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Chapter

High-Density Lipoprotein: From 
Biological Functions to Clinical 
Perspectives
Donghui Liu

Abstract

High-density lipoprotein (HDL) is a heterogeneous particle composed of 
apolipoproteins, enzymes, and lipids. Besides transporting cholesterol to the liver, 
HDL also exerts many protections on anti-oxidation, anti-inflammation, and 
anti-apoptosis. Initial understandings of HDL came from its protective roles against 
atherosclerosis and the observation that high plasma HDL cholesterol (HDL-C) 
levels seemed to decrease cardiovascular disease (CVD) attack. However, those 
patients either with cholesterol ester transfer protein (CETP) deficiency or tak-
ing CETP inhibitors substantially elevated HDL-C levels but did not necessarily 
decrease CVD risk. Thus, some researchers suggested that quantitative measure-
ments of HDL particle (HDL-P) might be more valuable than traditional HDL-C 
measurements. What is more bewildering is that HDL from patients with systemic 
inflammation decreased its protective effects and even became a pro-inflammatory 
factor. Recently, synthesized HDL and apolipoprotein mimetic peptides showed 
biological functions similar to native ones. Expectedly, lots of novel measurement 
methods and therapeutic agents about HDL would be established soon.

Keywords: HDL, apolipoprotein, mimetic peptide, atherosclerosis, CVD

1. Introduction

Initial understandings of high-density lipoprotein (HDL) came from the 
epidemiological studies, which consistently showed that a low HDL cholesterol 
(HDL-C) level is regarded as an independent risk for the development of cardio-
vascular disease (CVD) [1, 2]. Inversely, elevated HDL-C concentration in plasma 
is correlated with reduced CVD risk [3]. Therefore, lots of strategies for raising 
HDL-C were considered to be the suitable targets for CVD prevention and treat-
ment [4, 5]. Deficiency and inhibition of cholesterol ester transfer protein (CETP) 
increase plasma HDL-C levels; however, they do not necessarily reduce CVD risk 
as expected, which suggest that the compositions and functions of HDL are more 
complicated than we supposed before [6]. Besides reverse cholesterol transport 
(RCT), HDL possesses anti-oxidative, anti-inflammatory, and anti-apoptotic 
effects on endothelial cells, exerts anti-migrative and anti-proliferative functions 
on smooth muscle cells, and presents anti-development and anti-metastasis char-
acteristics on cancer cells [7, 8]. Nevertheless, HDL either modified by oxidation 
and glycation or isolated from patients with systemic inflammation decreases its 
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protective effects and even becomes a pro-inflammatory, pro-oxidative, and pro-
apoptotic factor [9]. Consequently, the question whether HDL-C is still the “good 
cholesterol” becomes more bewildering to be answered.

2. HDL-C levels and CVD

For a half century, Framingham study has supported the concept that HDL-C 
was thought to be a “good” lipoprotein and a negative risk factor against athero-
sclerosis and a decreased HDL-C level emerged as an independent risk for CVD, 
owing to a strong inverse correlation between plasma HDL-C levels and CVD [1]. 
The basis of this concept mainly came from the role of HDL in RCT [10]. However, 
the understanding of HDL-C and its relationship to CVD has changed dramatically. 
Deficiency and inhibition of CEPT or mutation of scavenger receptor class B type I 
(SR-BI) increase plasma HDL-C levels but do not accordingly reduce CVD events in 
these patients, which challenge the traditional ideas.

2.1 Reverse cholesterol transport (RCT)

An excess of cholesterol production or absorption is deleterious by contributing 
to cholesterol accumulation in vessel wall and subsequent atherosclerosis initia-
tion. Thus, there is a physiological need to move the excessive cholesterol from 
peripheral tissues; this process is called reverse cholesterol transport (RCT) [10]. 
RCT represents the primary mechanism by which HDL delivers cholesterol from 
peripheral cells to the liver. This pathway of recycling and eliminating cholesterol 
is the antiatherogenic basis of high HDL-C levels against CVD and also represents a 
rescue mechanism for atherosclerotic plaque regression.

The first step of RCT is cellular cholesterol efflux to apolipoprotein A-I (apoA-I) 
mediated by ATP-binding cassette transporter A1 (ABCA1). Cholesterol efflux also 
occurs toward mature HDL through ATP-binding cassette transporter G1 (ABCG1) 
and SR-BI. Cholesteryl esters (CE) of HDL can be transferred to apolipoprotein B 
(apoB)-containing lipoproteins through the action of CETP, with ultimate uptake 
by low-density lipoprotein (LDL) receptor (LDL-R) in the liver. Each step in this 
process may influence the plasma levels of HDL-C. Because of the failure of reduc-
ing CVD risk by elevating HDL-C, the cholesterol efflux capacity of HDL seems to 
be more valuable to predict CVD incidence than HDL-C levels [11].

2.2 ATP-binding cassette transporter A1/G1 (ABCA1/G1)

A major breakthrough in understanding the mechanisms of RCT came from 
the discovery of Tangier disease, which is characterized by low HDL-C levels 
and high CVD risk because of the molecular defect in ABCA1 [12]. Low HDL-C 
level in these patients is caused by decreased cellular cholesterol efflux owing 
to ABCA1 mutation as well as increased catabolism of lipid-poor apoA-I [13]. 
ABCA1 knockout mice have an extremely low HDL-C phenotype similar to that 
of Tangier disease patients [14]. Thus, ABCA1 is essential for HDL maturation. In 
addition, it is also worth noting that the interaction between apoA-I and ABCA1 in 
macrophages also displays significant anti-inflammatory effects through activat-
ing JAK2/STAT3 pathway [15]. These effects reduce the attraction of macrophages 
into the vessel wall and ultimately result in the decreased plaque formation. These 
findings implicated that ABCA1 is a direct molecular link between the cardio-pro-
tective effects of cholesterol export and the inhibition of inflammatory responses 
in macrophages.
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In contrast to ABCA1, ABCG1 promotes cholesterol efflux from macrophages 
to mature HDL but not to apoA-I [16]. In addition, ABCG1 also stimulates the 
release of cellular phospholipids to HDL [17]. Therefore, ABCA1 and ABCG1 are 
assumed to act in a sequential manner, which generates nascent HDL through 
ABCA1 and then facilitates cholesterol efflux via ABCG1, resulting in the forma-
tion of mature HDL.

2.3 Lecithin: cholesterol acyltransferase (LCAT)

LCAT is responsible for the esterification of free cholesterol and thus for the 
maturation of HDL by transferring fatty acids from lecithin (phosphatidyl cho-
line) to cholesterol [18]. Once esterified, cholesterol moves from the surface to the 
hydrophobic core of HDL. In the presence of LCAT, the bidirectional movement of 
cholesterol between cells and HDL results in cholesterol efflux. Therefore, LCAT 
plays a central role in the initial step of RCT.

As a result of cholesterol esterification, LCAT also maintains a gradient of free 
cholesterol between cell membranes and lipoproteins. The activity of LCAT is 
essential to maintain the normal HDL metabolism and the optimal functional prop-
erties of HDL particles. In human, LCAT deficiency is responsible for low HDL-C 
levels, which changes HDL distribution and composition [19]. HDL from trans-
genic mice overexpressing human LCAT is prior to accepting free cholesterol from 
fibroblast compared to control HDL. It is likely that LCAT-mediated changes in 
HDL composition favor cholesterol accommodation within the particles. The flux of 
CE to the liver is increased in human LCAT-transgenic mice as a result of increased 
CE content in HDL but not an increased catabolic rate of HDL [20]. Although it is 
clear that LCAT deficiency in human and mice is associated with reduced HDL-C 
levels, it is still not defined whether LCAT overexpression or deficiency is pro- or 
anti-atherogenesis.

2.4 Cholesterol ester transfer protein (CETP)

CETP plays a key role in the exchange of CE and triglycerides (TG) between 
HDL and apoB-containing lipoproteins (VLDL, IDL, and LDL). As a result of CETP 
activation, HDL becomes smaller and TG-enriched. It is estimated that 66% of CE 
in HDL returns to the liver through CETP, indicating an important role of CETP 
in RCT process and HDL remodeling [21]. Some studies found that deficiency of 
CETP in human is associated with increased plasma HDL-C levels but inversely 
displays a relatively increased CVD incidence [22]. Small HDL particles are not 
increased in CETP-deficient subjects, suggesting that ABCA1-mediated cholesterol 
efflux might not represent the predominant pathway of cellular cholesterol efflux. 
Earlier studies also demonstrated that HDL from CETP-deficient subjects is defec-
tive to mediate cholesterol efflux from cholesterol-loaded macrophages, leading to 
the hypothesis that enrichment of CE in HDL in homozygous subjects might not be 
favorable for the antiatherogenic activities of these particles [23]. However, HDL 
from CETP-deficient subjects has been shown to possess an increased capacity to 
mediate cholesterol efflux through ABCG1 [24].

Additionally, inhibition of CETP successfully elevates HDL-C levels and 
decreases LDL-C levels but unexpectedly does not show atheroprotections and even 
increases cardiovascular mortality [25–27]. Until now, almost all CETP inhibi-
tors, including torcetrapib (Pfizer), dalcetrapib (RO4607381, Roche; JTT-705, 
JT), anacetrapib (MK-0859, Merck), and evacetrapib (LY2484595, Eli Lilly), were 
announced to be failed to reduce CVD accidence although significantly elevating 
plasma HDL-C levels.
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2.5 Scavenger receptor class B type I (SR-BI)

As the last step in RCT, SR-BI has been shown to function as another HDL 
receptor that mediates selective cholesterol uptake in the liver. SR-BI knockout 
mice remarkably elevate HDL-C levels but paradoxically increase atherosclerosis 
[28]. Some studies also reported that variant of SR-BI in which leucine replaces 
proline 376 (P376L) abrogates its ability to uptake HDL from plasma to the liver. 
Consequently, these patients have a profound HDL-related phenotype and an 
increased CVD risk [29].

3. HDL composition

Generally, HDL particles contain apolipoproteins, enzymes, charged lipids 
(phospholipids and free cholesterol) on the surface, and neutral lipids (TG and CE) 
in the core. The compositional complexity of HDL is further verified through the 
quantitative and qualitative proteome and lipidome assay, which carries more than 
80 different proteins, over 200 lipid species, various microRNAs, as well as other 
bioactive molecules [30]. This physiological heterogeneity is further increased in 
the inflammatory conditions (e.g., CVD, diabetes mellitus, chronic kidney disease, 
and rheumatic diseases). The known functions associated with these components 
are diverse and span physiological roles far beyond the classical roles for HDL in 
lipid metabolism, suggesting that novel properties of HDL may exist. Therefore, 
it seems not reasonable to simply make HDL-C levels reflect the compositions and 
functions of HDL particles and predict the risk of CVD.

3.1 Apolipoprotein A-I (apoA-I)

ApoA-I is the most abundant protein of HDL, which is synthesized in the liver 
and intestine and almost located in all HDL particles. Mature apoA-I is a 28-kDa 
protein that consists of 243 amino acids and contains 10 amphipathic helical 
domains. It has been found that apoA-I plays a variety of roles associated with HDL 
metabolism. One primary function of apoA-I is to interact with cellular surface 
transporters (ABCA1), mediate cholesterol efflux, and activate LCAT, which 
exerts the foundational effects in RCT process as described above [31, 32]. Human 
subjects with apoA-I deficiency and apoA-I-deficient mice fail to form mature HDL 
particles [33]. Liver-specific overexpression of apoA-I was found to increase apoA-I 
and HDL-C levels in plasma, thereby reducing atherosclerosis in hyperlipidemic 
mice [34, 35]. In addition, apoA-I enhances the proliferation of human endothelial 
progenitor cells (EPCs) and promotes angiogenesis through ATP synthase in cell 
surface [36]. ApoA-I restores neovascularization of the lymphatic system in tumor 
necrosis factor (TNF)-alpha-mediated inflammatory responses [37]. We also found 
that human apoA-I induces cyclooxygenase-2 (COX-2) expression and prostaglan-
din I-2 (PGI2) release in endothelial cells through ABCA1 [38]. ApoA-I inhibits the 
chemotaxis, adhesion, and activation of THP-1 monocytes induced by lipopoly-
saccharide (LPS) and improves HDL inflammatory index (HII) in plasma [39]. 
Furthermore, apoA-I displays anti-inflammatory effects in adipocytes and adipose 
tissues similar to their effects in other cell types [40].

3.2 Paraoxonase-1 (PON1)

PON1 is a HDL-associated lactonase, which could hydrolyze a wide variety 
of lactones, thiolactones, aryl esters, cyclic carbonates, and organophosphate 
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pesticides and prevent LDL oxidation [41, 42]. Decreased PON1 activity is a risk 
factor for CVD development independently of HDL-C levels [43]. PON1 reduces 
oxidative stress, inhibits cholesterol synthesis, and promotes cholesterol efflux 
in macrophages [44, 45]. Low PON1 activity is associated with many inflamma-
tory diseases, including diabetes mellitus, rheumatoid arthritis, systemic lupus 
erythematosus, psoriasis, and renal diseases [46]. In the presence of PON1, lipid 
hydroperoxide is reduced, monocyte chemotactic protein 1 (MCP-1) production 
is inhibited, and atherosclerotic progression is attenuated [47]. Overexpression of 
PON1 inhibits atherosclerosis in mice with metabolic syndrome [48]. Additionally, 
it has been shown that PON1 can prevent the development of diabetes mellitus in 
mice through its anti-oxidative properties, suggesting a possible role of PON1 in 
stimulating insulin biosynthesis in islet beta cells [49].

3.3 Phospholipids in HDL

Besides free cholesterol, TG, and CE, there are many kinds of phospholipids 
in HDL molecules, mainly including ceramide, sphingomyelin, and sphingosine-
1-phosphate (S1P) [50]. These phospholipids are located 0n the surface monolayer 
of HDL together with free cholesterol and apolipoproteins. Ceramide mediates an 
inflammatory response induced by cytokines or oxidized LDL (ox-LDL), which 
upregulates the expression of adhesion molecules, increases the adhesion and 
migration of monocytes, and subsequently promotes the initiation and progres-
sion of CVD [51]. Sphingomyelin regulates cholesterol efflux from peripheral cells, 
which is considered to possess an inverse relationship with CVD [52].

S1P is a bioactive lipid mediator generated by the phosphorylation of sphingo-
sine via sphingosine kinases (SphK) 1 and SphK2, which plays variously biological 
and pathophysiological roles through three members of G protein-coupled S1P 
receptors (S1P1, S1P2, and S1P3) [53]. These S1P receptors are differentially 
expressed, regulating proliferation, migration, adhesion, and inflammation in 
endothelial cells, smooth muscle cells, and macrophages, all of which play key 
roles in the development of CVD [54, 55]. HDL-associated S1P limits endothelial 
inflammation induced by TNF-alpha, including adhesion molecule abundance, 
monocyte-endothelial adhesion, and endothelial barrier permeability [56, 57]. 
S1P elevates endothelial nitric oxide synthase (eNOS) activity and promotes nitric 
oxide (NO) release in endothelial cells [58]. S1P induces endothelial cell migra-
tion and proliferation, prevents apoptosis and inflammation, improves vascular 
relaxation, and preserves endothelial barrier function [55, 59, 60]. Some studies 
showed that reduced HDL-S1P content contributes to HDL dysfunction in CVD 
patients, including induction of eNOS activation in endothelial cells and promo-
tion of vasodilatory potential in precontracted arteries. These decreased HDL 
functions could be efficiently improved by loading additional S1P to HDL both 
in vitro and in vivo [61]. In addition, exogenously administrated S1P accelerates 
neovascularization and blood flow recovery in ischemic limbs, suggesting its 
usefulness for angiogenic therapy. Furthermore, S1P was also shown to regulate 
VSMC proliferation and migration and to manipulate vascular tension via G 
protein-coupled receptors [62].

S1P1 is mainly expressed in endothelial cells, which mediates vascular matura-
tion and maintains vascular integrity by contributing to eNOS activation, inhibiting 
vascular permeability and inducing endothelial cell chemotaxis via Gi-coupled 
mechanisms [55]. By contrast, S1P2 is expressed in VSMCs and some types of 
tumor cells in high levels, which inhibits cell migration via the G(12/13)-and Rho-
dependent mechanism [55]. S1P3 is also primarily expressed in endothelial cells and 
mediates chemotaxis and vasorelaxation through a NO-dependent manner, which 
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plays protective roles for vascular integrity [55]. These results provide evidence for 
S1P receptor subtype-specific pharmacological intervention as a novel therapeutic 
approach to CVD [63].

3.4 MicroRNAs (miRNAs) in HDL

miRNAs are small noncoding RNAs that suppress gene expression through post-
transcriptional regulation of mRNA stability. Extracellular miRNAs likely serve as 
the cellular messages, which are transported between cells in an endocrine form of 
intercellular communication via circulation. In the blood vessels, these transferring 
miRNAs modulate atherosclerosis and angiogenesis, and in the heart, they modu-
late ischemic/reperfusion (I/R) injuries, myocardial infarction, and heart failure. In 
plasma, they are protected from circulating ribonucleases through the association 
with lipoproteins [64]. Especially, HDL is reported to be the major carrier of miR-
NAs in plasma. Furthermore, HDL exhibits an independent miRNA profile distinct 
from that of plasma through the micro-transcriptome assay, which might notably 
influence the biological functions of HDL [65].

HDL transports endogenous miRNAs and delivers them to recipient cells with 
functional targeting capabilities. Cellular export of miRNAs to HDL is regulated 
by neutral sphingomyelinase. Injecting reconstituted HDL (rHDL) into mice 
retrieves distinct miRNA profiles from normal and atherogenic animal models. 
Furthermore, HDL-mediated delivery of miRNAs to recipient cells was demon-
strated to be dependent on SR-BI. The human HDL-miRNA profiles in healthy 
subjects are significantly different from those of familial hypercholesterolemia 
subjects. Notably, HDL-miRNAs from atherosclerotic subjects induce differential 
gene expression [66, 67]. Collectively, these observations indicated that HDL 
participates in a mechanism of intercellular communication through the delivery 
of miRNAs.

Some studies reported that the contents of miR-486 and miR-92a in HDL are 
reduced in vulnerable CVD patients [68]. HDL-associated miR-223 levels are 
decreased after high-protein diet-induced weight loss in overweight and obese males 
[69]. Intestinal lymphatic HDL-associated miR-223 is reduced during insulin resistance 
and is restored by niacin in rats [70]. Furthermore, HDL-transferred miR-223 inhibits 
intercellular adhesion molecule-1 (ICAM-1) expression in endothelial cells [71].

4. HDL functions beyond RCT

HDL exerts diverse biological functions besides removing cholesterol from 
peripheral cells through RCT, which have attracted considerable attentions.

4.1 Endothelial cell protections of HDL

Endothelial cells play fundamental roles in regulating vascular functions  
[72, 73]. Many risk factors for atherosclerosis (e.g., hypercholesterolemia, hyper-
tension, and hyperglycemia) induce the inflammation and apoptosis in endothelial 
cells and initiate the pathogenesis of atherosclerosis [74]. Therefore, improving 
endothelial dysfunction is a potential target for preventing and treating CVD. HDL 
could inhibit cytokine-induced expression of vascular cell adhesion molecule-1 
(VCAM-1) and ICAM-1 in human umbilical vein endothelial cells (HUVECs) and 
reduce the adhesion of monocytes to endothelial cells [75]. Moreover, HDL induces 
endothelial repair by enhancing eNOS activity and increasing NO production 
through the SR-BI and ABCG1 pathways [76, 77]. HDL also improves vascular 
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health by reducing apoptosis and promotes proliferation and migration in endothe-
lial cells, which are crucial for neovascularization after vascular injuries [78].

4.2 HDL functions on vascular smooth muscle cells (VSMCs)

Many stress factors could induce VSMCs shifting from a contractile phenotype 
to a synthetic phenotype, and consequently the activated VSMCs proliferate and 
migrate from the medial layer of vessels into the intima which results in neointimal 
hyperplasia and artery stenosis [79, 80]. HDL counterbalances the pro-inflamma-
tory effects of ox-LDL by inhibiting intracellular reactive oxygen species (ROS) 
release and subsequent nuclear factor kappa-B (NF-κB) activation in VSMCs [81]. 
HDL also downregulates the production of fibroblast growth factor (FGF) and 
represses the proliferation of VSMCs triggered by ox-LDL [82]. HDL suppresses 
the expression of chemokines (CCL2, CCL5, CX3CL1, CCR2, and CX3CR1) and 
the proliferation of VSMCs induced by TNF-alpha via the SR-BI pathway [7]. In 
addition, HDL-associated alpha-antitrypsin (AAT) inhibits extracellular matrix 
degradation, cell detachment, and apoptosis triggered by elastase in human VSMCs 
[83].

4.3 HDL against inflammation

HDL plays an important role against inflammatory responses [84, 85]. HDL is able 
to bind and neutralize LPS as well as to facilitate LPS release from the surface of mac-
rophages, which inhibits macrophage activation and cytokine release [85–87]. HDL-
bound LPS does not interact with the cellular membrane receptors in macrophages, 
thereby decreasing the uptake of LPS by macrophages. And apoA-I is identified as the 
LPS-binding molecule in HDL [88]. In rat models of LPS-mediated sepsis, infusion of 
rHDL significantly reduces cytokine release, organ injuries, and animal mortality [89]. 
In addition, elevation of plasma HDL-C levels in transgenic mice by overexpressing 
apoA-I protects against septic shock and death caused by LPS and severe bacterial 
infection [90]. Similarly, low levels of HDL-C increase the mortality in patients with 
sepsis/septic shock [91]. Systemic administration of rHDL blunts the deleterious 
effects of LPS caused by small doses of intravenous LPS injection in human volunteers, 
such as attenuating cytokine release, correcting procoagulant state, and downregulat-
ing CD14 expression [92, 93]. Furthermore, HDL was shown to suppress cytokine and 
chemokine production, downregulate co-stimulatory molecules, and inhibit antigen 
presentation in macrophages and monocyte-derived dendritic cells [94].

4.4 Regulation of glucose metabolism by HDL

HDL may favorably regulate glucose metabolism. HDL promotes glycogen 
synthesis in skeletal muscle myocytes via SR-BI and stimulates glucose uptake 
by adipocytes [95]. HDL and apoA-I stimulate glucose uptake by skeletal muscle 
myocytes via increasing adenosine monophosphate-activated protein kinase 
(AMPK) activity [96]. HDL also enhances insulin secretion by pancreatic beta cells, 
which requires ABCA1-mediated cholesterol efflux as well as SR-BI expression [97]. 
In patients with type 2 diabetes mellitus (T2DM), intravenously injecting rHDL 
increases plasma insulin levels and decreases glucose concentrations in vivo [98].

4.5 HDL and cancer

Epidemiological studies showed that CVD and cancer possess various similari-
ties and possible interactions, including a number of common risk factors (e.g., 
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smoking, obesity, and diabetes mellitus) and a shared biology [99]. Low HDL-C 
levels might be a prognostic factor for biliary tract cancer, prostate cancer, colon 
cancer, breast cancer, and gastric cancer [100, 101]. In vitro studies also demon-
strated that native HDL could inhibit the migration and invasion of breast cancer 
cells [102, 103]. In addition, HDL could repress the adhesion of breast cancer cells 
to endothelial cells that mitigate the metastasis of breast cancer and reduce cancer 
growth through inhibiting tumor angiogenesis [104, 105].

5. Dysfunctional HDL in systemic inflammation

The potent atheroprotective effects of HDL originate from its unique composi-
tion and structure. If the composition or structure of HDL is altered in the setting of 
systemic inflammation (e.g., CVD and diabetes mellitus), it may lose its protective 
effects and even acquire deleterious functions, which is called dysfunctional HDL 
[106, 107]. Moreover, changes of HDL functions in systemic inflammation can also 
be the results of chemical modifications of HDL components without changing its 
composition. The most common modifications of HDL are oxidation and glycation 
of its proteins or lipids [9, 108]. Therefore, understanding the features of dysfunc-
tional HDL might lead to a new diagnostic and therapeutic approach to CVD.

5.1 Dysfunctional HDL in CVD

In the early phase of acute myocardial infarction, the pro-inflammatory HDL 
particles display remarkable alterations, including increased levels of lysophospha-
tidylcholine (LysoPC), phosphatidic acid (PA), ceruloplasmin, and serum amyloid 
A (SAA); decreased amounts of apoA-I, PON1, and platelet-activating factor acetyl-
hydrolase (PAF-AH); and reduced abilities of cholesterol efflux and anti-oxidative 
activity, which are implicated in the impaired functions of HDL [109, 110].

Myeloperoxidase (MPO) is released to plasma from monocytes and neutrophils 
in CVD, which uses hydrogen peroxide to generate hypochlorous acid (HClO) and 
subsequently causes oxidative modifications of lipids and proteins of lipoproteins, 
rendering HDL dysfunctions [111, 112]. Some studies found that MPO-dependent 
oxidation of HDL reduces the binding affinity of HDL to receptors and impairs 
its ability to stimulate cholesterol efflux from foam cells [113, 114]. Meanwhile, 
oxidized HDL (ox-HDL) can induce ROS production and upregulate the expres-
sion of pro-inflammatory and pro-thrombotic genes, such as TNF-alpha, matrix 
metalloproteinase-2/-9 (MMP-2/-9), COX-2, and plasminogen activator inhibitor-1 
(PAI-1), which elevates CVD risk [115–117]. In addition, ox-HDL is dysfunctional 
in inducing NO production and promoting endothelial repair in vitro and reendo-
thelialization of injured carotid arteries in vivo [118, 119]. And ox-HDL also pro-
motes VSMC proliferation and migration by triggering intercellular ROS production 
[120]. Furthermore, ox-HDL has an elevated capability to induce the proliferation, 
migration, and invasion of breast cancer cells, thereby promoting the metastasis of 
breast cancer [103, 121].

5.2 Abnormal HDL in diabetes mellitus

HDL could be deficient in T2DM conditions, because of enrichment of TG, 
depletion of CE, and glycation of apoA-I and HDL-associated enzymes. These 
changes impair the structure and function of HDL, reduce receptor-mediated cho-
lesterol efflux, and increase CVD risk [122, 123]. Glycation of HDL in vitro reduces 
its capacity to mediate cholesterol efflux from THP-1 macrophages, and incubation 
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with glycation inhibitors (metformin and aminoguanidine) restores HDL-mediated 
cholesterol efflux [124, 125]. HDL from diabetic subjects reduces the abilities of 
anti-oxidation and anti-apoptosis as well as the capacities to mediate cholesterol 
efflux from THP-1 macrophages, which result from depleting HDL-associated apoA-
I level and PON1 activity and elevating SAA concentration [126–128]. Both glycated 
HDL in vitro and diabetic HDL lose their protective effects on inhibition of cytokine 
release against LPS in macrophages [129]. Moreover, diabetic HDL is less effective 
to stimulate NO production, to promote proliferation and migration in endothelial 
cells by downregulating SR-BI, and to improve endothelium-dependent vasodilation 
and endothelial repairment [130, 131]. In addition, HDL from diabetic patients leads 
to abnormal actions on breast cancer cell adhesion to endothelial cells and extracel-
lular matrix, thereby promoting the metastasis of breast cancer [132]. HDL from 
T2DM patients carries a higher level of S1P, which could be partly responsible for 
the abnormal functions of diabetic HDL [133]. CETP activity is elevated in diabetic 
patients compared to healthy subjects, resulting in changed HDL remodeling and 
accelerated HDL clearance [134]. ApoA-I is glycated in T2DM patients in vivo and 
by glucose or methylglyoxal in vitro, and such glycation may impair its anti-inflam-
matory effects in endothelial cells [135, 136]. Some specific lysine (K) residues of 
apoA-I (K12, K23, K40, K96, K106, K107, and K238) are susceptible to be glycated 
either in vitro or in vivo, which alter the conformation of apoA-I and consequently 
impair the anti-inflammatory effects of apoA-I in diabetic conditions [137].

Plasma levels of ox-HDL in T2DM patients were reported to be higher than those 
in healthy individuals [138]. It was found that ox-HDL is independently and posi-
tively correlated with fasting glucose levels, suggesting that high glucose levels may 
also contribute to HDL oxidation [139]. Glycated HDL is more susceptible to oxida-
tion in vitro as shown by an increase in lipid peroxidation products and thiobarbitu-
ric acid-reactive substances (TBARS) following incubation of HDL with glucose.

6. HDL particles (HDL-P)

HDL comprises a heterogeneous group of discoid and spherical particles 
(7–12 nm in diameter) that differ in density, size, and electrophoretic mobility [30]. 
As whether plasma HDL-C levels could really reflect the whole HDL compositions 
and whether HDL-C is still a good predictor for CVD are questioned; quantitative 
measurements of HDL particles (HDL-P) might be more valuable and meaning-
ful than HDL-C [140]. In addition, HDL is a complex carrier for many kinds of 
proteins, lipids, and other biochemical materials in plasma as mentioned above, 
which might make it to be the natural endogenous nanoparticles that deliver cargoes 
targeted to recipient cells.

6.1 HDL subclasses

Distinct content in proteins and lipids results in various HDL subclasses, each 
characterized by differences in shape, density, size, and charge. Broadly, HDL 
can be distinguished into two subfractions by density: HDL2 and HDL3. HDL2 is 
larger, less dense, and strongly associated with apoA-I, which carries the majority of 
cholesterol reflected in HDL-C measurements. Unlike HDL2, HDL3 carries proteins 
that prevent oxidative stress and receive cholesterol from RCT through ABCA1. 
HDL3 cholesterol is well approximated by the sum of small and medium HDL-P 
concentration, whereas HDL2 cholesterol correlates strongly with large HDL-P 
concentration. By the action of LCAT, small HDL3 is progressively transformed 
to CE-enriched HDL2. CETP mediates the hetero-transfer of TG and CE between 
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HDL2a- and TG-rich lipoproteins, resulting in the formation of HDL2b subspecies. 
These latter particles are then transformed back to HDL3c by hydrolysis of TG and 
phospholipids as a result of the combined action of phospholipid transfer protein 
(PLTP), hepatic lipase (HL), and CETP [141, 142].

6.2 HDL-P measurement

Experimental studies pointed out that the widely used measurements of HDL-C 
levels may have obvious limitations, and the quantitative evaluation of HDL-P 
might be a more robust biomarker for assessing HDL functions and predicting 
CVD risk [11, 140]. A number of epidemiological and clinical trials, including 
the Heart Protection Study (HPS) [143], the Justification for the Use of Statins in 
Prevention: An Intervention Trial Evaluating Rosuvastatin (JUPITER) [144], and 
the Multi-Ethnic Study of Atherosclerosis (MESA) [145], demonstrated that HDL-P 
is a stronger and more independent predictor of CVD risk than HDL-C. In JUPITER 
study, investigators evaluated the relationship of HDL-C and HDL-P in more than 
10,000 subjects with CVD risk. JUPITER showed a significant inverse association 
between HDL-P and CVD risk. In contrast, HDL-C is not associated with CVD risk 
in statin-treated patients after adjustment for additional lipoprotein parameters 
[144]. MESA also found that HDL-P is a significant predictor of incident CVD 
events and carotid intima-media thickening (cIMT), even adjusting for HDL-C 
levels and other CVD confounders [145]. In addition, HDL-P is an independent pre-
dictor of major adverse cardiovascular events (MACE) among patients undergoing 
angiography [146]. Therefore, HDL-P might provide a more accurate and reliable 
measure of HDL than HDL-C.

6.3 HDL: nature’s nanoparticles

Compared to the artificial nanocarriers (e.g., liposomes, micelles, inorganic, 
and polymeric nanoparticles), HDL-based drug delivery strategies have unique 
features that deliver drugs, peptides/proteins, nucleic acids, and imaging agents 
targeted to various organs more efficiently [147]. These attributes of HDL include 
ultrasmall size (8–12 nm), high tolerability in humans (up to 8 g of protein per 
infusion), long circulating half-life (12–24 h), and intrinsic targeting properties to 
specific recipient cells [148, 149]. A statin-loaded rHDL nanoparticle remarkably 
inhibits the inflammatory responses in atherosclerotic plaque [150]. Moreover, 
nanoparticle-labeled HDL might be used to evaluate the stability of atheroscle-
rotic plaque through magnetic resonance imaging (MRI) after intraperitoneal 
application [151].

Furthermore, HDL is the natural anticancer drug delivery system for tumor 
imaging and treatment, which provides tumor-selective delivery of anticancer 
agents while reducing harmful off-target effects [152, 153]. Therefore, utilizing 
HDL nanoparticles would revolutionize the future strategy for the management of 
a broad range of cancers. Synthetic HDL nanoparticles could act synergistically and 
lessen the amount of mitotane/etoposide/cisplatin needed for anticancer efficacy 
in adrenocortical carcinoma [154]. The binding of anticancer drug valrubicin with 
rHDL increases the water solubility of valrubicin, which appears ideally suited for 
extended applications, including systemic cancer chemotherapy [155]. Artificial 
HDL nanoparticles using a gold nanoparticle induce B lymphoma cell apoptosis 
through SR-BI-mediated cholesterol starvation and selectively inhibit B-cell 
lymphoma growth in mice [156]. In addition, after delivering anti-angiogenic RNAi 
to endothelial cells, HDL strongly attenuates neovascularization in vivo and reduces 
tumor growth, which might be a potential treatment for cancer [157].
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7. Apolipoprotein mimetic peptides

Synthetic peptides modeling the amphipathic helices in apoA-I and apoli-
poprotein E (apoE) show the similar antiatherogenic properties to native ones, 
including promoting cholesterol efflux, improving oxidative stress, and reducing 
inflammatory response.

7.1 ApoA-I mimetic peptides

Studies found that the interaction between apoA-I and ABCA1 is not sequence-
specific and instead the amphipathic helices of apoA-I are identified as the key 
structural motifs [158]. To further understand these helices, a model of 18-amino 
acid peptide (18A) was developed, which is not identical in sequence to any of the 
individual helices of apoA-I [159]. 18A is referred to as 2F because it contains two 
phenylalanine (F) residues, which could solubilize phospholipids and activate 
LCAT. Many peptides were further designed on the basis of 2F to enhance the 
biological activities of the peptides [160, 161]. Among them, 4F, containing four F 
residues, is the most well-studied peptide, which significantly reduces atheroscle-
rotic lesion in apoE knockout and LDL-R null mice [162, 163]. The ability of 4F to 
promote cholesterol efflux was also noted, although it is not as effective as lipid-free 
apoA-I [164]. L-4F, synthesized with natural L-amino acids, is effective but not 
stable when administered orally, presumably due to its susceptibility to proteolysis 
in the intestine [162]. This problem was circumvented by fabrication of D-4F with 
D-amino acids, which displays the similar biological properties to L-4F and exerts 
significant antiatherogenic effects upon oral administration [162]. D-4F protects 
endothelial cells against ox-LDL-induced injury by antagonizing the downregula-
tion of pigment epithelium-derived factor (PEDF) [105]. We also found that 
D-4F alleviates ox-LDL-induced oxidative stress and promotes endothelial repair 
through the eNOS/HO-1 pathway [165]. Besides, D-4F accelerates vasodilatation 
and restrains atherosclerosis by regulating phospholipid metabolites and decreasing 
plasma LysoPC in LDL-R null mice [166]. Furthermore, D-4F decreases the myo-
cardial infarction area in hyperglycemia mice through promoting NO release and 
decreasing ROS generation in endothelial cells [167]. Metabolomic analysis showed 
that D-4F alleviates ox-LDL-induced oxidative stress and abnormal glycolysis in 
endothelial cells [168].

In addition, 6F is also bioactive even made from L-amino acids and presented 
orally [169]. End-blocked 6F is more hydrophobic than 4F, more effectively acti-
vates LCAT, and is at least as effective in binding oxidized lipids [170, 171]. The 5A 
peptide possesses many functional attributes of native apoA-I including cholesterol 
efflux, inhibition of LDL oxidation, and suppression of inflammation [172]. 
Additionally, 5A reduces atherosclerosis and prevents the induction of asthma in 
mouse models [173, 174].

7.2 ApoE-mimetic peptides

ApoE is a multifunctional apolipoprotein that associates with VLDL, LDL, and 
subsets of HDL. It participates in the clearance of these lipoproteins from plasma, 
by serving as ligand for LDL-R and its family of related receptors. Like apoA-I, it 
is also active in RCT and has anti-inflammatory and anti-oxidative activities [175]. 
These properties are believed to contribute to the antiatherogenic functions of 
apoE. Mimetic peptides derived from apoE have been developed. AT1–5261 is an 
apoE-mimetic peptide containing 25 amino acids [176]. In the lipid-free state, ATI-
5261 efficiently promotes ABCA1-mediated cholesterol efflux. When the peptide is 
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complexed with phospholipids, it is still capable of promoting cholesterol efflux in a 
partially ABCA1-dependent fashion [176].

7.3 Dual-domain peptides

The rationale for constructing the dual-domain peptide (Ac-hE18A-NH2) is 
that 18A promotes the association of lipid-free apoE ligand-binding sequence 
with lipoproteins. The peptide Ac-hE18A-NH2 lowers plasma cholesterol levels 
in hyperlipidemic mice [177, 178]. In vitro studies, Ac-hE18A-NH2 also decreases 
monocyte adhesion to endothelial cells, attenuates LPS-induced inflammatory 
responses in HUVECs, and reduces lipid hydroperoxides in LDL [178]. Compared to 
4F, Ac-hE18A-NH2 peptide was also shown to promote cholesterol efflux, improve 
endothelial dysfunctions, and lower plasma lipid hydroperoxides [179]. 4F binds 
oxidized lipid with high affinity, and Ac-hE18A-NH2 rapidly reduces plasma choles-
terol levels, including lowering VLDL and LDL levels [177].

8. Other therapeutics targeted to HDL

Besides the traditional drugs (e.g., statins, niacin, and PPARs agonists), there 
are some emerging molecules targeted to regulating HDL metabolism [180].

8.1 RVX-208 (apabetalone)

RVX-208 is a selective antagonist of the bromodomain of bromodomain and 
extra-terminal (BET), which induces apoA-I mRNA and protein expression 
through an epigenetic mechanism in hepatocytes in vitro, leading to elevated levels 
of plasma apoA-I and HDL-C in vivo [181–183]. RVX-208 selectively binds to BET 
bromodomains, competing for a site bound by the endogenous ligand (acetylated 
lysine) [184]. RVX-208 also increases HDL-C levels, decreases LDL-C contents, and 
reduces atherosclerotic plaque formation in hyperlipidemic apoE knockout mice 
[185]. Thus, RVX-208 might be a promising new approach for CVD treatment.

Microarray analysis found that RVX-208 upregulates many antiatherogenic gene 
expression and downregulates lots of pro-atherogenic gene expression in vivo [186]. 
RVX-208 reduces the vascular inflammation in vitro and in CVD patients by a BET-
dependent epigenetic mechanism [187]. RVX-208 remarkably represses the expression 
of pro-inflammatory cytokines (VCAM-1, MCP-1, and IL-6) in vitro and in vivo [185]. 
RVX-208 also increases 10 lipid classes in plasma HDL fractions, delays oral glucose 
absorption and endogenous glucose production, and reduces peripheral glucose 
disposal, which may protect against T2DM development [188]. RVX-208 reduces the 
expression of complement factors either in vitro or in mice and in CVD patients [189]. 
RVX-208 counters the trans-differentiation and calcification of VSMCs [190]. RVX-208 
lowers serum alkaline phosphatase levels and improves CVD risk [191]. RVX-208 favor-
ably modulates the vulnerability of carotid artery plaque through ultrasonic measure-
ment, which is related to an increase of HDL-P levels [192]. These results demonstrated 
that the antiatherogenic functions of RVX-208 occur via a combination of lipid profile 
changes, anti-inflammatory activities, as well as many other protective properties.

Recently, phase II trials showed that RVX-208 reduces MACE in treated 
patients, over and above that of apoA-I/HDL increasing action. This MACE reduc-
ing actions of RVX-208 is largely due to its novel anti-inflammatory actions  
[193, 194]. Currently, a phase III trial, BETonMACE, is ongoing to look for the 
effects of RVX-208 in CVD patients. Therefore, RVX-208 might act in multiple 
ways to inhibit atherosclerosis and would be an emerging option for CVD 
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management. However, we still need long-term phase III trial data to verify these 
effects on real-world CVD patients.

8.2 Liver X receptor (LXR) agonists

LXR agonists, as the key regulators of ABCA1/ABCG1 expression in macrophages, 
have been shown to promote cholesterol efflux in macrophages in vitro, raise HDL-C 
levels, and decrease atherosclerosis in LDL-R knockout mice  
[195, 196]. Studies have highlighted the primary antiatherogenic activity of LXR ago-
nists on macrophages [197]. Unfortunately, the first generation of LXR compounds 
has been hampered by their capacity to promote the expression of lipogenic genes in 
the liver, which elevate TG levels and increase hepatic steatosis [198]. LXR activator, 
T091317, induces gene expression of Niemann-Pick C1/2 (NPC1/2) in macrophages, 
increases cholesterol content in the outer layer of macrophage membranes, and 
decreases atherosclerosis in mice [199]. A novel LXR agonist, ATI-111, also prevents 
atherosclotic plaque formation in mice [200]. LXR agonist (LXR-623) is associ-
ated with increased expression of ABCA1 and ABCG1, but adverse central nervous 
system-related effects are noted in more than half of patients, leading to termination 
of the study [201, 202]. Other agonists (AZ876 and GW3965) were also shown to 
reduce the progression of atherosclerotic lesions [203]. Interestingly, restricting LXR 
activation to the intestine might also result in an increase in intestinal HDL formation 
via ABCA1, without developing fatty liver [204]. An intestinal-specific LXR agonist, 
GW6340, promotes cholesterol efflux in macrophages and increases intestinal excre-
tion of HDL-C [205]. Thus, LXR agonists may be a highly plausible and conceptually 
attractive target for the treatment of dyslipidemia and atherosclerosis, particularly if 
it can be accomplished with selective targeting to macrophage or the intestine.

8.3 Farnesoid X receptor (FXR) agonists

FXR is a bile acid-activated nuclear receptor that regulates cholesterol homeo-
stasis and HDL metabolism [206]. Activation of FXR is reported to lead to both 
pro- and anti-atherosclerotic effects, because a major metabolic change caused by 
FXR agonists is a reduction of plasma HDL-C in LDL-R knockout mice [206, 207]. 
In addition, FXR agonists promote HDL-C excretion into feces in mice and monkeys 
[207]. Therefore, FXR agonists have received much attention as a potential thera-
peutic target, and different agonists (GW4064, 6ECDCA, FXR-450, and PX20606) 
have been generated as a strategy for regulating HDL metabolism [207, 208]. These 
observations will support further studies to investigate the potential roles of FXR 
activation on HDL regulation.

8.4 miRNA inhibitors

HDL is a major carrier of circulating miRNAs in plasma as mentioned above. 
Meanwhile, miRNAs have also emerged as the important regulators on HDL 
metabolism. Several studies demonstrated that miRNAs control the expression of a 
large number of genes associated with HDL metabolism, including ABCA1, ABCG1, 
and SR-BI [209, 210]. These findings strongly suggested that miRNAs regulate HDL 
biogenesis, cholesterol efflux, and uptake in the liver, thereby controlling the whole 
RCT process [211, 212].

miR-33 could repress the expression of ABCA1/ABCG1 proteins; however, 
knockout of miR-33 upregulates ABCA1/ABCG1 expression, promotes HDL-
mediated cholesterol efflux, increases plasma HDL-C levels, and prevents the 
progression of atherosclerosis [213–215]. Besides raising HDL-C levels, inhibition of 
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miR-33 also lowers VLDL-TG contents in nonhuman primates [216]. Furthermore, 
anti-miR-33 therapy inhibits the gene expressions that enhance mitochondrial res-
piration and ATP production, promotes macrophage cholesterol efflux accompany-
ing with ABCA1 upregulation, and reduces atherosclerosis [217]. In addition, miR33 
inhibition overcomes the deleterious effects of atherosclerosis plaque progression in 
LDL-R knockout mice and diabetic mice [218, 219].

Additionally, inhibiting miR-144 could upregulate hepatic ABCA1 expression 
and increase HDL-C levels through the FXR-dependent pathway [220]. However, 
overexpression of miR-144 in the liver reduces ABCA1 expression, attenuates 
cholesterol efflux in macrophages, reduces HDL-C levels, and promotes athero-
sclerosis development [221]. An increase in miR-145 decreases ABCA1 expression 
and reduces plasma HDL-C levels and glucose-stimulated insulin secretion in islets. 
However, inhibiting miR-145 produces the opposite effects of increasing ABCA1 
expression, promoting HDL biogenesis in the liver and improving glucose-stimu-
lated insulin secretion in islets [222]. In mice, inhibition of miR-148a increases the 
hepatic expression of LDL-R and ABCA1, subsequently decreases plasma LDL-C 
concentrations, and elevates HDL-C levels, which may decrease LDL-C/HDL-C 
ratio and CVD risk [223]. Furthermore, miR-185, miR-96, and miR-223 may repress 
selective HDL-C uptake through inhibiting hepatic SR-BI, implying a novel mode 
of SR-BI regulation and an important role of miRNAs in modulating cholesterol 
metabolism [224]. Thus, these findings strongly supported the idea of developing 
miRNA inhibitors for the treatment of dyslipidemia and atherosclerosis [225].

9. Conclusions

As the failure of CEPT inhibitors on reducing CVD risk, the traditional con-
cept of HDL against CVD from Framingham study has been challenged. Besides, 
abnormal HDL functions in the setting of systemic diseases also make HDL more 
confused to be understood. Consequently, whether HDL-C is still a good predictor 
for CVD and whether HDL could really provide valuable protections against CVD 
are questioned. HDL comprises a heterogeneous group of particles composed of 
various of bioactive components. The compositional complexity of HDL is almost 
hardly to be reflected by measuring cholesterol contents loading in HDL. Thus, 
quantifying HDL-P numbers and evaluating HDL functions might be the more 
meaningful markers for CVD prediction. Meanwhile, many emerging strategies tar-
geted to regulate HDL metabolism and increase HDL-P levels were also attempted. 
Expectedly, more available measurement methods and therapeutic agents about 
HDL would arise in the near future.
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Appendices and nomenclature

AAT alpha-antitrypsin
ABCA1 ATP-binding cassette transporter A1
ABCG1 ATP-binding cassette transporter G1
AMPK adenosine monophosphate-activated protein kinase
apoA-I apolipoprotein A-I
apoB apolipoprotein B
BET bromodomain and extra-terminal
CE cholesteryl esters
CETP cholesterol ester transfer protein
cIMT carotid intima-media thickening
COX-2 cyclooxygenase-2
CVD cardiovascular disease
eNOS endothelial nitric oxide synthase
EPCs endothelial progenitor cells
FGF fibroblast growth factor
FXR Farnesoid X receptor
HDL high-density lipoprotein
HDL-C high-density lipoprotein cholesterol
HDL-P HDL particles
HII HDL inflammatory index
HL hepatic lipase
HOCl hypochlorous acid
HUVECs human umbilical vein endothelial cells
ICAM-1 intercellular adhesion molecule-1
I/R ischemic/reperfusion
LCAT lecithin cholesterol acyltransferase
LDL low-density lipoprotein
LDL-R low-density lipoprotein receptor
LPS lipopolysaccharide
LXR liver X receptor
LysoPC lysophosphatidylcholine
MACE major adverse cardiovascular events
miRNAs microRNAs
MMP metalloproteinases
MPO myeloperoxidase
NF-κB nuclear factor kappa-B
NO nitric oxide
ox-HDL oxidized HDL
ox-LDL oxidized LDL
PA phosphatidic acid
PAF-AH platelet-activating factor acetylhydrolase
PAI-1 plasminogen activator inhibitor-1
PEDF pigment epithelium-derived factor
PGI2 prostaglandin I-2
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PLTP phospholipid transfer protein
PON1 paraoxonase-1
RCT reverse cholesterol transport
rHDL reconstituted HDL
ROS reactive oxygen species
S1P sphingosine-1-phosphate
SAA serum amyloid A
SR-BI scavenger receptor class B type I
SM sphingomyelin
SphK sphingosine kinases
T2DM type 2 diabetes mellitus
TBARS thiobarbituric acid-reactive substances
TG triglycerides
TNF-alpha tumor necrosis factor-alpha
VCAM-1 vascular cell adhesion molecule-1
VSMCs vascular smooth muscle cells
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