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Cone-Beam Computed 
Tomography in Dentomaxillofacial 
Radiology
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Abstract

The daily application of cone-beam computed tomography (CBCT) has been 
increasing. Not only the number of referrals has been raising, but also the variety 
of the anatomical regions requested for imaging is also growing in the dentomaxil-
lofacial area. Even though computed tomography (CT) has been widely used in the 
head and neck region, by the invention of CBCT, some of the drawbacks of CT were 
overcome and turned into the advantages of the CBCT appliances, such as lower 
patient dose. In this chapter, we provide a comprehensive picture of the everyday 
use of CBCT as a modality in the dentomaxillofacial region and its current limita-
tions and expected improvements.

Keywords: cone-beam computed tomography, dental digital radiography, diagnostic 
imaging, dentomaxillofacial radiology, incidental findings

1. Introduction

The use of cone-beam computed tomography (CBCT) has been increasing in 
everyday clinical practice. The advantages of CBCT contribute to its spreading not 
only in the field of dentistry, but also in maxillofacial surgery, otorhinolaryngology, 
rheumatology, and traumatology. Conventional-computed tomography (CT) has 
been widely used in the head and neck and other anatomical regions; nevertheless, 
by the invention of CBCT device for maxillofacial imaging in the 1990s [1], some 
of the drawbacks of CT were overcome resulting in the application of CBCT as an 
alternative modality in these regions. CBCT devices offer a compact size, the ability 
for producing high-resolution volumetric data, and lower patient dose compared 
to multislice CT (MSCT) [2–4]. Nonetheless, it should be noted that CBCT devices 
operate in a wide range of dose values [5]; hence, in the particular clinical situation, 
the proper justification and optimization are crucial. In this chapter, we provide a 
comprehensive picture of the everyday use of CBCT as a modality in the dentomax-
illofacial region and its current limitations and expected improvements.

2. Basic principles of the CBCT

2.1 Image acquisition

The CBCT device consists of an X-ray source and a flat-panel detector, which 
are connected by a C-arm in a fixed position, but their vertical position can be 
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adjusted according to the anatomical circumstances of the patient. The X-ray source 
and the detector rotate in the opposite direction from 180° to 360° depending on 
the exposure setting of the device during the acquisition around the patient’s head. 
The patient is in a standing, sitting, or supine position. In the latter case, the X-ray 
source and the detector are in a fixed position but rotate in the vertical plane. The 
average time of the exposure is varying from 5 to 40 s [6] depending on the device 
and the exposure settings. However, the energy of X-rays generated is usually 
diverse; hence, not only high but also low energy X-rays leave the X-ray source, 
which would be absorbed by the soft tissues and would not contribute to the imag-
ing just to the increase of the patient dose. Therefore, low energy X-rays must be 
absorbed by an aluminum filter or a copper filter [7]. The divergent X-rays emitted 
from the X-ray tube are usually collimated by lead alloy with a rectangular opening, 
whose size can be adjusted depending on the size of the exposed volume, i.e., the 
field of view (FOV). Collimation results in the formation of a cone or pyramidal 
beam [8], as opposed to conventional CT devices where a fan beam leaves the col-
limator (Figure 1). However, today’s MSCTs are using increasingly divergent beams 
due to the presence of detector rows [9].

During the acquisition, X-rays leave the tube either continuously or in pulse mode, 
in the latter allowing that the energy passes through the examined volume only at a 
particular rotation step leading to the reduction of radiation exposure suffered by the 
patient [7, 10, 11]. Numerous projection images are recorded on the detector during 
the rotation of the X-ray source and the detector. Unlike conventional CTs, where the 
patient table is constantly moving during the acquisition, each slice needs to be recon-
structed separately to create the entire image data of the volume. The CBCT detector 
records the incoming X-rays, which were previously passed through and attenu-
ated in various ways by the patient, and transforms them into an electrical signal, 
which is transmitted to the reconstruction computer. In case of flat-panel detectors 
(FPDs) such as the thin film transistor (TFT) containing amorphous silicon (a-Si) or 

Figure 1. 
During the operation of a conventional CT device, the X-ray beam leaving the X-ray tube is fan-shaped and is 
detected by detector elements arranged in an arc rotating in a direction opposite to the X-ray source around the 
patient lying on the moving patient table (A). By contrast, CBCT applies a cone-shaped beam during image 
acquisition, which is recorded by a flat-panel detector (B).
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complementary metal oxide semiconductor (CMOS), the captured raw image dataset 
will be appeared as a cylindrical volume after the reconstruction in general [8, 12].

2.2 Image reconstruction

From raw images obtained during the CBCT acquisition, the computer in most 
cases uses the filtered back projection (FBP) algorithm for CBCT images: the 
Feldkamp-Davis-Kress (FDK) algorithm [13]. The reconstruction software assigns 
a grayscale value on a 12-bit scale, in some cases a 16-bit scale, depending on the 
degree of attenuation (usually the smallest grayscale value corresponds to the air) 
to each intensity value derived from the linear attenuation of the X-rays passing 
through the tissues on the pixel matrix of the detector [8]. The FDK algorithm 
projects back these values   to each virtual component of the imaged, namely to each 
voxel (Figure 2). Subsequently, the reconstructed image will be displayed on the 
monitor as a real volumetric dataset.

3. Artifacts

One of the disadvantages of CBCT is the presence of artifacts that may sig-
nificantly affect the image quality and interfere with the evaluation of the data 
[9]. Artifact can be defined as any lesion that is not physically present in the real 
structure of the imaged volume; nevertheless, it is detectable on the reconstructed 
image [9, 14]. One of the common artifacts is the beam hardening, which is gener-
ated by the polychromatic nature of the X-rays leaving the X-ray tube: the lower 
energies are absorbed in the tissues with higher absorption capacity; thus, the 
energy of the X-rays reaching the detector is proportionally higher than its energy 
emitted just from the X-ray tube. The artifact appears as alternating dark bands 
and stripes (Figure 3) or as a cupping pattern. The latter is explained by the fact 
that when a homogeneous cylindrical structure is imaged, the energy of the X-rays 
passing through the center of the volume is “hardened” at a greater level than at the 
periphery of the object. This leads to a saucer-like shape in the reconstructed image: 
transparency (i.e., lower grayscale values) in the center area of the scanned object, 
which decreases steadily as the periphery of the cylindrical structure [15].

Figure 2. 
The reconstruction algorithm projects back a gray value to a voxel according to a particular pixel of the 
detector on which the intensity of the attenuated X-ray beam was recorded.
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Figure 4. 
The thin white arrows are pointing to bright and dark bands caused by beam hardening, while the thick white 
arrows are pointing to the transparent areas of missing value artifact.

Scatter leads to commonly the appearance of dark streaks similar to beam hard-
ening, caused by the interaction between the X-ray and the material of the scanned 
object. In this case, the original direction of some X-ray photons changes causing 
computational error in the FDK algorithm. This leads to a decrease in contrast and 
distortion of grayscale values; however, by increasing the exposure energy and 
reducing the field of view, scatter can be reduced [7, 9]. It is important to note that 
selecting a smaller FOV can lead to the “local tomography” effect due to just a part 
of the object will be counted in the FDK algorithm as the scanned area and the  
surrounding tissues, which were out of the FOV, will disturb the computational 
process and the reconstructed image [14].

If a high atomic number material (e.g., metal) is in the path of the X-ray, the ele-
ment of the detector only records very low intensity value and causes inconsistency 
during the FDK algorithm. This results in a dark, empty area, or radial streaking in 
the reconstructed image, which can impair the analysis of the image even on slices 
further away [9, 16] (Figure 4). In English literature, this phenomenon is known as 
extinction, “missing value,” or metal artifacts [8, 14, 15].

The position of the patient during the acquisition has a significant impact on 
the quality of the reconstructed image data. The FDK algorithm assumes motion-
free, constant geometry [9]; therefore, during image acquisition, the changes 

Figure 3. 
The white arrows are showing the dark band caused by the artifact along the root filling of the mesiobuccal root 
canal of the lower right molar tooth, and the white arrows are pointing to the bright bands on the periphery.
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in the patient’s position lead to error in the reconstruction algorithm, and the 
reconstructed images show double contour or blurred image [17], as it is presented 
on a sagittal slice of our CBCT data (Figure 5). Spin-Neto et al. reported that the 
incidenWce of artifact is higher in CBCT examination of patients under 15 years 
of age and in small FOV use [18]. Additionally, the patient’s displacement of more 
than 3 mm already causes a significant deterioration of the image quality during 
exposure [19].

The ring artifact can be described as concentric dark circles on the reconstructed 
image, mostly on the axial slices (Figure 6), indicating the lack of calibration of the 
detector.

Another possible artifact related to the properties of the CBCT appliance is the 
aliasing artifact. There are two factors behind: one is the lower frequency of sam-
pling [8], and the other is the geometry of diverging rays emitted from the X-ray 
tube. This appears on the reconstructed images as lines pointing outward from the 

Figure 5. 
Motion artifact on a CBCT scan of a 4-year-old patient in the sagittal plane. The white arrows are pointing to 
the double contour of the blurred image.

Figure 6. 
The white arrows are pointing to the concentric dark circles.
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Figure 8. 
In the top row, the 3 × 5 pixels in size object “projected” just on the reconstructed pixels, so the real gray scale 
values of the object are displayed on the reconstructed image. On the bottom row, the object is also 3 × 5 pixels 
in size but is not “projected” on the reconstructed pixels, so not the actual grayscale values are displayed on the 
reconstructed image.

center of the image (Moiré pattern) [14] (Figure 7). The artifact can usually be 
compensated by increasing the number of projections and by the built-in image 
enhancement algorithms [8, 16].

The essence of the partial volume effect is that if there is a larger difference in 
the density values (e.g., between the dentin and the root canal) at the edge of the 
imaged object and this area is close to the boundary of two neighboring voxels, the 
reconstruction algorithm will only calculate an average grayscale value in relation to 
the entire voxel (Figure 8).

Hence, the algorithm calculates a lower value instead of the real density of the 
object’s boundary [20], so a lower grayscale value appears in this peripheral voxel on 
the reconstructed image, which might lead to an overestimation of the volume [21].

Figure 7. 
The white arrows are pointing to the lines appearing farther from the center of the image.
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4. Imaging of the dentoalveolar region

Since the invention of the CBCT device, numerous publications are concerning 
the opportunities of CBCT modality in the dentoalveolar region, particularly in 
endodontics [22–24] and interventions of dentoalveolar surgery [25, 26] as well 
as orthodontic examinations [27–29]. However, it is important to emphasize that 
poor image quality can also lead to misdiagnosis and unnecessary exposure to the 
patient; hence, it is required selecting the appropriate exposure parameters (e.g., 
FOV, tube voltage, tube current, etc.).

4.1 Dentoalveolar surgery

The basis of the proper diagnosis and successful surgical therapy of a patho-
logical disorder is the comprehensive clinical and radiological knowledge of 
the anatomical region (Figure 9). In cases when panoramic radiographs do not 
provide sufficient information because of the superimpositions of the anatomical 
landmarks in the assessed regions, CBCT as a three-dimensional modality shall 
be considered during the justification. The possible indications of CBCT require-
ment in this field is well known, such as tooth impaction, pre-implant planning, 
and surgical guide for implant placement. The proper optimization is essential 
prior to the exposure including the proper selection of the resolution. The latter 
shall be applicable at a voxel size of 200 μm for linear measurements, though the 
accuracy is strongly dependent on other parameters of the used CBCT device 
[30] and the possible smallest FOV shall be set according to the actual clinical 
situation [31].

4.2 Endodontics

Dentists should be aware of the root canal system before the endodontic treat-
ment. Currently, commercially available “high-resolution” CBCTs have a nominal 
voxel size of 100 μm or even 75 μm, which is comparable in size to the apical 
constriction of a root canal. CBCT as a modality might be a potential choice in 
selected cases such as complicated root canal systems, when two-dimensional X-ray 
technique provides limited information [31] (Figure 10).

Figure 9. 
The relationship of the impacted left lower third molar and left mandibular canal. On the panoramic image, 
a superimposition is visible (A); however, on the sagittal (B) and coronal (C), CBCT slices the relationship of 
the apex and the canal is clearly detectable.
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4.3 Orthodontics

In this field, it is noteworthy to emphasize that the majority of patients are 
children and young adults [28] who are more sensitive to ionizing radiation. 
Practitioners must be specifically pay attention to the proper justification and 
optimization during the orthodontic examinations knowing the fact that CBCT as a 
modality cannot be used routinely [27].

5. Imaging of anatomical regions apart from the oral cavity

The appearance of CBCT devices has opened new ways of diagnostic radiology 
not only in the dentistry but also in the field of facial reconstructive surgery, ENT, 
rheumatology, and orthopedics. Thanks to the lower radiation dose and the accu-
rate imaging of the bony structures, in many cases, CBCT machines mean a proper 
diagnostic tool for head and neck radiology [2], especially if we consider the high 
sensitivity of the eye lens.

5.1 CBCT imaging of the paranasal sinuses

All ENT cases make the paranasal sinuses relevant to the anatomical region. One 
of the most important parameters is the field of view by the CBCT examination of 
the paranasal sinuses, which should be large enough to include all the sinuses from 
the frontal sinus to the maxillary sinus (Figure 11). Another important rule for the 
patient’s correct position is that the volume should include upper teeth radices to 
exclude odontogenic sinusitis, which is about 10–12% of all maxillary sinusitis [32].

The frontal and sphenoid sinus, ethmoid cells, maxillary sinuses, and nasal cavity 
can be studied on the CBCT scan with large field of view. Figure 1 shows the main 
anatomical structures of the paranasal sinuses and nasal cavity on CBCT scans.

Although the CBCT imaging has low soft tissue contrast, this method is suit-
able to detect various signs of inflammation in the paranasal sinuses [33], such as 

Figure 10. 
Insufficient root canal filling of the left upper first molar on the panoramic radiograph (A). The lack of root 
canal filling of the second mesiobuccal and the distobuccal root canals (B and C). Nearly 90° curvature of the 
mesiobuccal root and insufficient root canal filling in the first mesiobuccal root canal (D). Hyperdense area 
in the maxillary sinus potentially due to the extensive use of sealer (E and F). The left upper first premolar is 
three rooted (B and F).
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circulated mucosal thickening, air-fluid level, or polypoid lesions, which typical 
cause widening in the ostiomeatal complex. Furthermore, thanks to visualiza-
tion of the radices, we can differ the odontogenic and nonodontogenic sinusitis 
(Figure 12). By the malignant lesion, the most important radiological mark is the 
bone destruction, and in this case, additional imaging techniques, for example, 
contrast enhanced magnetic resonance imaging (MRI) or CT, are necessary for the 
accurate diagnosis.

5.2 CBCT imaging of the ear

Nowadays much more CBCT devices are suitable for the examination of the 
external, middle, and inner ear structures based on high-spatial resolution. 
For the valuable imaging of the ears, small FOV, low voxel size, approximately 
100 μm, and precise patient positioning are required. It is possible to create scan 
one side or both sides during one rotation, and normally, the whole ear from 
the skull base to the mastoid process is in the volume tomogram. One of the 
main advantages of this technique is the low radiation dose oppose to the high-
resolution CT, which is an alternative radiologic method to analyze the middle ear 
ossicles. In the literature, there are some articles that compare reliability of the 
two techniques for the detection of otosclerosis, but there is no consensus in this 
question [34–37].

On the CBCT scan, we can identify the external auditory canal, the tympanic 
cavity with the ossicles [38], and the inner ear structures such as cochlea, semicir-
cular canals, and the facial nerve (Figure 13). For the accurate diagnosis, different 
reconstructions are useful, such as Pöschl reformat for the evaluation of SSC and 

Figure 11. 
The main anatomical structures of the paranasal sinuses in coronal (a) and sagittal (b) view (1: maxillary 
sinus, 2: nasal septum, 3: inferior nasal concha, 4: middle nasal concha, 5: ostiomeatal complex, 6: frontal sinus, 
7: ethmoid cells, 8: sphenoid sinus, 9: nasopharynx).

Figure 12. 
Sinusitis with oroantral fistula on CBCT scan.
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Figure 14. 
The image “a” shows cholesteatoma with bone destruction on the tympanic tegmen, and image “b” shows 
otosclerosis of the stapes.

vestibular aqueduct or Stenvers reformat for the assessment of cochlea, facial nerve, 
and round window [39].

On the CBCT data, the radiologist can exclude lesions in the external auditory 
canal, in the tympanic cavity, or in the antromastoidal parts. The most frequently, 
inflammation can be found in the middle ear cavity or in the mastoid, but special 
lesions, for instance, glomus tympanicum or cholesteatoma, can be also detected on 
CBCT images. Despite the poor soft tissue contrast on the CBCT image sequences, 
there are radiological signs that are characteristic of the above-mentioned lesions. 
For example, bone destruction and location in the Prussak space are characteristic 
for the cholesteatoma, and the location on the cochlear promontory is typical for a 
glomus tympanicum paraganglioma (Figure 14).

Figure 13. 
External, middle, and inner ear structures on CBCT scans (1: internal auditory canal, 2: facial nerve, 3: 
malleus and incus, 4: tympanic cavity, 5: vestibule and lateral semicircular canal, 6: cochlea, 7: stapes, 8: 
mastoid cells, 9: semicircular canals, 10: epitympanum).
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5.3 CBCT imaging of maxillofacial bones

CBCT imaging is one of the best options for the diagnosis of facial bones, as it 
can accurately visualize the bone structures and reduce the metal artifact, e.g., from 
dental implants and crowns, more than conventional CT [40]. The evaluation of the 
whole facial skull is relevant in the field of the orthognathic and reconstructive sur-
gery; therefore, large field of view is necessary but because of the minimalization of 
radiation dose larger, e.g., 0.3–0.4 mm voxel size is enough for the correct diagnosis. 
The CBCT imaging is suitable to detect facial fractures, craniofacial anomalies, 
bone tumor, or osteomyelitis. Besides of the diagnostics, frequently other aim of 
this examination is the preoperative surgical planning for orthognathic operation 
[41], which needs special 3D cephalometric software.

5.4 CBCT imaging of the airway

The CBCT volumetric data with large FOV can be used for the assessment of the 
upper airways [42, 43]. The volumetric measurement of the airways can facilitate 
the diagnosis of the patient with obstructive sleep apnea, and it can play an impor-
tant role in the planning of orthodontic treatment [44, 45].

5.5 CBCT imaging of joints

Most of the CBCT devices are small size devices compared to the conventional 
CT, by which the patient stands or sits during the exposition. On the market, 
there are only a few CBCT appliances available in which the patient lies, and the 
device can scan the joints of the upper and lower extremity and the whole spine. 
Several constructions of CBCT machines are capable specifically for the joints of 
upper and lower extremity. These techniques provide the diagnosis of degenera-
tive joint disease, arthritis, tumor-like bone lesion, and fracture of the bones 
[46, 47].

6. Incidental findings on CBCT image sequences

Frequently in the field of dentistry and ENT large volume, CBCT scans are 
required for the diagnosis and treatment planning. The increasing of the volume 
increases the frequency of the incidental findings. Many articles examined the 
distribution of incidental findings in the dentomaxillofacial CBCT dataset, and the 
most common incidental findings are the intracranial calcification, frontal hyperos-
tosis, tonsillolith, styloid calcification, antrolith, and artery calcification [48].

6.1 Intracranial calcification

The large volume dental or ENT volume tomogram involves intracranial anatomi-
cal structures. One of the most frequent incidental findings is the calcification of the 
internal carotid artery, in which typical location is by the carotid syphons. The other 
typical place of the calcification is along the superior sagittal sinus by the cerebral falx.

6.2 Tonsillolith

On the CBCT images, the small calcifications as hyperdense foci are easy to 
detect; therefore, this imaging technique is capable to visualize small tonsil-
loliths (Figure 15). These calcification clusters can be in or around the tonsils. 
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Figure 16. 
Calcification of the styloid ligament.

These calculi cause no symptoms, and usually, these are only incidental find-
ings, but other pathologies, e.g., foreign bodies, should be distinguished from 
these stones.

6.3 Styloid calcification

The calcification of the styloid ligament or the elongated styloid process is also 
known as Eagle syndrome (Figure 16), which is usually an incidental finding, but 
it can cause various symptoms, such as restricted mouth opening, shooting pain in 
the mandible, pressure in the throat, difficult swallowing, or by the compression 
on the internal carotid artery or internal jugular vein, and it can lead to intracranial 
pressure and transient ischemic attack.

6.4 Antrolith

Antroliths are calcifications within the maxillary sinus, which are mostly 
asymptomatic, and require no treatment (Figure 17). On the other hand, larger 
antroliths may be a symptom of chronic sinusitis or fungal sinusitis, which may 
involve surgical removal. Antroliths are hyperdense foci or larger masses that are 
often embedded in the mucoperiosteum in the CBCT images.

6.5 Artery calcification

One of the most frequent incidental findings on CBCT scans is the calcification 
of the carotid arteries. The calcifications are hyperdensity along the vessels. As the 

Figure 15. 
Tonsillolith as hyperintense foci by the tonsils (a and b).
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outcome of the calcification of the internal carotid artery can be stroke, the follow-
ing stenosis with ultrasound is important.

6.6 Hyperostosis frontalis interna

Hyperostosis frontalis interna is a benign bone formation on the inner table 
of the frontal bone (Figure 18). Normally, it is a symmetric bone thickening, and 
sometimes, it involves the parietal bones also. The relevance of this disorder is in 
the differential diagnosis and to distinguish from the pathology such as sclerotic 
metastases, Paget disease, or fibrous dysplasia.

7. Limitations and expected improvements

One limitation of the present CBCT technology is the high dependence of reso-
lution to the object diameter. This is the reason why this technology is used on head 
and neck or extremity imaging. The diameter of the chest and abdomen is too big to 
get higher resolution images than MSCT. Another disadvantage of CBCT is its low 
quality in soft tissue imaging. Relatively low radiation dose combined with short 
exposure time provides low quality images of soft tissue structures. This is another 
reason for CBCT not to use chest and abdomen imaging.

CBCT technology is highly sensitive to object’s movement because of the high 
resolution and of the low number of projection images used for reconstruction. 

Figure 17. 
Calcification in the right maxillary sinus with mucosal thickening.

Figure 18. 
Hyperostosis frontalis in coronal (a) and axial (b) view.
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Usually, it is a challenge to control movements of patient, especially during head 
imaging. Some positions of the body lower head movements like supine position. 
Patient movement correction algorithms are available. X-ray scanning combined 
with video recording the actual movements of patient can be a useful method. 
Software can analyze and compensate for slight movements gained from video 
control and provides improved quality images [18].

Filtered back projection based on FDK algorithm is widely used way of recon-
struction for CBCT technology. This reconstruction used in wide energy spectrum 
of X-ray beam arises some artifacts like beam hardening resulting in increased noise 
of images and misdiagnosis in clinical practice. Beam hardening reduction software 
is commonly used to improve images; however, this works as an image filtering. In 
one of our previous study, Monte Carlo analysis was used to compare beam harden-
ing software in reducing beam hardening artifact errors and error by synchrotron 
micro-CT. Results showed that the beam hardening artifact reduction was compa-
rable with synchrotron micro-CT images [49].

Along with beam hardening artifact scatters (metal artifacts) around the high 
density metal, implant material frequently causes clinical diagnostic problems 
since observers unable to detect bone tissue surrounding the implant surface [9]. 
Soft tissue contrast is further influenced by scatter [50]. Manufacturers usually 
provide post-processing metal artifact reduction software. Unfortunately this image 
enhancement is a filter method resulting in loss of peri-implant bone tissue on 
images [51]. In contrast to maximum likelihood expectation, maximization iterative 
reconstruction algorithms have proved to improve image quality and to increase 
signal-to-noise ratio [52]. At present, this is not a widely used method because of 
the limited capacity of personal computers. However, this way of reconstruction 
is able to provide image on peri-implant bone tissue. Another way for significant 
reduction of scatter is dual-energy imaging technology. In a study where single-
energy CBCT and dual-energy CBCT were compared, metal artifact with the use 
of upstream filter on dual energy CT was significantly reduced. This method also 
resulted in higher signal-to-noise values [53].

Photon-counting CT is a state-of-art technology with the potential to dramati-
cally change clinical 3D imaging. The hybrid-pixel photon-counting detector con-
cept was first demonstrated at CERN in 1991 [54]. The detection of X-ray photons 
is realized by discriminators, which register a photon only if its energy exceeds a 
certain threshold value. This way the electronic noise is effectively eliminated and 
the detector does not affected by dark current signals. Implementation of additional 
discriminators with different threshold levels to the detector results in discrimina-
tion of polychromatic X-ray spectrum into several distinct energy bins [55].

Photon-counting CBCTs are able to reduce radiation dose, reconstruct images 
at a higher resolution, rectify beam-hardening artifacts, optimize contrast agents’ 
use, and create opportunities for quantitative imaging relative to current CBCT 
technology [56].
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