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Chapter

Optical Sensor for Nonlinear and
Quantum Optical Effects
Antônio Carlos Amaro de Faria

Abstract

In this chapter, the main foundations for the conception, design, and the project
of optical sensors that explore the effects of nonlinear and quantum optics are
presented. These sensors have a variety of applications from the design of wave-
guides with self-selection of propagation modes to signal processing and quantum
computing. The chapter seeks to present formal aspects of applied modern optics
in a detailed, sequential, and concise manner.

Keywords: optical sensor, nonlinear optics, quantum optics, optical fiber,
optical signal processing

1. Introduction

Classical electrodynamics is the basis for the analysis and formulation of electro-
magnetic waves. From the equations of Maxwell, it is possible to obtain the equation
of the movement of the electric and magnetic fields whose solution describes the
propagation of the electromagnetic wave. This formal treatment was originally
developed by Maxwell [1], who verified that the electromagnetic wave propagated
with the speed of light provided that the optics could be described from the electro-
magnetism. The medium through which the electromagnetic wave propagates
responds in various ways to the electromagnetic field. This response depends on how
the atoms and molecules are arranged spatially composing the constituent medium
and how the interaction or scattering of the electromagnetic wave through the
medium will occur. In other words, the way the medium responds to the electromag-
netic excitation is contained in the middle polarization due to the propagation of the
electromagnetic wave. It is in this context that some recent analyses have discovered
some solutions from the nonlinear response of the medium to the propagation of the
electromagnetic wave which may lead to an approach of some quantum effects from a
nonlinear treatment of electromagnetism in the material medium.

The propagation of optical pulses through waveguides such as optical fibers can
give rise to nonlinear optical effects and quantum effects. The appropriate modeling
of these effects can be used for the development of sensors to the optical fiber
whose resolution can be regulated properly. In addition, the method allows the
selection of propagation modes by selecting the desired modes by knowing the band
gap of the waveguide or the photonic crystal.

The development of sensors to the optical fiber is based on the propagation of
optical pulses through waveguides like optical fibers and photonic crystals. The
propagation of the pulses through waveguides can generate nonlinear and quantum
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effects as Raman and Brillouin effects. We have analytically modeled these effects
from the Maxwell equations on dielectric media describing the propagation of these
optical pulses by developing a model that can be implemented computationally for
the processing and propagation of these optical signals. The optical sensor can
select the modes of propagation of the optical beams through the natural conduc-
tion band of the photonic crystal since the function of our model, the so-called
optical potential, describes the optical light scattering through the crystal [2].

2. Modeling the optical lattice

The modeling of an optical system is very important for the design and devel-
opment of many applications of optics in electronics, photonics, integrated optics,
and an array of devices based on the light. Nonlinear effects from the interaction of
light with matter in waveguides and photonic crystals may be suitable for a variety
of optical applications [3–5]. Quantum effects such as the Raman effect and the
Brillouin effect can be conveniently dealt with by exploring the nonlinear aspects of
optical wave propagation in waveguides. Effects, e.g., self-focusing and low disper-
sion, of a guided beam can be applied and exploited in several technologies that use
waveguides and sensors to the optical fiber [6, 7]. Consider an optical field given by

E r
!
, t

� �

¼ A r
!
� �

exp iβ0zð Þ: (1)

In Eq. (1), β0 is the propagation constant, and beam one propagates along the
z direction and self-focuses along the transverse directions x and y. The function
A[r(x,y,z)] represents the evolution of the beam envelope. The nonlinearity refers
to nonlinear medium polarization that is the change of the refraction index of the
medium that is responsible by the self-focusing of the pulse.

Considering the Maxwell equations and the medium polarization, one can obtain
the generalized nonlinear Schrödinger (NLS) equation that describes soliton
solutions [8]:

i
∂u

∂z
þ 1

2

∂
2u

∂x2
þ ∂

2u

∂y2

� �

� F uj j2u
� �

¼ 0: (2)

In Eq. (2), u is proportional to electric field. The term F(|u|2u) represents a
generalized term of nonlinear optical effects. The solutions of Eq. (2) can represent
and describe the optical beam profile one propagating through an optical lattice and
an optical fiber. It describes also quantum noise as Raman and Brillouin scattering in
the optical system.

We will sequentially show how quantum effects from the interaction of an
optical beam with the constituents of the waveguide or the crystal lattice through
which it propagates can be described in the context of nonlinear electrodynamics. In
other words, we will show an equivalence to quantum optics and nonlinear electro-
dynamics characterized by nonlinear polarization of the medium. We will demon-
strate the equivalence between its properties and the properties of solutions from a
dynamical action. This action can map optical systems, and the method is based on
the variational principle whose solutions give the same from that of Eq. (2).

Considering the optical rays equation

d

ds
n
d r
!

ds

 !

¼ ∇n, (3)
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where n is the refraction index, s is a specific trajectory, and r
! ¼ r

!
sð Þ, the

principle of least action may be written as

δ

ð

nds ¼ 0, (4)

which is Fermat’s principle for the paths of light rays. So the scalar wave equa-
tion in optical context can be written as

∇
2ϕ� n2

c2
d2ϕ

dt2
¼ 0, (5)

that is satisfied by a plane wave solution

ϕ ¼ ϕ0e
i k

!
: r
!�ωt

� �

: (6)

The wave number k and the frequency ω are related by

k ¼ 2π

λ
¼ nω

c
: (7)

So Eq. (6) can be written as

ϕ ¼ ϕ0e
ik
!
0 nz�ctð Þ, (8)

and it is assumed that k
!
is in the z direction. The refractive index n can change

very gradually in space, and a solution resembling the plane wave can be written as

ϕ ¼ eA r
!ð Þþik0 L r

!ð Þ�ct½ �, (9)

and the quantities A r
!
� �

and L r
!
� �

are real functions.

Now we can establish a relation between this description of optical pulses, the
NLS equation and the Schrödinger equation. This equivalence, in context of the
classical level at least, between NLS equation solutions and the method that we
propose in this work, can be constructed considering the relation

k0 L� ctð Þ ¼ 2π
L

λ0
� ωt

� �

: (10)

In this sense, we are led to conclude that the energy E of the system and its
frequency ω are proportional

E ¼ hω: (11)

The wave length and the frequency are related by

λω ¼ v, (12)

and, now, considering that for a light ray one propagating in a certain medium
with speed v < c, where c is the speed light in the vacuum
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v ¼ E

p
, (13)

and another simple relation

λ ¼ v

ω
, (14)

we come to an important relationship, using Eqs. (11) and (12):

λ ¼ h

p
: (15)

So as an important consequence of this approach, we can write the wave
Eq. (5) as

∇
2ϕ� 1

v2
d2ϕ

dt2
¼ 0, (16)

where v is the wave velocity in the medium of index n. This equation can yet be
rewritten, considering a temporal dependence of kind e�iωt in the form

∇
2ϕþ 4π2

λ2
ϕ ¼ 0, (17)

that is the time-independent wave equation. So it is perfectly acceptable that a
certain optical field Ψ satisfies an equation of the same form as

∇
2ψ þ k2ψ ¼ 0, (18)

and doing the identifications

p ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2m E� Vð Þ
p

, (19)

with p being the momentum and the terms inside the square root stands by
kinetic energy or the difference between total energy E and the potential energy V
of particle, we get the Schrödinger equation [9]

∇
2ψ þ 8π2m

h2
E� Vð Þψ ¼ 0, (20)

with m being the particle mass and h the Planck constant.

3. Brief introduction on optical solitons

3.1 Nonlinear Schrödinger equation

The equation that describes optical fields in a nonlinear medium is known as the
nonlinear Schrödinger equation. In this section, we succinctly present the origin of
the NLS equation for a CW beam propagating inside a nonlinear optical medium.
From Maxwell equations in a nonlinear medium, one gets the wave equation for the
electric field [7, 10]:

4

Nonlinear Optics - From Solitons to Similaritons



∇
2E� 1

c2
∂
2E

∂t2
¼ 1

ε0c2
∂
2P

∂t2
(21)

with c being the speed of light in vacuum and ε0 the vacuum permittivity. The

total polarization P
!
is

P r, tð Þ ¼ PL r, tð Þ þ PNL r, tð Þ: (22)

PL is the linear part, and PNL is the nonlinear part, given respectively by [8, 10]

PL r, tð Þ ¼ ε0

ð

χ1 t� t0ð ÞE r, t0ð Þdt0 (23)

and

PNL r, tð Þ ¼ ε0

ð ð ð

χ3 t� t1, t� t2, t� t3ð Þ � E r, t1ð ÞE r, t2ð ÞE r, t3ð Þdt1dt2dt3, (24)

χ1 and χ3 are the first- and third-order susceptibility tensors. A general solution
of Eq. (21) will be

E r, tð Þ ¼ 1

2
x̂ E r, tð Þe�iω0t þ cc
	 


(25)

where E r, tð Þ ¼ A rð Þeiβ0Z and β0 ¼ k0n0 � 2πn0
λ

are the propagation constants

with the wavelength λ ¼ 2πc
ω0
. The beam diffracts and self-focuses along the two

transverse directions X and Y where X, Y, and Z are the spatial coordinates associ-
ated with r. The function A(X,Y,Z) is the evolution of the beam envelope; it would
be a constant in the absence of nonlinear and diffractive effects. Nonlinear and

diffractive effects and neglecting d2A
dz2

the beam envelope satisfy the following

nonlinear parabolic equation:

2iβ0
∂A

∂Z
þ ∂

2A

∂X2 þ
∂
2A

∂Y2

� �

þ 2β0k0nnl Ið ÞA ¼ 0: (26)

Introducing the following variables

x ¼ X

ω0
, y ¼ Y

ω0
, z ¼ Z

Ld
, u ¼ k0jn2jLdð Þ1=2A (27)

where ω0 is a transverse scaling parameter related to the input beam width and
Ld ¼ β0ω02 is the diffraction length; Eq. (26) takes the form of a NLS equation:

i
∂u

∂z
þ 1

2

∂
2u

∂x2
þ ∂

2u

∂y2

� �

� uj j2u ¼ 0: (28)

Now one can consider the NLS equation in the form

i
∂u

∂z
þ 1

2

∂
2u

∂x2
þ σd

∂
2u

∂y2

� �

� uj j2u ¼ 0, (29)

and the y independent form of it
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i
∂u

∂z
þ 1

2

∂
2u

∂x2
� uj j2u ¼ 0: (30)

Eq. (30) describes the spatial and temporal optical solitons as treated in Refs.
[5,6, 11–15], respectively.

4. Nonlinear and quantum optical sensor principles

Nonlinear effects in optical fibers are common when, for example, increasing the
power of the optical source. In this case, optical noise such as Raman effect and Kerr
effect originate the interaction of optical fields with matter. These effects, depending
on their technological application, may be undesirable. In our work, we discuss one set
of solutions for optical fields whose nonlinear effects can be used to suppress certain
propagation modes harmful to technological applications. On propagation of signals,
for example, the Kerr effect can be a factor representing the loss of optical signal, and
in this sense, using the solutions presented in this work, an optical network can be
specially designed to suppress the distortion of the optical signal by the Kerr effect. The
fiber or group of optical fibers can be designed so that the distortion of optical signals
through nonlinear effects is eliminated. In another perspective, our method can be
combined with space-division multiplexing (SDM) and nonlinear cancelation methods
that offer the opportunity to reverse the effect of Kerr distortion [16]. The method
developed in this work can be implemented to identify patterns of nonlinear modes
which contribute to the distortion of the optical signal in the transmission system [17].

In this case, the propagation modes of the optical beam by the system will be
conveniently selected and processed in the transmission link as shown in Figure 1.
In this section, we will mathematically demonstrate how any optical signal can be
transformed conveniently into appropriate optical pulse. In other words, any sign
optical can be mapped to a field originally known.

It is appropriate to point out that the mathematical approach is necessary to detail
the practical implementation of the recognition and processing of optical signals that
can reach the optical beam level in the waveguide or any optical network.

4.1 Optical systems

The discovery of non-Hermitian observables with real spectrum in optical
systems may provide an important and useful relationship between the crystal
structure of an optical system and parity-time (PT) symmetry [18]. Optical

Figure 1.
Architecture of a transmission system. The nonlinear (NL) processor identifies λI e λn modes and rectifies the
optical distortions through the preprocessed patterns of non-Hermitian solitons diffracted by the optical network.
Like any signal can be mapped, as will be presented in Section 4, the processor may recognize any optical pattern
from the original signal, as a nonlinear distortion or optical soliton, and eliminate it, reverse it, or pass it on.
In figureRx is a signal identifier (basically an oscilloscope) with output to the Nonlinear Processor (NL Processor).
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potentials that have PT symmetry are potential that obey the following relation V
(x) = V*(�x), where the superscript star denotes the conjugate complex. The
symmetry PT may describe an optical system as a lattice structure or a waveguide.
From the formal point of view, the light that propagates through a waveguide can
be described by classical electrodynamics and the quantummechanics, which seems
to establish a deep relationship between them. However nonlinear optical phenom-
ena lead to the same dynamic equations describing the propagation of quantum
light in some materials media. We can explore the optical dynamics of a beam and
waves propagating by an optical lattice which can be described by PT symmetric
complex potentials. The optical beam propagation can be described by the Schrö-
ndinger-like equation:

i
∂ψ

∂z
þ ∂

2ψ

∂x2
þ V xð Þ þ iW xð Þ½ �ψ þ ψj j2ψ ¼ 0: (31)

Eq. (31) describes an optical beam one propagating in a self-focusing Kerr
nonlinear PT symmetric potential as V(x) = V(�x) and W(�x) = � W(x). The
solutions of Eq. (31) can be expressed as follows:

ψ x, zð Þ ¼ ϕ xð Þ exp iλzð Þ, (32)

where ϕ(x) is the nonlinear eigenmode and λ is the propagation constant. Then
one obtains the following equation for the field ϕ(x):

∂
2ϕ

∂x2
þ V xð Þ þ iW xð Þ½ �ϕþ ϕj j2ϕ ¼ λϕ: (33)

In this point it is important to note that the optical system can be mapped by the
band structure of the optical lattice or waveguide through the propagation constant
λ. In fact the eigenvalue (λ) and the eigenmode ϕ(x) satisfy

d2

dx2
þ F xð Þ

" #

ϕ ¼ λϕ, (34)

whose solutions can be write in the form

ϕn k, xð Þ ¼ un k, xð Þeikx, un xþD, kð Þ ¼ un x, kð Þ (35)

with un(x,k) and satisfying

d2un x, kð Þ
dx2

þ 2ik
du

dx
þ F xð Þ � k2
	 


ϕ ¼ λ kð Þϕ: (36)

From Eq. (35) result important properties of optical systems described by sym-
metry PT, as the selection of propagation modes λ(k).

4.2 Mapping optical systems

In order to show how the PT symmetric complex potentials can map optical
lattice structures, consider Eq. (31) where

V xð Þ ¼ V0 sec h
2 xð Þ, W xð Þ ¼ W0 sec h xð Þ tanh xð Þ, (37)
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whose solution can be given by

ϕ ¼ ϕ0 sec h xð Þ exp iμ tan �1 sinh xð Þ½ �
� �

, (38)

that represents a nonlinear mode with λ = 1, when V0 = 1,W0 = 0.5, and μ =W0/3.
The profiles of the potentials V(x) andW(x) are shown in Figures 2 and 3.

5. New non-Hermitian optical systems

The application of non-Hermitian optical systems in the modeling of the optical
lattices and waveguides [18] can be performed by the variational method proposed
by [19]. In this approach, a generalization of the NLS equation (29)

Figure 2.
Profile of potential V(x) along the optical lattice.

Figure 3.
Profile of potential W(x) along the optical lattice.
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i
∂u

∂z
þ 1

2

∂
2u

∂x2
þ ∂

2u

∂y2

� �

� F uj j2u
� �

¼ 0, (39)

can be obtained by a properly Lagrangian density L, introducing the action as

S ¼
ð

z

0

dz

ð ð

∞

�∞

L x, y, zð Þdxdy: (40)

In this approach, a mechanism to describe nonlinear and non-Hermitian optical
systems can be obtained starting from an adequate action given by Eq. (40) with a
Lagrangian

L ¼ 1

2
∇ϕð Þ2 � V ϕð Þ, (41)

where ϕ is proportional to the electric field as in Eq. (32) and V(ϕ) is the optical
potential that model the optical lattice of the system. In this sense, Eq. (33) can be
written as

1

2

d2ϕ

dx2
¼ dV ϕð Þ

dϕ
, (42)

and solved as follows

ð

dϕ
ffiffiffiffiffiffiffiffiffiffiffiffiffi

2V ϕð Þ
p ¼ � x� x0ð Þ: (43)

On the other hand, these same solutions emerge from the energy calculation of
optical system, which can be written as

E ¼ 1

2

ð

∞

�∞

dx
dϕ

dx
�Wϕ

� �2

þ 2Wϕ

dϕ

dx

" #

, (44)

where dW ϕð Þ
dϕ ¼ Wϕ ¼ ffiffiffiffiffiffiffiffiffi

2Vϕ
p

:

The configuration that minimizes the energy of system, given by Eq. (19), is
obtained by the following differential equation:

dϕ

dx
¼ Wϕ: (45)

5.1 New models and sensors

Nonlinear and non-Hermitian optical systems can be modeled now by the
method based on Lagrangian. The motion equations will describe the propagation of
the optical field through of a generic optical lattice.

Consider a model that is based on nonlinear and non-Hermitian optical potential

Wϕ ¼ ϕ2 þ 2iaϕ� b2, (46)

where a and b are optical parameters. The optical field solution, using, is
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ϕ xð Þ ¼ �iaþ α tanh αxð Þ, (47)

where α ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

b2 � a2
p

, and the energy has real spectrum that can be calculated by

E ¼ 4

3
α3: (48)

Another nonlinear and non-Hermitian optical potential is given by

Wϕ ¼ cos ϕð Þ þ ia sin ϕð Þ þ b (49)

whose solution for the optical field is

ϕ xð Þ ¼ 2 arctan
�ia� 2β tanh βxð Þ

b� 1


 �

, (50)

where 2β ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� a2 þ b2
� �

q

, whose field configuration is plotted in Figure 4.

It is important to emphasize that a new class of non-Hermitian optical systems
can be generated by Eq. (42) and from Eq. (43) follows that

ð

dϕ
ffiffiffiffiffiffiffiffiffiffiffiffiffi

2V ϕð Þ
p ¼ x� x0 ¼

ð

dϕ
ffiffiffiffiffiffiffiffiffiffiffiffiffi

2V ϕð Þ
p : (51)

In general one can rewrite the above equation simply as ϕ = f(φ) then we can try
to generate a new non-Hermitian model with real energy from non-Hermitian
model given by Eq. (46). In this case, we can use:

f ϕð Þ ¼ sinh ϕð Þ, (52)

getting the non-Hermitian potential

W ϕð Þ ¼ sinh ϕð Þ þ 2ia ln cosh ϕð Þ � 2 1þ b2
� �

tanh �1 tanh ϕð Þ½ �
	 


, (53)

Figure 4.
The real (thin line) and imaginary (thick line) parts of optical field configurations of nonlinear and
non-Hermitian optical potentials.
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with the correspondent solution

ϕ xð Þ ¼ sinh �1 �iaþ αa tanh kaxð Þ½ �: (54)

It is important to note that the optical field solution ϕ has a real component and
an imaginary component. The real component represents the diffracted component
of the optical field as shown in Figure 4. In our investigation, we have found that
non-Hermitian optical systems can describe optical crystal structures and optical
pulses propagating through such structures. We can observe that the modes of
propagation, in Eq. (10), describe a particular conduction band of the optical lattice.
In this sense, we can design a waveguide to act as a natural selector of certain
wavelengths. In some photonic devices using sensors to optical fiber, for example,
gyroscopes, optical noises from quantum scattering as the Raman effect is undesir-
able. So we can design a waveguide which suppresses the Raman propagation
modes in the conduction band of the crystal lattice. Another important application
of the modeling that we propose in this paper is that certain quantum noise from the
interaction of light with matter can be treated very easily, as is the case for Raman
scattering. In this case, the scattering propagation mode and its interaction with the
crystal lattice can be modeled by the procedure that we have described. Thus we can
simulate the propagation modes of an optical pulse by a crystalline network and
mapping the crystalline structure whose information is present in the potential
optical V(x) and W(x) of Eq. (12) by the symmetry parameters present in motion
equations describing the propagation of an optical beam through an optical net-
work. It is interesting to note that our procedure covers a wide range of nonlinear
scatterings, which allow the numerical implementation of this method to recognize
and model the patterns of quantum noise from the scattering of light with matter.
Another interesting application of the method we have developed in soliton-based
communications is that the crystal lattice can be designed such that the λk propaga-
tion modes can be used to adjust the bit size of the slot [14, 20]. This may be
performed once for soliton train; it is possible to relate the soliton width T0 with bit
size B as

B ¼ 1

TB
¼ 1

2q0T0
, (55)

where TB is the bit time slot and 2q0 = TB/T0 is the separation between neigh-
boring soliton, as shown in Figure 5.

Figure 5.
Soliton bit stream. Each soliton occupying a bit slot can represent binary 1, and the absence of soliton can
represent a binary 0.
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6. Conclusions

In this chapter, we describe how nonlinear and quantum optical effects can be
applied to the development of optical sensors. From Maxwell’s equations, one can
obtain an equation that describes the nonlinear behavior of an optical pulse that
propagates through an optical system such as a waveguide. The nonlinear behavior
of an optical pulse can be understood here as optical noise, the propagation of an
optical pulse through a general optical system, or even quantum optical effects that
can be properly described by a nonlinear second-order equation known as general-
ized nonlinear Schrödinger equation as described in Section 2. This equation has
simple solutions called optical solitons. In Sections 3 and 4, we show how the term
optical potential F(|u|2u) from NLS, where u describes the electric field, can model
several optical systems through which a nonlinear optical pulse can propagate,
generating physical information that can be transmitted and processed electroni-
cally. In Section 5, we show that nonlinear optical systems, which are optical sys-
tems capable of transmitting such nonlinear optical pulses, can be modeled simply
by a first-order equation from non-Hermitian optical systems, which are systems
that present a type of symmetry in spatial directions and in time, that is, x ! �x
and t ! �t. We apply these results by describing how different optical systems can
be equivalent or mapped together. In principle, a particular optical system, such as
an approximately one-dimensional waveguide, can be designed by reproducing the
same optical effects as another waveguide. In the example, we apply these results
although the beam optical profile is different in the measurement instrument data
output, an oscilloscope, for example, the optical system which in this case may be a
waveguide, can be mapped through its design function W(ϕ). The electric field
amplitudes ϕ(x) can be appropriately combined to generate optical pulses in vari-
ous optical systems and can be transmitted and processed from photonics and
integrated optics and applied to the development of various emerging technologies
such as quantum computing and quantum information.
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