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Chapter

Skeletons of Calcareous Benthic 
Hydroids (Medusozoa, Hydrozoa) 
under Ocean Acidification
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and José Agüero

Abstract

The skeleton plays a vital role in the survival of aquatic invertebrates by separat-
ing and protecting them from a changing environment. In most of these organisms, 
calcium carbonate (CaCO3) is the principal constituent of the skeleton, while in 
others, only a part of the skeleton is calcified, or CaCO3 is integrated into an organic 
skeleton structure. The average pH of ocean surface waters has increased by 25% in 
acidity as a result of anthropogenic carbon dioxide (CO2) emissions, which reduces 
carbonate ions (CO3

2−) concentration, and saturation states (Ω) of biologically 
critical CaCO3 minerals like calcite, aragonite, and magnesian calcite (Mg-calcite), 
the fundamental building blocks for the skeletons of marine invertebrates. In 
this chapter, we discuss how ocean acidification (OA) affects particular species 
of benthic calcareous hydroids in order to bridge gaps and understand how these 
organisms can respond to a growing acidic ocean.

Keywords: biomineralization, Cnidaria, Hydractiniidae, Milleporidae,  
ocean acidification, skeleton, Stylasteridae

1. Introduction

Since the arrival of industrialization with the beginning of the British Industrial 
Revolution in 1750 to now, the accumulative concentration of carbon dioxide (CO2) 
in the atmosphere through to the year 2019 has increased to 2340 ± 240 gigatonnes 
of CO2 (GtCO2), of which 25% has been sunk into the ocean [1, 2]. This human-
induced sink of CO2 in the ocean produces a chemical phenomenon called ocean 
acidification (OA) [3]. OA decreases seawater pH, the concentration of carbonate 
ions (CO3

2−), and the saturation state (Ω) of the three primary biogenic calcium 
carbonate (CaCO3) minerals that occur in seawater and in shells and skeletons of 
calcifying organisms: calcite, aragonite, and magnesian calcite (Mg-calcite) [4].

Shells and skeletons of calcifying organisms play an essential role in their 
survival by separating and protecting them from a changing environment, as it hap-
pens with calcareous cnidarians [5, 6]. Within the phylum Cnidaria, only 17% of its 
extant species produce a calcareous skeleton through a process of biological trans-
formation called biomineralization [7, 8]. The biomineralization process involves 
the selective extraction, transport, and uptake of biominerals from the environment 
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in the function of their abundance and availability for their later incorporation into 
functional structures under strict biological control [8].

Of the 17% of the extant cnidarians with a calcareous skeleton, 14% is rep-
resented by members of the order Scleractinia (Cnidaria, Anthozoa), while the 
remaining 3% is made up of species belonging to the superorder “Anthoathecata” 
(Cnidaria, Hydrozoa) (Figure 1) [7]. In the class Anthozoa, the biomineralization 
process is the best known and most widely studied, being the opposite for the class 
Hydrozoa [9], although they are one of the main components of zoobenthic com-
munities, significant contributors to the building of coral reefs (Figure 2) [10–12], 
and also some are essential in pelagic communities due to the presence of a medusa 
stage [10].

Calcareous hydroid families with a well-developed benthic polypoid 
stage are Milleporidae (hydrocorals, “fire corals” or millepores) with 15 spe-
cies, Hydractiniidae (longhorn hydrozoans) with 4 species, and Stylasteridae 
(hydrocorals, lace corals, or stylasterids) with 320 species [7, 13]. These three 
families constitute a polyphyletic group and are commonly grouped as “calcified 
hydroids,” “calcareous hydrocorals,” or, simply, “hydrocorals”—terms that refer to 
hydroids that secrete a calcareous skeleton [14]. These calcareous structures can 
take the form of skeletons composed of individual spicules, spicule aggregates, 
or massive skeletons [15], and are responsible for providing protection and ion 
storage [6, 16, 17].

The calcareous skeleton of the cnidarians is always ectodermal in origin, and its 
mineralogy is composed exclusively of CaCO3 [18]. In the calcareous species of the 
class Hydrozoa, their skeletons are composed of calcite, aragonite, or both (Table 1) 
[9, 19–23]. Calcite and aragonite are two of the six CaCO3 polymorphs and are the 
most thermodynamically stable structures deposited extensively as biominerals [8]. 
In stylasterid species, for instance, the distribution of calcite or aragonite in their 
skeletons can be as follows: 100% calcite, 100% aragonite, primarily calcite with 
some aragonite, or primarily aragonite with some calcite [22]. When calcite and 
aragonite are present at the same time, the two polymorphs always occupy differ-
ent anatomical sites [20]. Since the natural color of CaCO3 is white [24], the broad 
spectrum of colors observed in the calcareous skeletons of hydrocorals is due to the 
presence of carotenoproteins, symbiotic dinoflagellates of the genus Symbiodinium, 
or by the presence of microboring or euendolithic microorganisms [25–27].

Phylogenetic analysis supports the independent origins of a calcified skeleton in 
Hydrozoa [9, 28, 29], and the distribution of CaCO3 polymorphs in their skeletons 
is considered to have been produced by non-environmental causes [22]. However, 

Figure 1. 
Worldwide inventory of non-calcareous and calcareous cnidarians. Own elaboration with WoRMS data [7].
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Figure 2. 
Worldwide hydrocorals and longhorn hydrozoans distribution. Orange dots, Milleporidae; green dots, 
Hydractiniidae; purple dots, Stylasteridae. Own elaboration with OBIS data [12].

Taxa Type of skeletogenesis Principal mineral

Subclass Hydroidolina

Superorder “Anthoathecata”

Order Capitata

Family Milleporidae Modified spherulitic to trabecular

Millepora spp. Aragonite

Order “Filifera”

Family Hydractiniidae Spherulitic (with organic lamellae)

Distichozoon dens Unknown

Hydrocorella africana Unknown

Janaria mirabilis Unknown

Schuchertinia antonii Unknown

Family Stylasteridae Fully spherulitic or modified spherulitic 

to trabecular

Cheiloporidion pulvinatium Primarily aragonite with some 

calcite

Errina sp. Primarily calcite with some 

aragonite

Errinopsis sp. Calcite

Lepidopora spp. Aragonite

Table 1. 
Types of skeletogenesis and mineral composition of skeletons in calcareous Hydrozoa [19–22].
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the biomineralization process of these organisms is highly variable and strongly 
affected by environmental factors [30, 31] and substrate [32].

2. Skeletogenesis and OA

The biomineralization process is practically unknown to calcareous hydroids. 
Sorauf [21] summarizes some hypotheses about the biomineralization process of 
some Hydrozoa, and there has been no review about it to date. The basic structure 
is of the spherulitic growth of a principal mineral controlled by organic substrates 
to form pillars in which the spherulites are in part compartmentalized by a skeletal 
organic matrix (SOM), which forms an irregular matrix with compartments but 
does not form sheaths for individual crystal growth. In the class Hydrozoa exist 
three types of skeletogenesis, and the principal minerals involved are the CaCO3 
polymorphs aragonite or calcite (Table 1) [19–22].

In addition to biomineralization, CaCO3 plays a significant role as second 
messenger to control exocytosis, cortical reactions in eggs, and muscle contraction 
[33]. In some hydractinids, CaCO3 is required for larval motility [34], induction of 
metamorphosis [35], and secretion of adhesive material during the latter [34].

The biocrystallization, such as sclerotization, is derived from the ectoderm, 
which produces a SOM that controls the spacing of nucleation sites and limits the 
size or shape of spherulites [21, 36]. The organic secretions may be composed of 
peptides, proteins, proteoglycans, lipids, and polysaccharides, which, as a whole, 
are known as the template for mineralization [21, 37]. It is known that this template 
is involved in most, if not all, stages of biomineral formation, from transport, 
through nucleation and growth, to structure stabilization (Figure 3) [37].

According to an analysis of SOM homologs in cnidarians, including Hydrozoa, 
several proteins related to biomineralization were identified [38]. Extracellular 

Figure 3. 
Schematic representation of the hypothetical skeletogenesis process on calcareous hydroids.
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adhesion proteins and carbonic anhydrases homologs were the most common 
proteins found (e.g., in Millepora alcicornis, Millepora complanata, and Millepora 
squarrosa). Homolog proteins include enzymes such as peptidase-1 and peptidase-2 
as well as acidic proteins like SAARP-1, SAARP-2, acidic SOMP, CARP4, CARP5, 
Integrin-like and two SAARP-like proteins; those proteins are involved in calcite 
formation [39]. Two galaxin ortholog proteins (Galaxin and Galaxin-2) [38] have 
been fully characterized by the calcifying matrix of scleractinian corals [40]. More 
interestingly, carbonic anhydrases, which are known to precipitate CaCO3 in differ-
ent calcareous organisms [41], have been identified in Hydrozoa species, CruCA-4, 
and Putative CA [38]. Finally, in contrast to scleractinian corals, Hydrozoa species 
did not show small cysteine-rich proteins (SCRiPs) [38], whose function in corals is 
still unclear.

In some calcareous hydroids, a progressive capability to produce a similar SOM 
to that of scleractinian corals has been observed, with individual control of crystal 
growth [21]. Also, the calcification process of stylasterid and millepore species has 
been compared with that of scleractinian corals [42]. This calcification process 
includes uptake and transport of materials, production of organic secretion, the 
formation of tissue cavities where calcification may take place, and the deposition 
of CaCO3; these processes may be influenced differently by environmental condi-
tions, and be affected by OA [43, 44].

About the biochemical process underlying the response of hydrocoral M. 
alcicornis in acidified waters, it has been found that the calcification process in the 
hydrocoral was not affected by a wide range of seawater pH (8.1–7.5) under experi-
mental conditions [30]. Besides, is mentioned that the Ca-ATPase plays an essential 
role in the biomineralization as maintenance a steady-state net calcification rate 
in the hydrocoral, especially under scenarios of moderate (pH 7.8) and intermedi-
ate (pH 7.5) acidification of seawater, but under a scenario of severe acidification 
(pH 7.2) of seawater, the hydrocoral is not able to maintain a steady-state net 
calcification rate [30]. On the other hand, physiologically, the exposure to seawater 
acidification induces oxidative stress with consequent oxidative damage to lipids 
and proteins, which could compromise hydrocoral health [45]. However, a reduc-
tion in the calcification process was not observed in Millepora platyphylla despite 
having been exposed to OA conditions [46].

Some effects in other calcareous organisms, for instance, anthozoans, sea 
urchins, and mollusks by OA are: slowdown of their calcification rates; changes in 
gene expression consistent with metabolic suppression; increased oxidative stress; 
potential effect on symbiotic zooxanthellae; decrease in matrix proteins; reduction 
of carbonic anhydrase protein; increased calcite growth; structural disorientation 
of calcite crystals; fragile skeletons that reduce protection from predators and 
changing environments, affect the expression of the gene encoding Ca-ATPase 
enzymes and the enzymatic activity itself [30, 44, 47–49].

OA not only affects the skeleton of the calcareous hydroids, but it can also affect 
the other phases of its life cycle, for instance, the medusa stage of millepores, since 
it has been recently recorded that cubomedusae suffer from higher mortality when 
subjected to OA conditions (pH 7.5) [50].

3. Implications, threats, and consequences of OA

The response of hydrocorals to the changes they face in their environment 
remains unknown, especially how they are affected by anthropogenic activities such 
as the increase in the concentration of CO2 in the atmosphere, causing an increase 
in sea surface temperature (SST) and a decrease in seawater pH. The chemistry of 
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OA is better understood from their implications for calcifying marine fauna and 
their hosts or associations. Skeletons of hydrocorals and longhorn hydrozoans are 
known to host abundant and diverse symbiotic organisms, for instance, with pho-
tosynthetic dinoflagellates (generally referred to as zooxanthellae), and maintain 
associations with micro and macroboring organisms, and grazers. The microboring 
organisms (MIO) include cyanobacteria, green and red algae, fungi, and lichens 
[51]. The macroboring organisms (MAO) comprise ascidians and sponges [42], 
while in the grazers encompass echinoderms, mollusks, polychaeta, crustaceans, 
and fish [42, 52].

Of the three families of extant calcareous hydroids, only “fire corals” have a 
symbiotic relationship with zooxanthellae [42]. The zooxanthellae are essential for 
the “fire corals” to achieve their calcification process, keep their rate of calcifica-
tion constant, as well as speed up a calcareous deposition in the function of the 
environmental conditions [43]. Loss of this association from hydrocoral tissue is 
responsible for the white color observed, aptly named bleaching [53]. When “fire 
corals” experiment stress occurs bleaching, or the paling zooxanthellate decline 
and the concentration of pigments within the zooxanthellae fall, where each 
zooxanthella may lose 50–80% of its photosynthetic pigments [54]. The stress can 
be induced by a plethora of factors, singly or in combination, and among them we 
have: anomalously low and high temperature, solar radiation, subaerial exposure, 
sedimentation, freshwater dilution, inorganic nutrients, high concentrations of 
xenobiotics, presence of pathogens such as protozoan and bacterium, OA, among 
others [54, 55]. Recently, it has been observed that hydrocorals can select their sym-
bionts zooxanthellae, depending on environmental conditions, which can confer an 
advantage on how to face ongoing human-driven climate change [56].

The mechanism underlying the observed bleaching response was not explicitly 
investigated, some hypotheses are that changes in seawater chemistry influence 
bleaching thresholds by altering the functioning of the carbon-concentrating 
mechanism (CCM), photoprotective mechanisms (such as photorespiration for 
instance), or direct impacts of acidosis; therefore, the acidification effects on coral 
bleaching are uncertain and review of other aspects, for instance, levels of the other 
abiotic factors such as light and nutrients, photoacclimation and photoprotection 
responses, molecular genetics, as well as studies that imply the understanding of 
integral processes about host-algae are recommended to understand the role that 
zooxanthellae may play in the ability of corals to cope with these anthropogenic 
changes in the ocean [53, 57, 58].

The MIO distribution within the skeletons occurs through contact with the 
substrate of settlement as MIO already colonizes it, and their colonization occurs 
early in the development of the corals and expands at slower rates than the hydro-
coral growth [27]. Since stylasterid corals do not host zooxanthellae, such an 
arrangement may be beneficial throughout the life of the coral, despite some losses 
to its skeleton density due to dissolution by MIO; moreover, the boring microflora 
within corals have a mutualistic relationship, helping corals survive better during 
bleaching events, because these MIO may satisfy the nitrogen quantities required by 
live hydrocorals for their balanced growth, also considering that MIO are the major 
primary producers and agents of microbioerosion dissolving large quantities of 
CaCO3 with a potential in buffering seawater [59].

Micro and macrobioerosion under undisturbed natural conditions are essential 
mechanisms in CaCO3 recycling; however, these bioerosion processes can proceed 
faster if OA weakens the substrate, also facilitating in this way the bioerosion by 
grazers [60]. Furthermore, OA does not affect the siliceous sponges as directly as 
other marine taxa, which are heavily dependent on CaCO3 at various life history 
stages like cnidarians, mollusks, and many crustaceans species with tiny pelagic 
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larval forms [61]. These siliceous sponges represent a threat when settling on 
calcareous substrates by the process of weakening the skeleton by their bioeroder 
action; nevertheless, thermal stress appears to weaken calcifiers more strongly than 
bioeroding sponges [62].

Other impacts include shifts in competitive interactions with non-reef builders 
such as macroalgae, sponges, soft corals, ascidians, and corallimorpharians; the 
competition impacts the recruitment, growth, and mortality of coral organisms [63].

4. Conclusion

This review of current literature concerning the effects of OA on hydrocorals 
and longhorn hydrozoans and their proposed mechanisms shows that targets are 
numerous, and therefore it is difficult today to give a conclusion. Besides, several 
of the findings correspond to anthozoans and specific areas or under laboratory or 
modeling conditions. On the other hand, it has been shown that each species has a 
different response, some are more sensitive than others, and some show strategies 
to survive under conditions of anthropogenic climate change. As proposed by Luz 
[45], further studies that use metabolomics and proteomics techniques are neces-
sary to help identify different response pathways in hydrocorals exposed to acidic 
conditions.
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