over time in the state space Y-X and Z-Y planes for γ = �8/3, σ = 20,T = 0.2, R = 31.44507647,
ωg = 25, δg = 0.2.
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Finally we also derived the heat transfer coefficient (Nu τð Þ) given by Eq. (83)
and verified the rate of transfer of heat under the effect of gravity modulation. It is
clear from Figure 8 that heat transfer in the system is high for low-frequency
modulation and for δg values varies from 0.1 to 0.5. The results corresponding to the
gravity modulation may be observed with the studies of [19–26].

7. Conclusions

In this chapter, we have studied chaotic convection in the presence of rotation
and gravity modulation in a rotating fluid layer. It is found that chaotic behavior can
be controlled not only by Rayleigh or Taylor numbers but by gravity modulation.
The following conclusions are made from the previous analysis:

1.The gravity modulation is to delay the chaotic convection.

2.Taking the suitable ranges of ωg, δg, and R, the nonlinearity is controlled.

3.The chaos in the system are controlled by gravity modulation either from
stable to unstable or unstable to stable depending on the suitable adjustment of
the parameter values.

4.The results corresponding to g-jitter may be compared with Vadasz et al. [27],
Kiran [31] and Bhadauria and Kiran [33].

5. It is found that heat transfer is enhanced by amplitude of modulation and
reduced by frequency of modulation.

Figure 6.
Phase portraits for the evolution of trajectories over time in the state space Y-X and Z-Y planes for γ = �8/3,
σ = 20,T = 0.6, R = 24.73684209, ωg = 10, δg = 0.1.
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Figure 7.
(a) For γ = �8/3, σ = 20,T = 0.2, R = 34.90344691, ωg = 2, δg = 0.1. (b) Phase portraits for the evolution
of trajectories over time in the state space Y-X and Z-Y planes for γ = �8/3, σ = 20,T = 0.2, R = 34.90344691,
ωg = 20, δg = 0.1.
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