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Chapter

Introductory Chapter: 
Mitochondrial Alterations and 
Neurological Disorders
Stavros J. Baloyannis

1. Introduction

Mitochondria (from Greek mito, μίτος, thread; and chondrion, χόνδριον, thick 
granule) are principal cell organelles, which participate in a wide spectrum of 
essential cellular functions, being the main energy providers for living eukaryotic 
cells, especially for neurons and glia, which are characterized by high metabolic 
activity and energy consumption.

Thus, it is expectable that mitochondrial dysfunction, having pleotropic effect 
on the cell, may play a crucial role in a substantial number of serious neurological 
disorders including Alzheimer’s disease (AD) [1, 2], Parkinson’s disease (PD) [3] 
Huntington’s disease [4, 5], amyotrophic lateral sclerosis (ALS) [6], multiple sclero-
sis (MS) [7, 8], as well as some of the major psychiatric diseases [9], given that both, 
neurons and glia, are particularly sensitive and vulnerable to energy decline [10].

Mitochondria hypothesis of those devastating diseases advocates reasonably 
in favor of the important role that mitochondrial dysfunction may play in the 
early stages of neurodegeneration by inducing energy deficiency and oxidative 
stress [11].

However, the majority of the mitochondrial diseases, being maternally inher-
ited, which are designated as mitochondrial encephalomyopathies [12], are closely 
connected either with the impairment of nucleus-to-mitochondria signaling or with 
mutations in mtDNA or nuclear genome that affect seriously the mitochondrial 
respiratory function even from the initial steps of the life [13], inducing defective 
oxidative phosphorylation (OXPHOS).

2. The genetic background of mitochondrial dysfunction

It is well known that mitochondria, as very specific organelles, include several 
copies (2–10 copies) of their own DNA (mtDNA), which consists of a 16.5 kb 
circular DNA molecule, being particularly prone to mutation [14]. mtDNA encodes 
for 37 genes, 13 of them encoding 13 polypeptides, which all are major components 
of OXPHOS complexes I, III, IV, and V, along with 22 tRNAs and 2 rRNAs, which 
play an essential role for the expression of the 13 subunits [15].

Mutations in mtDNA may be related to 25% of childhood-onset diseases [16] 
and to 75% of adult-onset ones [17], depending on the existing homoplasmy or 
heteroplasmy. In addition, the accumulation of mtDNA mutations can also induce 
or facilitate the aging process [18], since a common phenomenon in mammalian 
aging is the substantial decrease of electron transfer in mitochondria [19, 20].
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3. Biological consequences of mitochondrial dysfunction

The mitochondria in addition to energy production compose also reactive 
oxygen species (ROS), which control redox status and intracellular Ca2+ levels and 
may induce apoptosis, by activating the mitochondrial permeability transition pore 
(mtPTP) [21]. In addition, mitochondria play a very important role in neuronal and 
glial calcium homeostasis due to their high capacity to accumulating Ca2+ [22].

Resting neurons contain usually minimal Ca2+ that can be increased by the 
activation of NMDA glutamate receptors, which induce a massive entry of Ca2+ into 
neurons, resulting in its high accumulation in the mitochondria [23]. Continuous 
activation of NMDA receptors would therefore induce Ca2+ overload of the mito-
chondria with the tragic consequence of the cell apoptosis, which frequently occurs 
as an epilogue of the excitotoxicity [24].

The apoptosis consists of a wide spectrum of biological phenomena [25] 
 including the release of caspase activators [26], the alterations of the electron 
transport system, the change of mitochondrial transmembrane potential, the 
disruption of the cellular oxidation-reduction equilibrium, and the activation of 
the pro-apoptotic Bcl-2 family proteins [27, 28].

In the majority of the mitochondria-related neurological disorders, the 
functional or morphological alteration of the mitochondrial may be induced by 
increased ROS production, abnormal protein aggregates (Ab, tau) [29, 30], muta-
tions in genes encoded by the mitochondrial and nuclear genome, and exposure of 
the cell to toxic factors [31].

4. The morphology of mitochondria in health and disease

Cell mitochondria could be visualized in light microscopy in properly fixed 
material by means of a number of special staining reactions [32–34]. It is observed 
that their size generally ranges from 0.5 to 1 micron in diameter, being changeable 
due to frequent divisions and fusions, which are controlled by mitofusin activity 
[35]. The shape of the mitochondria is also continuously changed due to their 
impressive active motility, controlled by calcium signal [36, 37], given that they 
are in constant flux, especially in brain’s areas of high energy consumption in 
order to contribute in energy supply and to participate in the intracellular signal-
ing actively [38].

Electron microscopy has been contributing greatly in the study of mitochondria 
in health and disease [39, 40]. Each mitochondrion in healthy condition is sur-
rounded by a limiting double membrane and includes numerous longitudinal or 
tubular invaginations called mitochondrial cristae that are folds of the inner layer of 
the double membrane [41], which is four times greater than the outer one.

The cristae are mostly arranged perpendicularly to the long axis of the organelle, 
exhibiting a high morphological variability according to metabolic demands of the 
cell [42], being frequently lamellar, tubular, or triangle-shaped. In the majority of 
the mitochondria, the cristae are arranged parallel to one another inside a structure-
less matrix, which is clearly seen among the cristae.

Cardiolipin seems to play a crucial role in the morphology of cristae, since the 
disruption of cardiolipin biosynthesis induces obvious alteration of the cristae 
morphology [43]. In addition, Opa1, which is a GTPase, demonstrating dynamin-
like properties, plays a substantial role in the modulation of the cristae structure 
and in their remodeling during mitochondrial fusion and fission [44] and apoptotic 
process [45]. The cristae have a high protein content [46], being also the principal 
site of the oxidative phosphorylation [47].
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Electron microscope tomography, revealing the three-dimensional appearance 
of the cristae, shows that they are connected with the inner mitochondrial mem-
brane by a narrow, tubular opening, characterized as “crista junction” (CJ), which 
is associated with protein import [48] and mitochondrial inner compartmentaliza-
tion [49].

In neurodegeneration such as in Alzheimer’s disease, mitochondrial cristae are 
disrupted even from the initial stages of the disease, and concentric patterns of 
cristae membranes are frequently seen [50].

5. Mitochondrial trafficking and concentration

Mitochondria, like many other cell organelles, are oriented and positioned prop-
erly in neurons and glia in order to be able to fulfill the energy demands of the cells 
perpetually. Thus, neurons, axons, dendrites, and synapses, which are character-
ized by high ceaseless activity, have intensive mitochondrial motility and impressive 
concentrations [51], via various trafficking patterns [52].

Axonal transport of mitochondria [53] requires microtubules (MTs) [54, 55] or 
actin filaments in axons [56], which facilitate the movement of the mitochondria 
in areas of high metabolic demands and increased energy consumption [57]. It is 
noticed that disruption of axonal transport of mitochondria occurs as an early phe-
nomenon in cases of neuroinflammation [58], including multiple sclerosis [59–61].

6. Clinical expression of mitochondrial dysfunction

A considerable number of syndromes have been described with marked neuro-
logical phenomena in the spectrum of mitochondrial disorders [62]. The severity of 
the clinical manifestation of mitochondrial dysfunction varies considerably, given 
that there exists a threshold in the degree of mitochondrial deficiency for the clini-
cal expression of the disease [63, 64]. Thus, the symptoms and clinical phenomena 
are continuously aggravated, in the majority of the cases of mitochondrial diseases, 
as the age of the patients advances [65]. It is reasonable to accept that organs with 
high energy demand would be more seriously affected by the mitochondrial dys-
function than others with low level of energy necessity. Thus the brain, the skeletal 
muscles, and the heart have a typical involvement in adolescence and adulthood, 
though multi-system manifestation is not also an uncommon phenomenon, espe-
cially in childhood.

Many clinical syndromes have been described that are associated with mito-
chondrial dysfunction including encephalomyopathy, stroke-like episodes, 
myoclonic epilepsy, neuro-gastrointestinal phenomena, cranial or peripheral neu-
ropathy, ataxia, retinitis pigmentosa, chronic progressive external ophthalmoplegia 
which are associated frequently with lactic acidosis, mental retardation, or progres-
sive mental decline [66].

In addition, oxidative stress, due to mitochondrial dysfunction, plays a principal 
role, as causative factor, in the neurodegeneration [67] and in Alzheimer’s disease 
particularly [68, 69], and it is considered as been among the potential risk factors 
for the neurometabolic and neoplastic diseases, as well as obesity [70].

Molecular genetic testing on one hand and muscle biopsy on the other hand for 
the histochemical investigation in light microscopy and the ultrastructural study 
in electron microscopy of the muscle tissue are essential diagnostic procedures for 
approaching the diagnosis of mitochondrial disorders [71]. In addition, biochemi-
cal testing in blood, urine, and spinal fluid associated with neuroimaging [72] 



Mitochondria and Brain Disorders

4

Author details

Stavros J. Baloyannis
Aristotle University of Thessaloniki, Greece

*Address all correspondence to: sibh844@otenet.gr

would be useful diagnostic procedures in following in time the progression of 
 mitochondrial diseases [71].

7. The final escape

A final escape from the labyrinth of mitochondrial-related neurological dis-
orders is extremely difficult and less pragmatic under the present circumstances. 
Prospectively, an efficient treatment could be based on a stable modulation of 
mtDNA heteroplasmy [73], whereas gene therapy, gene transfer, and tRNA-targeted 
therapeutic attempts [74] as well as stem cell therapy for nuclear DNA mutations 
[75, 76] are very promising therapeutic endeavors with substantial medical and 
scientific value [77, 78].

In addition, an efficient and easy to apply treatment of mitochondrial dysfunc-
tion would open new bright horizons in the therapy of the inflammatory and 
neurodegenerative disorders [79], being beneficial in the amelioration of the quality 
of life of a substantial number of seriously suffering human beings.

© 2020 The Author(s). Licensee IntechOpen. This chapter is distributed under the terms 
of the Creative Commons Attribution License (http://creativecommons.org/licenses/
by/3.0), which permits unrestricted use, distribution, and reproduction in any medium, 
provided the original work is properly cited. 
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