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Chapter

Approximate Solutions of Some
Boundary Value Problems by
Using Operational Matrices of
Bernstein Polynomials
Kamal Shah,Thabet Abdeljawad, Hammad Khalil

and Rahmat Ali Khan

Abstract

In this chapter, we develop an efficient numerical scheme for the solution of
boundary value problems of fractional order differential equations as well as their
coupled systems by using Bernstein polynomials. On using the mentioned polyno-
mial, we construct operational matrices for both fractional order derivatives and
integrations. Also we construct a new matrix for the boundary condition. Based on
the suggested method, we convert the considered problem to algebraic equation,
which can be easily solved by using Matlab. In the last section, numerical examples
are provided to illustrate our main results.

Keywords: Bernstein polynomials, coupled systems, fractional order differential
equations, operational matrices of integration, approximate solutions
2010 MSC: 34L05, 65L05, 65T99, 34G10

1. Introduction

Generalization of classical calculus is known as fractional calculus, which is one
of the fastest growing area of research, especially the theory of fractional order
differential equations because this area has wide range of applications in real-life
problems. Differential equations of fractional order provide an excellent tool for the
description of many physical biological phenomena. The said equations play
important roles for the description of hereditary characteristics of various materials
and genetical problems in biological models as compared with integer order differ-
ential equations in the form of mathematical models. Nowadays, most of its appli-
cations are found in bio-medical engineering as well as in other scientific and
engineering disciplines such as mechanics, chemistry, viscoelasticity, control the-
ory, signal and image processing phenomenon, economics, optimization theory,
etc.; for details, we refer the reader to study [1–9] and the references there in. Due
to these important applications of fractional order differential equations, mathema-
ticians are taking interest in the study of these equations because their models are
more realistic and practical. In the last decade, many researchers have studied the
existence and uniqueness of solutions to boundary value problems and their
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coupled systems for fractional order differential equations (see [10–17]). Hence the
area devoted to existence theory has been very well explored. However, every
fractional differential equation cannot be solved for its analytical solutions easily
due to the complex nature of fractional derivative; so, in such a situation, approxi-
mate solutions to such a problem is most efficient and helpful. Recently, many
methods such as finite difference method, Fourier series method, Adomian decom-
position method (ADM), inverse Laplace technique (ILT), variational iteration
methods (VIM), fractional transform method (FTM), differential transform
method (DTM), homotopy analysis method (HAM), method of radial base function
(MRBM), wavelet techniques (WT), spectral methods and many more (for more
details, see [9, 18–38]) have been developed for obtaining numerical solutions of
such differential equations. These methods have their own merits and demerits.
Some of them provide a very good approximation. However, in the last few years,
some operational matrices were constructed to achieve good approximation as in
[39]. After this, a variety of operational matrices were developed for different
wavelet methods. This method uses operational matrices, where every operation,
for example differentiation and integration, involved in these equations is
performed with the help of a matrix. A large variety of operational matrices are
available in the literature for different orthogonal polynomials like Legendre,
Laguerre, Jacobi and Bernstein polynomials [40–48]. Motivated by the above
applications and uses of fractional differential equations, in this chapter, we devel-
oped a numerical scheme based on operational matrices via Bernstein polynomials.
Our proof is more generalized and there is no need to convert the Bernstein poly-
nomial function vector to another basis like block pulse function or Legendre poly-
nomials. To the best of our knowledge, the method we consider provides a very
good approximation to the solution. By the use of these operational matrices, we
apply our scheme to a single fractional order differential equation with given
boundary conditions as

Dαy tð Þ þ ADμy tð Þ þ By tð Þ ¼ f tð Þ, 1< α≤ 2, 0< μ≤ 1,

y 0ð Þ ¼ a, y 1ð Þ ¼ b,

�

(1)

where f tð Þ is the source term, A,B are any real numbers; then we extend our
method to solve a boundary value problem of coupled system of fractional order
differential equations of the form

Dαx tð Þ þ A1D
μ1x tð Þ þ B1D

ν1y tð Þ þ C1x tð Þ þD1y tð Þ ¼ f tð Þ, 1< α≤ 2, 0< μ1, ν1 ≤ 1,

Dβy tð Þ þ A2D
μ2x tð Þ þ B2D

ν2y tð Þ þ C2x tð Þ þD2y tð Þ ¼ g tð Þ, 1< β≤ 2, 0< μ2, ν2 ≤ 1,

y 0ð Þ ¼ a, y 1ð Þ ¼ b, y 0ð Þ ¼ c, y 1ð Þ ¼ d,

8

>

<

>

:

(2)

where f tð Þ, g tð Þ are source terms of the system, Ai,Bi,Ci,Di i ¼ 1, 2ð Þ are any real
constants. Also we compare our approximations to exact values and approximations
of other methods like Jacobi polynomial approximations and Haar wavelets
methods to evaluate the efficiency of the proposed method. We also provide some
examples for the illustration of our main results.

This chapter is designed in five sections. In the first section of the chapter, we
have cited some basic works related to the numerical and analytical solutions of
differential equations of arbitrary order by various methods. The necessary defini-
tions and results related to fractional calculus and Bernstein polynomials along with
the construction of some operational matrices are given in Section 2. In Section 3,
we have discussed the main theory for the numerical procedure. Section 4 contains
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some interesting practical examples and their images. Section 5 describes the
conclusion of the chapter.

2. Basic definitions and results

In this section, we recall some fundamental definitions and results from the
literature, which can be found in [10–16].

Definition 2.1. The fractional integral of order γ ∈þ of a function y∈L1 0, 1½ �,ð Þ
is defined as

Iγ0þy tð Þ ¼ 1

Γ γð Þ

ðt

0
t� τð Þγ�1y τð Þdτ:

Definition 2.2. The Caputo fractional order derivative of a function y on the interval
0, 1½ � is defined by

Dγ
0þy tð Þ ¼ 1

Γ n� γð Þ

ðt

0
t� τð Þn�γ�1y nð Þ τð Þdτ,

where n ¼ γ½ � þ 1 and γ½ � represents the integer part of γ.
Lemma 2.1. The fractional differential equation of order γ >0

Dγy tð Þ ¼ 0, n� 1< γ ≤ n,

has a unique solution of the form y tð Þ ¼ d0 þ d1tþ d2t
2 þ … þ dn�1t

n�1, where
dk ∈R and k ¼ 0, 1, 2, 3, :… , n� 1:.

Lemma 2.2. The following result holds for fractional differential equations

IγDγy tð Þ ¼ y tð Þ þ d0 þ c1tþ d2t
2 þ … þ dn�1t

n�1,

for arbitrary dk ∈R, k ¼ 0, 1, 2, … , n� 1.
Hence it follows that

Dγtk ¼ Γ kþ 1ð Þ
Γ k� γ þ 1ð Þ t

k�γ, Iγtk ¼ Γ kþ 1ð Þ
Γ kþ γ þ 1ð Þ t

kþγ and Dγ constant½ � ¼ 0:

2.1 The Bernstein polynomials

The Bernstein polynomials Bi,m tð Þ on 0, 1½ � can be defined as

Bi,m tð Þ ¼
m

i

� �

ti 1� tð Þm�i, for i ¼ 0, 1, 2…m,

where
m

i

� �

¼ m!

m�ið Þ!i! , which on further simplification can be written in the

most simplified form as

Bi,m tð Þ ¼
X

m�i

k¼0

Θ i,k,mð Þt
kþi, i ¼ 0, 1, 2…m, (3)

3
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where

Θ i,k,mð Þ ¼ �1ð Þk
m

i

� �

m� i

k

� �

:

Note that the sum of the Bernstein polynomials converges to 1.

Lemma 2.3. Convergence Analysis: Assume that the function g∈Cmþ1 0, 1½ � that is
mþ 1 times continuously differentiable function and let X ¼ B0,m,B1,m, … ,Bm,mh i. If
CT

Ψ xð Þ is the best approximation of g out of X, then the error bound is presented as

∥ g � CT
Ψ∥2 ≤

ffiffiffi

2
p

MS
2mþ3

2

Γ mþ 2ð Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2mþ 3
p ,

where M ¼ max x∈ 0,1½ �∣ g
mþ1ð Þ xð Þ∣, S ¼ max 1� x0, x0f g:

Proof. In view of Taylor polynomials, we have

F xð Þ ¼ g x0ð Þ þ x� x0ð Þg 1ð Þ x0ð Þ þ x� x0ð Þ2
Γ3

g 2ð Þ þ … þ x� x0ð Þm
Γ mþ 1ð Þ g

mð Þ,

from which we know that

∣ g � F xð Þ∣ ¼ ∣ g mþ1ð Þ ηð Þ∣ x� x0ð Þmþ1

Γ mþ 2ð Þ , there exist η∈ 0, 1ð Þ:

Due the best approximation CT
Ψ xð Þ of g, we have

∥ g � CT
Ψ xð Þ∥22 ≤∥ g � F∥22

¼
ð1

0
g xð Þ � F xð Þð Þ2dx

¼
ð1

0
j g mþ1ð Þ ηð Þj x� x0ð Þmþ1

Γ mþ 2ð Þ

" #2

dx

≤
M2

Γ
2 mþ 2ð Þ

ð1

0
x� x0ð Þ2mþ2dx

≤
2M2S2mþ3

Γ
2 mþ 2ð Þ 2mþ 3ð Þ :

Hence we have

∥ g � CT
Ψ xð Þ∥2 ≤

ffiffiffi

2
p

MS
2mþ3

2

Γ mþ 2ð Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2mþ 3ð Þ
p : □

Let H ¼ L2 0, 1½ � be a Hilbert space, then the inner product can be defined as

< f , g> ¼
ð1

0
f xð Þ:g xð Þdx

and
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Y ¼ span B0,m,B1,m, …Bm,mf g

is a finite dimensional and closed subspace. So if f ∈H is an arbitrary element
then its best approximation is unique in Y: This terminology can be achieved by
using y0 ∈Y and for all y∈Y, we have ∥ f � y0∥≤∥ f � y∥: Thus any function can be
approximated in terms of Bernstein polynomials as

f tð Þ ¼
X

m

i¼0

ciB i,mð Þ, (4)

where coefficient ci can easily be calculated by multiplying (4) by
B j,mð Þ tð Þ, j ¼ 0, 1, 2, …m and integrating over 0, 1½ � by using inner product and

di ¼
Ð 1
0B i,mð Þ tð Þf tð Þdt, θ i,jð Þ ¼

Ð 1
0B i,mð Þ tð ÞB j,mð Þ tð Þdt, i, j ¼ 0, 1, 2:…m, we have

ð1

0
f tð ÞB j,mð Þ tð Þdt ¼

ð1

0

X

m

i¼0

ciB i,mð Þ tð Þ:B j,mð Þ tð Þdt, j ¼ 0, 1, 2…m,

which implies that

ð1

0
f tð ÞB j,mð Þ tð Þdt ¼

X

m

i¼0

ci

ð1

0
B i,mð Þ tð Þ:B j,mð Þ tð Þdt, j ¼ 0, 1, 2…m

which implies that d0 d1 :… dm½ � ¼ c0 c1:… cm½ �

θ 0,0ð Þ θ 0,1ð Þ ⋯ θ 0,rð Þ ⋯ θ 0,mð Þ

θ 1,0ð Þ θ 1,1ð Þ ⋯ θ 1,rð Þ ⋯ θ 1,mð Þ

⋮ ⋮ ⋮ ⋮ ⋮ ⋮

θ r,0ð Þ θ r,1ð Þ ⋯ θ r,rð Þ ⋯ θ r,mð Þ

⋮ ⋮ ⋮ ⋮ ⋮ ⋮

θ m,0ð Þ θ m,1ð Þ ⋯ θ m,rð Þ ⋯ θ m,mð Þ

2

6

6

6

6

6

6

6

6

6

6

6

4

3

7

7

7

7

7

7

7

7

7

7

7

5

:

(5)

Let XM ¼ d0 d1 :… dm½ �, CM ¼ c0 c1:… cm½ �, where M ¼ mþ 1 where M is the

scale level and ΦM�M ¼

θ 0,0ð Þ θ 0,1ð Þ ⋯ θ 0,rð Þ ⋯ θ 0,mð Þ

θ 1,0ð Þ θ 1,1ð Þ ⋯ θ 1,rð Þ ⋯ θ 1,mð Þ

⋮ ⋮ ⋮ ⋮ ⋮ ⋮

θ r,0ð Þ θ r,1ð Þ ⋯ θ r,rð Þ ⋯ θ r,mð Þ

⋮ ⋮ ⋮ ⋮ ⋮ ⋮

θ m,0ð Þ θ m,1ð Þ ⋯ θ m,rð Þ ⋯ θ m,mð Þ

2

6

6

6

6

6

6

6

6

6

6

6

4

3

7

7

7

7

7

7

7

7

7

7

7

5

, so

XM ¼ CMΦM�M ) CM ¼ XMΦ
�1
M�M: (6)

where Φm�M is called the dual matrix of the Bernstein polynomials. After
calculating ci, (4) can be written as

f tð Þ ¼ CMB
T
M tð Þ, CM is coefficient matrix

where

BM tð Þ ¼ B 0,mð Þ,B 1,mð Þ, :…B m,mð Þ
� �

: (7)

Lemma 2.4. Let BT
M tð Þ be the function vector defined in (3), then the fractional order

integration of BT
M tð Þ is given by
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IαBT
M tð Þ ¼ Pα

M�MB
T
M tð Þ, (8)

where Pα
M�M is the fractional integration’s operational matrix defined as

Pα
M�M ¼ P̂

α

M�MΦ
�1
M�M

and Φ
�1
M�M is given in (3) and Pα

M�M is given by

P̂
α

M�M ¼

Ψ 0,0ð Þ Ψ 0,1ð Þ ⋯ Ψ 0,rð Þ ⋯ Ψ 0,mð Þ

Ψ 1,0ð Þ Ψ 1,1ð Þ ⋯ Ψ 1,rð Þ ⋯ Ψ 1,mð Þ

⋮ ⋮ ⋮ ⋮ ⋮ ⋮

Ψ r,0ð Þ Ψ r,1ð Þ ⋯ Ψ r,rð Þ ⋯ Ψ r,mð Þ

⋮ ⋮ ⋮ ⋮ ⋮ ⋮

Ψ m,0ð Þ Ψ m,1ð Þ ⋯ Ψ m,rð Þ ⋯ Ψ m,mð Þ

2

6

6

6

6

6

6

6

6

4

3

7

7

7

7

7

7

7

7

5

, (9)

where

Ψi,j ¼
X

m�i

k¼0

X

m�j

l¼0

θ i,k,mð Þθ j,l,mð Þ
Γ kþ iþ 1ð Þ

iþ jþ kþ lþ αþ 1ð ÞΓ kþ iþ αþ 1ð Þ : (10)

Proof. Consider

Bi,m tð Þ ¼
X

m�i

k¼0

θ i,k,mð Þt
kþi (11)

taking fractional integration of both sides, we have

IαBi,m tð Þ ¼
X

m�i

k¼0

θ i,k,mð ÞI
αtkþi ¼

X

m�i

k¼0

θ i,k,mð Þ
Γ kþ iþ αð Þ

Γ kþ iþ αþ 1ð Þ t
kþiþα: (12)

Now to approximate right-hand sides of above

X

m�i

k¼0

θ i,k,mð Þ
Γ kþ iþ αð Þ

Γ kþ iþ αþ 1ð Þ t
kþiþα ¼ C

ið Þ
MBT

M tð Þ (13)

where C ið Þ
M can be approximated by using (3) as

C
ið Þ
M ¼ X

ið Þ
MΦ

�1
M�M, (14)

where entries of the vector X ið Þ
M can be calculated in generalized form as

X
jð Þ

M ¼
ð1

0

X

m�i

k¼0

θ i,k,mð Þ
Γ kþ iþ αð Þ

Γ kþ iþ αþ 1ð Þ t
kþiþαB j,m tð Þdt, j ¼ 0, 1, 2:…m

) X
jð Þ

M ¼
ð1

0

X

m�i

k¼0

θ i,k,mð Þ
Γ kþ iþ αð Þ

Γ kþ iþ αþ 1ð Þ
X

m�j

l¼0

θ j,l,mð Þt
kþiþα:tlþjdt, j ¼ 0, 1, 2:…m

¼
X

m�i

k¼0

θ i,k,mð Þ
X

m�j

l¼0

θ j,l,mð Þ
Γ kþ iþ αð Þ

Γ kþ iþ αþ 1ð Þ
1

kþ lþ jþ iþ αþ 1ð Þ , j ¼ 0, 1, 2, :…m

(15)

6
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evaluating this result for i = 0,1,2....m, we have

IαB0,m tð Þ

IαB1,m tð Þ

⋮

⋮

⋮

IαBm,m tð Þ

2

6

6

6

6

6

6

6

6

6

6

6

6

4

3

7

7

7

7

7

7

7

7

7

7

7

7

5

¼

X
0ð Þ
M Φ

�1
M�MB

T
M tð Þ

X
1ð Þ
M Φ

�1
M�MB

T
M tð Þ

⋮

⋮

⋮

X
mð Þ
M Φ

�1
M�MB

T
M tð ÞÞ

2

6

6

6

6

6

6

6

6

6

6

6

6

6

4

3

7

7

7

7

7

7

7

7

7

7

7

7

7

5

(16)

further writing

Ψi,j ¼
X

m�i

k¼0

X

m�j

l¼0

θ i,k,mð Þ:θ j,l,mð Þ
Γ kþ iþ αð Þ

Γ kþ iþ αþ 1ð Þ
1

kþ lþ jþ iþ αþ 1ð Þ

we get

IαBT
M tð Þ ¼ P̂

α

M�M:Φ
�1
M�M:B

T
M tð Þ: (17)

Let us represent

P̂
α

M�M:Φ
�1
M�M ¼ Pα

M�M

thus

IαBT
M tð Þ ¼ Pα

M�M:B
T
M tð Þ: (18)

□

Lemma 2.5. Let BT
M tð Þ be the function vector as defined in (3), then fractional order

derivative is defined as

DαBT
M tð Þ ¼ Gα

M�M:B
T
M tð Þ (19)

where Gα
M�M is the operational matrix of fractional order derivative given by

Gα
M�M ¼ Ĝ

α

M�MΦ
�1
M�M, (20)

where ΦM�M is the dual matrix given in (3) and

Ĝ
α

M�M ¼

Ψ 0,0ð Þ Ψ 0,1ð Þ ⋯ Ψ 0,rð Þ ⋯ Ψ 0,mð Þ

Ψ 1,0ð Þ Ψ 1,1ð Þ ⋯ Ψ 1,rð Þ ⋯ Ψ 1,mð Þ

⋮ ⋮ ⋮ ⋮ ⋮ ⋮

Ψ r,0ð Þ Ψ r,1ð Þ ⋯ Ψ r,rð Þ ⋯ Ψ r,mð Þ

⋮ ⋮ ⋮ ⋮ ⋮ ⋮

Ψ m,0ð Þ Ψ m,1ð Þ ⋯ Ψ m,rð Þ ⋯ Ψ m,mð Þ

2

6

6

6

6

6

6

6

6

6

6

6

6

4

3

7

7

7

7

7

7

7

7

7

7

7

7

5

, (21)
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where Ψ i,jð Þ is defined for two different cases as

Case I: i< α½ �ð Þ

Ψi,j ¼
X

m�i

k¼ α½ �

X

m�j

l¼0

θ i,k,mð Þ:θ j,l,mð Þ
Γ kþ i� αð Þ

Γ kþ i� αþ 1ð Þ
1

kþ lþ jþ i� αþ 1ð Þ (22)

Case II: i≥ α½ �ð Þ

Ψi,j ¼
X

m�i

k¼0

X

m�j

l¼0

θ i,k,mð Þ:θ j,l,mð Þ
Γ kþ i� αð Þ

Γ kþ i� αþ 1ð Þ
1

kþ lþ jþ i� αþ 1ð Þ : (23)

Proof. Consider the general element as

DαBi,m tð Þ ¼ Dα
X

m�i

k¼0

θ i,k,mð Þ:t
kþi

 !

¼
X

m�i

k¼0

θ i,k,mð ÞD
αtkþi: (24)

It is to be noted in the polynomial function Bi,m the power of the variable ‘t’ is an
ascending order and the lowest power is ‘i’ therefore the first α� 1½ � terms becomes
zero when we take derivative of order α:

Case I: i< α½ �ð ÞBy the use of definition of fractional derivative

DαBi,m tð Þ ¼
X

m�i

k¼ α½ �
θ i,k,mð Þ

Γ kþ iþ 1ð Þ
Γ kþ i� αþ 1ð Þ t

kþi�α: (25)

Now approximating RHS of (25) as

X

m�i

k¼ α½ �
θ i,k,mð Þ

Γ kþ iþ 1ð Þ
Γ kþ i� αþ 1ð Þ t

kþi�α ¼ C
ið Þ
MBT

M tð Þ (26)

further implies that

X
jð Þ

M ¼
ð1

0

X

m�i

k¼ α½ �
θ i,k,mð Þ

Γ kþ iþ 1ð Þ
Γ kþ i� αþ 1ð Þ t

kþi�αB j,m tð Þdt, j ¼ 0, 1, 2:…m

) X
jð Þ

M ¼
X

m�i

k¼ α½ �
θ i,k,mð Þ

X

m�j

l¼0

θ j,l,mð Þ
Γ kþ iþ 1ð Þ

Γ kþ i� αþ 1ð Þ kþ iþ lþ j� αþ 1ð Þ , j ¼ 0, 1, 2:…m

(27)

Case II: i≥ α½ �ð Þ if i≤ α½ � then

X
jð Þ

M ¼
X

m�i

k¼0

θ i,k,mð Þ
X

m�j

l¼0

θ j,l,mð Þ
Γ kþ iþ 1ð Þ

Γ kþ i� αþ 1ð Þ kþ iþ lþ j� αþ 1ð Þ , j ¼ 0, 1, 2:…m:

(28)

After careful simplification, we get
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DαB0,m tð Þ
DαB1,m tð Þ

⋮

⋮

⋮

DαBm,m tð Þ

2

6

6

6

6

6

6

6

6

6

6

4

3

7

7

7

7

7

7

7

7

7

7

5

¼

X
0ð Þ
M Φ

�1
M�MB

T
M tð Þ

X
1ð Þ
M Φ

�1
M�MB

T
M tð Þ

⋮

⋮

⋮

X
mð Þ
M Φ

�1
M�MB

T
M tð ÞÞ

2

6

6

6

6

6

6

6

6

6

6

6

4

3

7

7

7

7

7

7

7

7

7

7

7

5

: (29)

On further simplification, we have

Ψi,j ¼
X

m�i

k¼ α½ �

X

m�j

l¼0

θ i,k,mð Þ:θ j,l,mð Þ
Γ kþ iþ 1ð Þ

Γ kþ i� αþ 1ð Þ
1

kþ lþ jþ i� αþ 1ð Þ i< α½ �ð Þ

Ψi,j ¼
X

m�i

k¼0

X

m�j

l¼0

θ i,k,mð Þ:θ j,l,mð Þ
Γ kþ iþ 1ð Þ

Γ kþ i� αþ 1ð Þ
1

kþ lþ jþ i� αþ 1ð Þ

we get DαBT
M tð Þ ¼ Ĝ

α

M�MΦ
�1
M�M:B

T
M tð Þ:

(30)

Let

Ĝ
α

M�MΦ
�1
M�M ¼ Gα

M�M

so

DαBT
M tð Þ ¼ Gα

M�MB
T
M tð Þ

which is the desired result. □

Lemma 2.6. An operational matrix corresponding to the boundary condition by

taking BT
M tð Þ is function vector and K is coefficient vector by taking the approximation

u tð Þ ¼ KB̂ tð Þ

is given by

Qα,ϕ
M�M ¼

Ω 0,0ð Þ Ω 0,1ð Þ ⋯ Ω 0,rð Þ ⋯ Ω 0,mð Þ

Ω 1,0ð Þ Ω 1,1ð Þ ⋯ Ω 1,rð Þ ⋯ Ω 1,mð Þ

⋮ ⋮ ⋮ ⋮ ⋮ ⋮

Ω r,0ð Þ Ω r,1ð Þ ⋯ Ω r,rð Þ ⋯ Ω r,mð Þ

⋮ ⋮ ⋮ ⋮ ⋮ ⋮

Ω m,0ð Þ Ω m,1ð Þ ⋯ Ω m,rð Þ ⋯ Ω m,mð Þ

2

6

6

6

6

6

6

6

6

4

3

7

7

7

7

7

7

7

7

5

, (31)

where

Ωi,j ¼
ð1

0
Δi,mϕ tð ÞBj tð Þdt, i, j ¼ 0, 1, 2:…m:

Proof. Let us take u tð Þ ¼ KB̂ tð Þ, then
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0I
α
1KB̂ tð Þ ¼ K0I

α
1 B̂ tð Þ ¼ K

0I
α
1B0 tð Þ

0I
α
1B1 tð Þ
⋮

⋮

⋮

0I
α
1Bm tð Þ

2

6

6

6

6

6

6

6

6

4

3

7

7

7

7

7

7

7

7

5

:

Let us evaluate the general terms

0I
α
1Bi tð Þdt ¼

1

Γα

ð1

0
1� sð Þα�1Bi,m sð Þds

¼ 1

Γα

X

m�i

k¼0

Θi,k,m

ð1

0
1� sð Þα�1skþids:

(32)

Since by

L

ð1

0
1� sð Þα�1skþids

� �

¼ ΓαΓ kþ iþ 1ð Þ
τkþαþi

taking inverse Laplace of both sides, we get

ð1

0
1� sð Þα�1:skþids ¼ L�1 Γα:Γ kþ iþ 1ð Þ

τkþαþi

� 	

¼ Γα:Γ kþ iþ 1ð Þ
Γ kþ iþ αþ 1ð Þ

now Eq. (32) implies that

0I
α
1Bi tð Þdt ¼

X

m�i

k¼0

Θi,k,m
Γ kþ iþ 1ð Þ

Γ kþ iþ αþ 1ð Þ ¼ Δi,m: (33)

Now using the approximation Δi,mϕ tð Þ ¼
Pm

i¼0ĉiBi tð Þ ¼ Ci
MB

T
M, and using

Eq. (3) we get Ci
M ¼ Ki

MΦ
�1
M�MB

T
M and using cj ¼

Ð 1
0ϕ tð ÞBj tð Þdt,

ϕ tð ÞKIαB̂ tð Þ ¼ K

Δ0,mϕ tð Þ

Δ1,mϕ tð Þ

⋮

⋮

⋮

Δm,mϕ tð Þ

2

6

6

6

6

6

6

6

6

6

6

6

6

4

3

7

7

7

7

7

7

7

7

7

7

7

7

5

¼ K

C0
MΦ

�1
M�MB

T
M tð Þ

C1
MΦ

�1
M�MB

T
M tð Þ

⋮

⋮

⋮

Cm
MΦ

�1
M�MB

T
M tð Þ

2

6

6

6

6

6

6

6

6

6

6

6

6

4

3

7

7

7

7

7

7

7

7

7

7

7

7

5

¼ K

c00 c01 ⋯ c0r ⋯ c0m

c10 c11 ⋯ c1r ⋯ c1m

⋮ ⋮ ⋮ ⋮ ⋮ ⋮

cr0 cr1 ⋯ crr ⋯ crm

⋮ ⋮ ⋮ ⋮ ⋮ ⋮

cm0 cm1 ⋯ cmr ⋯ cmm

2

6

6

6

6

6

6

6

6

6

6

6

6

4

3

7

7

7

7

7

7

7

7

7

7

7

7

5

Φ
�1
M�MB

T
M tð Þ

Φ
�1
M�MB

T
M tð Þ

⋮

⋮

⋮

Φ
�1
M�MB

T
M tð Þ

2

6

6

6

6

6

6

6

6

6

6

6

6

4

3

7

7

7

7

7

7

7

7

7

7

7

7

5

:

(34)
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On further simplification, we get

ϕ tð ÞKIαB̂ tð Þ ¼ K

Ω 0,0ð Þ Ω 0,1ð Þ ⋯ Ω 0,rð Þ ⋯ Ω 0,mð Þ

Ω 1,0ð Þ Ω 1,1ð Þ ⋯ Ω 1,rð Þ ⋯ Ω 1,mð Þ

⋮ ⋮ ⋮ ⋮ ⋮ ⋮

Ω r,0ð Þ Ω r,1ð Þ ⋯ Ω r,rð Þ ⋯ Ω r,mð Þ

⋮ ⋮ ⋮ ⋮ ⋮ ⋮

Ω m,0ð Þ Ω m,1ð Þ ⋯ Ω m,rð Þ ⋯ Ω m,mð Þ

2

6

6

6

6

6

6

6

6

4

3

7

7

7

7

7

7

7

7

5

B0 tð Þ
B1 tð Þ
⋮

⋮

⋮

Bm tð Þ

2

6

6

6

6

6

6

6

6

4

3

7

7

7

7

7

7

7

7

5

: (35)

So

ϕ tð Þ0Iα1u tð Þ ¼ KQα,ϕ
M�MB

T
M tð Þ,

and

Ωi,j ¼
ð1

0
Δi,mϕ tð ÞBj tð Þdt, i, j ¼ 0, 1, 2:…m: (36)

which is the required result. □

3. Applications of operational matrices

In this section, we are going to approximate a boundary value problem of
fractional order differential equation as well as a coupled system of fractional order
boundary value problem. The application of obtained operational matrices is shown
in the following procedure.

3.1 Fractional differential equations

Consider the following problem in generalized form of fractional order differ-
ential equation

Dαy tð Þ þ ADμy tð Þ þ By tð Þ ¼ f tð Þ, 1< α≤ 2, 0< μ≤ 1,

subject to the boundary conditions y 0ð Þ ¼ a, y 1ð Þ ¼ b,
(37)

where f tð Þ is a source term; A,B are any real constants and y tð Þ is an unknown
solution which we want to determine. To obtain a numerical solution of the above
problem in terms of Bernstein polynomials, we proceed as

Let Dαy tð Þ ¼ KMB
T
M tð Þ: (38)

Applying fractional integral of order α we have

y tð Þ ¼ KMP
α
M�MB

T
M tð Þ � c0 þ c1t

using boundary conditions, we have

c0 ¼ a, c1 ¼ b� a� KMP
α
M�MB

T
M tð Þ







t¼1
:
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Using the approximation and Lemma 2.2

aþ t b� að Þ ¼ F
1ð Þ
M BT

M tð Þ, tPα
M�MB

T
M tð Þ










t¼1
¼ Qα,ϕ

M�MB
T
M tð Þ:

Hence

y tð Þ ¼ KMP
α
M�MB

T
M tð Þ þ aþ t b� að Þ � tKMP

α
M�MB

T
M tð Þ







t¼1
,

which gives y tð Þ ¼ KMP
α
M�MB

T
M tð Þ þ F

1ð Þ
M BT

M tð Þ �Qα,ϕ
M�MB

T
M tð Þ

¼ KM Pα
M�M �Qα,ϕ

M�M

� �

BT
M tð Þ þ F

1ð Þ
M BT

M tð Þ:

(39)

Now

Dμy tð Þ ¼ Dμ KM Pα
M�M �Qα,ϕ

M�M

� �

BT
M tð Þ þ F

1ð Þ
M BT

M tð Þ
h i

¼ KM Pα
M�M �Qα,ϕ

M�M

� �

Gμ
M�MB

T
M tð Þ þ F

1ð Þ
M Gμ

M�MB
T
M tð Þ

(40)

and

f tð Þ ¼ F
2ð Þ
M BT

M tð Þ: (41)

Putting Eqs. (38)–(41) in Eq. (37), we get

KMB
T
M tð Þ þ AKM Pα

M�M �Qα,ϕ
M�M

� �

Gμ
M�MB

T
M tð Þ þ AF

1ð Þ
M Gμ

M�MB
T
M tð Þ

þBKM Pα
M�M � Qα,ϕ

M�M

� �

BT
M tð Þ þ BF

1ð Þ
M BT

M tð Þ ¼ F
2ð Þ
M BT

M tð Þ:
(42)

In simple form, we can write (42) as

KMB
T
M tð Þ þ AKM Pα

M�M �Qα,ϕ
M�M

� �

Gμ
M�MB

T
M tð Þ þ AF

1ð Þ
M Gμ

M�MB
T
M tð Þ

þ BKM Pα
M�M �Qα,ϕ

M�M

� �

BT
M tð Þ þ BF

1ð Þ
M BT

M tð Þ � F
2ð Þ
M BT

M tð Þ ¼ 0

KM þ KM AP̂
α

M�MG
μ
M�M þ BP̂

α

M�M

� �

þ AF
1ð Þ
M Gμ

M�M þ BF
1ð Þ
M � F

2ð Þ
M ,

(43)

where

P̂
α

M�M ¼ Pα
M�M � Qα,ϕ

M�M:

Eq. (43) is an algebraic equation of Lyapunov type, which can be easily solved
for the unknown coefficient vector KM. When we find KM, then putting this in
Eq. (39), we get the required approximate solution of the problem.

3.2 Coupled system of boundary value problem of fractional order differential
equations

Consider a coupled system of a fractional order boundary value problem

Dαx tð Þ þ A1D
μ1x tð Þ þ B1D

ν1y tð Þ þ C1x tð Þ þD1y tð Þ ¼ f tð Þ, 1< α≤ 2, 0< μ1, ν1 ≤ 1,

Dβy tð Þ þ A2D
μ2x tð Þ þ B2D

ν2y tð Þ þ C2x tð Þ þD2y tð Þ ¼ g tð Þ, 1< β≤ 2, 0< μ2, ν2 ≤ 1,

(44)
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subject to the boundary conditions

x 0ð Þ ¼ a, x 1ð Þ ¼ b y 0ð Þ ¼ c, y 1ð Þ ¼ d, (45)

where Ai,Bi,Ci,Di i ¼ 1, 2ð Þ are any real constants, f tð Þ, g tð Þ are given source
terms. We approximate the solution of the above system in terms of Bernstein
polynomials such as

Dαx tð Þ ¼ KMB
T
M tð Þ, Dβy tð Þ ¼ LMB

T
M tð Þ

x tð Þ ¼ KMP
α
M�MB

T
M tð Þ þ c0 þ c1t, y tð Þ ¼ LM Pβ

M�MB
T
M tð Þ þ d0 þ d1t

�

applying boundary conditions, we have

x tð Þ ¼ KMðPα
M�MB

T
M tð Þ þ aþ t b� að Þ � tKMP

α
M�MB

T
M tð Þ







t¼1
,

y tð Þ ¼ KMðPβ
M�MB

T
M tð Þ þ cþ t d� cð Þ � tKMP

β
M�MB

T
M tð Þ










t¼1
:

let us approximate

aþ t b� að Þ ¼ F1
MB

T
M tð Þ, cþ t d� cð Þ ¼ F2

MB
T
M tð Þ

tPα
M�MB

T
M tð Þ t¼1 ¼ Qα,ϕ

M�MB
T
M tð Þ, tPβ

M�MB
T
M tð Þ



















t¼1
¼ Qβ,ϕ

M�MB
T
M tð Þ

then

x tð Þ ¼ KMP
α
M�MB

T
M tð Þ þ F

1ð Þ
M BT

M tð Þ � KMQ
α,ϕ
M�MB

T
M tð Þ

y tð Þ ¼ LMP
β
M�MB

T
M tð Þ þ F

2ð Þ
M BT

M tð Þ � LMQ
β,ϕ
M�MB

T
M tð Þ

Dμ1x tð Þ ¼ KMP
α
M�MB

T
M tð Þ þ F

1ð Þ
M BT

M tð Þ � KMQ
α,ϕ
M�MB

T
M tð Þ

h i

¼ KM Pα
M�M �Qα,ϕ

M�M

� �

Gμ1
M�M þ F

1ð Þ
M Gμ1

M�MB
T
M tð Þ

Dν1y tð Þ ¼ Dν1 LMP
β
M�MB

T
M tð Þ þ F

2ð Þ
M BT

M tð Þ � LMQ
β,ϕ
M�MB

T
M tð Þ

h i

¼ LM Pβ
M�M � Qβ,ϕ

M�M

� �

Gν1
M�M þ F

2ð Þ
M Gν1

M�MB
T
M tð Þ

Dμ2x tð Þ ¼ Dμ2 KMP
α
M�MB

T
M tð Þ þ F

1ð Þ
M BT

M tð Þ � KMQ
α,ϕ
M�MB

T
M tð Þ

h i

¼ KM Pα
M�M �Qα,ϕ

M�M

� �

Gμ2
M�M þ F

1ð Þ
M Gμ2

M�MB
T
M tð Þ

and

Dν2y tð Þ ¼ Dν2 KMP
β
M�MB

T
M tð Þ þ F

2ð Þ
M BT

M tð Þ � KMQ
β,ϕ
M�MB

T
M tð Þ

h i

¼ LM Pβ
M�M � Qβ,ϕ

M�M

� �

Gν2
M�M þ F

2ð Þ
M Gν2

M�MB
T
M tð Þ

f tð Þ ¼ F 3ð ÞBT
M tð Þ, g tð Þ ¼ F 4ð ÞBT

M tð Þ:
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Thus system (44) implies that

KMB
T
M tð Þ þ A1KM Pα

M�M �Qα,ϕ
M�M

� �

G
μ1
M�M þ A1F

1ð Þ
M G

μ1
M�MB

T
M tð Þ

þ B1LM Pβ
M�M �Qβ,ϕ

M�M

� �

Gν1
M�M þ B1F

2ð Þ
M Gν1

M�MB
T
M tð Þ þ C1KMP

α
M�MB

T
M tð Þ

þ C1F
1ð Þ
M BT

M tð Þ � C1KMQ
α,ϕ
M�MB

T
M tð Þ þD1LMP

β
M�MB

T
M tð Þ þD1F

2ð Þ
M BT

M tð Þ
� D1LMQ

β,ϕ
M�MB

T
M tð Þ ¼ F 3ð ÞBT

M tð Þ

LMB
T
M tð Þ þ A2KM Pα

M�M �Qα,ϕ
M�M

� �

G
μ2
M�M þ A2F

1ð Þ
M G

μ2
M�MB

T
M tð Þ

þ B2LM Pβ
M�M � Qβ,ϕ

M�M

� �

Gν2
M�M þ B2F

2ð Þ
M Gν2

M�MB
T
M tð Þ þ C2KMP

α
M�MB

T
M tð Þ

þ C2F
1ð Þ
M BT

M tð Þ � C2KMQ
α,ϕ
M�MB

T
M tð Þ þD2LMP

β
M�MB

T
M tð Þ þD2F

2ð Þ
M BT

M tð Þ
� D2LMQ

β,ϕ
M�MB

T
M tð Þ ¼ F 4ð ÞBT

M tð Þ:
(46)

Rearranging the terms in the above system and using the following notation for
simplicity in Eq. (46)

Q̂
α

M�M ¼ A1 Pα
M�M �Qα,ϕ

M�M

� �

G
μ1
M�M þ C1 Pα

M�M �Qα,ϕ
M�M

� �

Q̂
β

M�M ¼ B1 Pβ
M�M �Qβ,ϕ

M�M

� �

Gν1
M�M þD1 Pβ

M�M �Qβ,ϕ
M�M

� �

R̂
α

M�M ¼ A2 Pα
M�M �Qα,ϕ

M�M

� �

Gμ2
M�M þ C2 Pα

M�M � Qα,ϕ
M�M

� �

R̂
β

M�M ¼ B2 Pβ
M�M �Qβ,ϕ

M�M

� �

Gν2
M�M þD2 Pβ

M�M �Qβ,ϕ
M�M

� �

FM ¼ A1F
1ð Þ
M Gμ1

M�M þ B1F
2ð Þ
M Gν1

M�M þ C1F
1ð Þ
M þ F

2ð Þ
M �D1F

3ð Þ
M

GM ¼ A2F
1ð Þ
M G

μ2
M�M þ B2F

2ð Þ
M Gν2

M�M þ C2F
1ð Þ
M þD2F

2ð Þ
M � F

4ð Þ
M ,

the above system (46) becomes

KMB
T
M tð Þ þ KMQ̂

α

M�MB
T
M tð Þ þ LMQ̂

β

M�MB
T
M tð Þ þ FMB

T
M tð Þ ¼ 0

LMB
T
M tð Þ þ KMR̂

α

M�MB
T
M tð Þ þ LMR̂

β

M�MB
T
M tð Þ þ GMB

T
M tð Þ ¼ 0

KM LM½ �
BT
M tð Þ 0

0 BT
M tð Þ

" #

þ KM LM½ �
Q̂

α

M�M 0

0 R̂
β

M�M

2

4

3

5

BT
M tð Þ 0

0 BT
M tð Þ

" #

þ KM LM½ �
0 R̂

α

M�M

Q̂
β

M�M 0

2

4

3

5

BT
M tð Þ 0

0 BT
M tð Þ

" #

þ FM GM½ �
BT
M tð Þ 0

0 BT
M tð Þ

" #

¼ 0

KM LM½ � þ KM LM½ �
Q̂

α

M�M R̂
α

M�M

Q̂
β

M�M R̂
β

M�M

2

4

3

5þ FM GM½ � ¼ 0,

(47)

which is an algebraic equation that can be easily solved by using Matlab
functional solver or Mathematica for unknown matrix KM LM½ �. Calculating the
coefficient matrix KM,LM and putting it in equations
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x tð Þ ¼ KMP
α
M�MB

T
M tð Þ þ F

1ð Þ
M BT

M tð Þ � KMQ
α,ϕ
M�MB

T
M tð Þ

y tð Þ ¼ LMP
β
M�MB

T
M tð Þ þ F

2ð Þ
M BT

M tð Þ � LMQ
β,ϕ
M�MB

T
M tð Þ,

we get the required approximate solution.

4. Applications of our method to some examples

Example 4.1. Consider

Dαy tð Þ þ c1D
νy tð Þ þ c2y tð Þ ¼ f tð Þ, 1< α< 2 (48)

subject to the boundary conditions

y 0ð Þ ¼ 0, y 1ð Þ ¼ 0:

Solution: We solve this problem under the following parameters sets defined as
S1 ¼ α ¼ 2, ν ¼ 1, c1 ¼ 1, c2 ¼ 1f g, S2 ¼ α ¼ 1:8, ν ¼ 0:8, c1 ¼ 10, c2 ¼ 100f g,

S3 ¼ α ¼ 1:5, ν ¼ 0:5, c1 ¼ 1=10, c2 ¼ 1=100f g, and select source term for S1 as

f 1 tð Þ ¼ t6 t� 1ð Þ3 þ t6 72 t� 168ð Þ þ 126ð Þ � 30 t4 þ 3 t5 3 t� 2ð Þ t� 1ð Þ2 (49)

f 2 tð Þ ¼ 11147682583723703125 t
21
5 1750 t3 � 4200 t2 þ 3255 t� 806ð Þ

406548945561989414912

þ 278692064593092578125 t
26
5 5250 t3 � 14350 t2 þ 12915 t� 3813ð Þ

25002760152062349017088
þ 100 t6 t� 1ð Þ3, (50)

f 3 tð Þ ¼ 5081767996463981 t
9
2 1344 t3 � 3360 t2 þ 2730 t� 715ð Þ

264146673456906240

þ 5081767996463981 t
11
2 1344 t3 � 3808 t2 þ 3570 t� 1105ð Þ

22452467243837030400
þ t6 t� 1ð Þ3

100
:

(51)

The exact solution of the above problem is

y tð Þ ¼ t6 t� 1ð Þ3:

We solve this problem with the proposed method under different sets of parameters as
defined in S1, S2, S3. The observation and simulation demonstrate that the solution
obtained with the proposed method is highly accurate. The comparison of exact solution
with approximate solution obtained using the parameters set S1 is displayed in Figure 1
subplot (a), while in Figure 1 subplot (b) we plot the absolute difference between the
exact and approximate solutions using different scale levels. One can easily observe that

the absolute error is much less than 10�12: The order of derivatives in this set is an integer.
By solving the problem under parameters set S2 and S3, we observe the same

phenomena. The approximate solution matches very well with the exact solution. See
Figures 2 and 3 respectively.

Example 4.2. Consider

Dαy tð Þ � 2D0:9y tð Þ � 3y tð Þ ¼ �4 cos 2tð Þ � 7 sin 2tð Þ (52)
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subject to the boundary conditions

y 0ð Þ ¼ 0, y 1ð Þ ¼ sin 2ð Þ:

Solution: The exact solution of the above problem is y tð Þ ¼ sin 2tð Þ, when α ¼ 2.
However the exact solution at fractional order is not known. We use the well-known
property of FDEs that when α ! 2, the approximate solution approaches the exact
solution for the evaluations of approximate solutions and check the accuracy by using
different scale levels. By increasing the scale level M, the accuracy is also increased. By the

Figure 1.
(a) Comparison of exact and approximate solution of Example 4.1, under parameters set S1. (b) Absolute
error in the approximate solution of Example 4.1, under parameters set S1.

Figure 2.
(a) Comparison of exact and approximate solution of Example 4.1, under parameters set S2. (b) Absolute
error in the approximate solution of Example 4.1, under parameters set S2.
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proposed method, the graph of exact and approximate solutions for different values of M
and at α ¼ 1:7 is shown in Figure 4. From the plot, we observe that the approximate
solution becomes equal to the exact solution at α ¼ 2. We approximate the error of the
method at different scale levels and record that when scale level increases the absolute
error decreases as shown in Figure 4 subplot (b) and accuracy approaches 10�9, which is
a highly acceptable figure. For convergence of our proposed method, we examined the

quantity
Ð 1
0 ∣yexact � yapprox∣dt for different values of M and observed that the norm of error

decreases with a high speed with the increase of scale level M as shown in Figure 4b.

Figure 3.
(a) Comparison of exact and approximate solution of Example 4.1, under parameters set S3. (b) Absolute
error in the approximate solution of Example 4.1, under parameters set S3.

Figure 4.
(a) Comparison of exact and approximate solution of Example 4.2. (b) Absolute error for different scale level
M of Example 4.2.
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Example 4.3. Consider the following coupled system of fractional differential
equations

D1:8x tð Þ þDx tð Þ þ 9D0:8y tð Þ þ 2x tð Þ � y tð Þ ¼ f tð Þ
D1:8y tð Þ � 6D0:8x tð Þ þDy tð Þ � x tð Þ ¼ g tð Þ

(53)

subject to the boundary conditions

x 0ð Þ ¼ 1, x 1ð Þ ¼ 2 and y 0ð Þ ¼ 2, y 1ð Þ ¼ 2:

Solution: The exact solution is

x tð Þ ¼ t5 1� tð Þ, y tð Þ ¼ t4 1� tð Þ:

We approximate the solution of this problem with this new method. The source
terms are given by

f tð Þ ¼ 2 t5 t� 1ð Þ � t4 t� 1ð Þ þ t4 6 t� 5ð Þ � 2229536516744740625 t
16
5 10 t� 7ð Þ

1008806316530991104

þ 1337721910046844375 t
16
5 25 t� 21ð Þ

1008806316530991104
(54)

g tð Þ ¼ t3 5 t� 4ð Þ � t5 t� 1ð Þ � 11147682583723703125 t
21
5 15 t� 13ð Þ

6557241057451442176

� 89181460669789625 t
11
5 25 t� 16ð Þ

144115188075855872
: (55)

Figure 5.
Comparison of exact and approximate solution of Example 4.3 for different scale level M.
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In the given Figure 5, we have shown the comparison of exact x tð Þ, y tð Þ and approx-
imate x tð Þ, y tð Þ in subplot (a) and (b) respectively.

As expected, the method provides a very good approximation to the solution of the
problem. At first, we approximate the solutions of the problem at α ¼ 2 because the exact
solution at α ¼ 2 is known. We observe that at very small scale levels, the method provides
a very good approximation to the solution. We approximate the absolute error by the
formula

Xerror ¼ ∣xexact � xapprox∣:

and

Yerror ¼ ∣yexact � yapprox∣:

We approximate the absolute error at different scale level of M, and observe that the

absolute error is much less than 10�10 at scale level M ¼ 7, see Figure 6. We also
approximate the solution at some fractional value of α and observe that as α ! 2
the approximate solution approaches the exact solution, which guarantees the accuracy of
the solution at fractional value of α. Figure 6 shows this phenomenon. In Figure 6, the
subplot (a) represents the absolute error of x tð Þ and subplot (b) represents the absolute
error of y tð Þ.

Example 4.4. Consider the following coupled system

D1:8x tð Þ � x tð Þ þ 3y tð Þ ¼ f tð Þ
D1:8y tð Þ þ 4x tð Þ � 2y tð Þ ¼ g tð Þ,

(56)

subject to the boundary conditions

x 0ð Þ ¼ �1, x 1ð Þ ¼ �1 and y 0ð Þ ¼ �1, y 1ð Þ ¼ �1:

Solution: The exact solution for α ¼ β ¼ 2 is

Figure 6.
Absolute error in approximate solutions at different scale level M ¼ 3:7 for Example 4.3.
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x tð Þ ¼ t5 � t4 � 1, and y tð Þ ¼ t4 � t3 � 2: (57)

The source terms are given by

f tð Þ ¼ 445907303348948125t3:2 25t� 21ð Þ
3026418949592973312

þ t3 � 4t4 þ 3t5 � 2,

g tð Þ ¼ 89181460669789625t2:5 5t� 4ð Þ
14411518807585872

� 4t3 þ 6t4 � 2t5 � 2:

Approximating the solution with the proposed method, we observe that our scheme gives
high accuracy of approximate solution. In Figure 7, we plot the exact solutions together
with the approximate solutions in Figure 7(a) and (b) for x tð Þ and y tð Þ, respectively. We
see from the subplots (a) and (b) that our approximations have close agreement to that of
exact solutions. This accuracy may be made better by increasing scale level. Further, one can

observe that absolute error is below 10�10 in Figure 8, which indicates better accuracy of
our proposed method for such types of practical problems of applied sciences.

Figure 7.
Comparison of exact and approximate solution at scale level M ¼ 3, 7 for Example 4.4.

Figure 8.
Absolute error for different scale level M ¼ 3:7 for Example 4.4.
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In Figure 8, the subplot (a) represents absolute error for x tð Þ while subplot (b)
represents the same quantity for y tð Þ. From the subplots, we see that maximum absolute

error for our proposed method for the given problem (4.4) is below 10�10: This is very
small and justifies the efficiency of our constructed method.

Example 4.5. Consider the boundary value problem

Dαx tð Þ þ ωπð Þ2Dνx tð Þ þ x tð Þ ¼ �ωπ sin ωπtð Þ þ ωπð Þ
x 0ð Þ ¼ 0, x 1ð Þ ¼ �2:

(58)

Taking α ¼ 2, ν ¼ 1 and ω ¼ 1, 3, 5, … , the exact solution is given by

x tð Þ ¼ cos ωπtð Þ � 1:

We plot the comparison between exact and approximate solutions to the given exam-
ple at M ¼ 10 and corresponding to ω ¼ 3:5, α ¼ 2, β ¼ 1. Further, we approximate the
solution through Legendre wavelet method (LWM) [47], Jacobi polynomial method
(JM) and Bernstein polynomials method (BM), as shown in Figure 9.

From Table 1, we see that Bernstein polynomials also provide excellent solutions
to fractional differential equations [48].

5. Conclusion and future work

The above analysis and discussion take us to the conclusion that the new method
is very efficient for the solution of boundary value problems as well as initial value

Figure 9.
(a) Comparison of exact and approximate solution at scale level M ¼ 10,ω ¼ 3:5, α ¼ 2, ν ¼ 1 for
Example 4.5. (b) Absolute error at M ¼ 10.

ω M α ν ∥xapp � xex∥ at BM ∥xapp � xex∥ at WM ∥xapp � xex∥ at JM

0.5 10 2 1 7:000 �3ð Þ 2:966 �1ð Þ 1:500 �2ð Þ

1.5 15 1.6 0.9 6:091 �3ð Þ 4:918 �2ð Þ 1:623 �1ð Þ

2.0 20 1.8 0.8 1:237 �3ð Þ 2:108 �2ð Þ 2:723 �2ð Þ

3.5 25 1.9 0.7 1:008 �3ð Þ 5:795 �2ð Þ 1:813 �3ð Þ

Table 1.
Comparison of solution between Legendre wavelet method (LWM) [47], Jacobi polynomial method (JM) and
Bernstein polynomials method (BM) for Example 4.5.
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problems including coupled systems of fractional differential equations. One can
easily extend the method for obtaining the solution of such types of problems with
other kinds of boundary and initial conditions. Bernstein polynomials also give best
approximate solutions to fractional order differential equations like Legendre
wavelet method (LWM), approximation by Jacobi polynomial method (JPM), etc.
The new operational matrices obtained in this method can easily be extended to
two-dimensional and higher dimensional cases, which will help in the solution of
fractional order partial differential equations. Also, we compare our result to that of
approximate methods for different scale levels. We observed that the proposed
method is also an accurate technique to handle numerical solutions.
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