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Chapter

Simulation and Parametric
Inference of a Mixed Effects
Model with Stochastic Differential
Equations Using the
Fokker-Planck Equation Solution
Bakrim Fadwa, Hamid El Maroufy and Hassan Ait Mousse

Abstract

This chapter is concerned with estimation method for multidimensional and
nonlinear dynamical models including stochastic differential equations containing
random effects (random parameters). This type of model has proved useful for
describing continuous random processes, for distinguishing intra- and
interindividual variability as well as for accounting for uncertainty in the dynamic
model itself. Pharmacokinetic/pharmacodynamic modeling often involves repeated
measurements on a series of experimental units, and random effects are incorpo-
rated into the model to simulate the individual behavior in the entire population.
Unfortunately, the estimation of this kind of models could involve some difficulties,
because in most cases, the transition density of the diffusion process given the
random effects is not available. In this work, we focus on the approximation of the
transition density of a such process in a closed form in order to obtain parameter
estimates in this kind of model, using the Fokker-Planck equation and the Risken
approximation. In addition, the chapter discusses a simulation study using Markov
Chain Monte Carlo simulation, to provide results of the proposed methodology and
to illustrate an application of mixed effects models with SDEs in the epidemiology
using the minimal model describing glucose-insulin kinetics.

Keywords: stochastic differential equations, mixed effects model, Fokker-Planck
equation, transition density, maximum likelihood estimators, genetic algorithm,
Markov Chain Monte Carlo simulation

1. Introduction

In pharmacokinetic/pharmacodynamic studies, repeated measurements are
performed on a sample of individuals (units/subjects), and responses for all exper-
imental subjects are assumed to be described by a common structural model. This
model contains both fixed and random effects to distinguish between individuals in
a population, leading to a mixed effects model in which fixed effects represent fixed
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parameters for all individuals in the population and random effects account for
individual differences. Moreover, mixed effects modeling has been shown to be
useful in pharmacokinetic/pharmacodynamic studies; particularly for modeling
total variation in and between individuals, the models used in pharmacokinetic/
pharmacodynamic analysis are often presented by a system of deterministic differ-
ential equations (ordinary, partial, or delay). However, the pharmacological pro-
cesses in reality are always exposed to incomprehensible effects that are difficult to
model, and ignoring these effects can affect the parameter estimation results and
their interpretations. So, the introduction of stochastic components to deterministic
models is an important tool of analysis [1] and is more appropriate to model the
intra-individual variations rather than ODEs. In addition, the extension of ODEs to
the SDEs makes it possible to explain the differences between the observations and
the predictions by two types of noise: dynamic noise that enters through the
dynamics of the system and that can result from its random fluctuations or from the
shortages of model and the measurement error which is added in the case of an
indirectly observed process, which may be due to a test error or to the existence of
a disturbance and represent the uncorrelated part of the residual variability. In the
theory, there are rich and developed resources for mixed effects models whether
deterministic [2–6] or stochastic and linear or nonlinear models (see many applica-
tions of stochastic NLME models in biomedical [7–9] and in pharmacokinetic
[10–12] fields).

Parameter estimation in mixed effects models with SDEs, known by stochastic
differential mixed effects models, is not an obvious procedure except in some cases
simpler [14] because it is often difficult to write the likelihood function in its closed
form. In this context, we propose a review on estimation methods of SDME models
in [13, 15] and an example case that treats a generalized linear mixed models in [16]
and also an example to approximate the likelihood function of an NLME with the
likelihood of a linear mixed effects model in [17]. Moreover, to strengthen knowl-
edge on estimation methods of SDME, we refer to [18, 19] that propose an example
of stochastic mixed effects model with random effects log-normally distributed
with a constant diffusion term.

In general, it is difficult to obtain an explicit likelihood function because the
transition density of the stochastic process is often unknown or that the integral in
the likelihood given the random effects cannot be computed analytically, and
although the size of the random effects increases, the complexity of the problem
increases also rapidly. Therefore, this requires a significant need for approximate
methods to compute the transition density in an approximate closed form and for
effective numerical integration methods to compute or approximate the integral in
the likelihood function, using, for example, the Laplacian and Gaussian quadrature
approximation [3, 8, 20] or other approaches [21, 22]. In the literature, several
solutions have been proposed to approximate the transition density and have shown
their effectiveness despite certain limitations. For example, the transition density
could be approximated by the solution of the partial differential equations of Kol-
mogorov [23]; by the derivation of a Hermite expansion of closed form at the
transition density [24–26] (this method has been reviewed and applied for many
known stochastic processes for one-dimensional [8] and multidimensional [20]
time-homogeneous SDME model); or by simulating the process to Monte-Carlo-
integrate the transition density [27–29]. These techniques are very useful and can
solve the problem, but unfortunately, they involve intense calculations which make
the problem always complicated.

In this work, we focus on two fundamental issues concerning the implementa-
tion of SDEs in NLME models. The first is how the transition density of an SDME
model can be approximated when it is not known, and the second is about
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approximating methods of the likelihood function when the integral given the
random effects has no analytic solution. Then, we propose an optimization algo-
rithm to obtain maximum likelihood estimators in order to facilitate the estimation
procedure for these models. Finally, the methodology is evaluated by simulation
studies on the bidimensional Ornstein-Uhlenbeck model, and then it is
implemented on the minimal model describing the glucose and insulin kinetics.

2. Theoretical tools

Consider an N-dimensional continuous and stochastic process Y t in the state

space E⊂
N described by the general first-order nonlinear stochastic differential

equations of the Itô type [30]:

dY i
t ¼ μ Y i

t, t, θ, b
i� �

dtþ Σ Y i
t, θ, b

i� �

dW i
t, Y i

0 ¼ yi0, i ¼ 1, … ,M, (1)

where Y i
t is defined as the solution of the SDME model Eq. (1) that exists

under some conditions that we suppose satisfied [31–33] and represents the obser-
vation of individual i from M different experimental units, (i ¼ 1, ::,M), at the

moment t≥ ti0, and Y i
0 ¼ Y i

t0
is the initial state of Y t for each subject. The process

Y i
t

� �

t≥0
, i ¼ 1::M

n o

is assumed to verify the same model structure Eq. (1) according

to the individual parameters bi; θ∈Θ⊂
p is a p-dimensional fixed effects parame-

ter which represents the same and common characteristics for all subjects, and

bi ∈B⊆
q are the q-dimensional individual random parameters assumed mutually

independent, also called random effects because they are not the same for all
individuals; they change between them according to a distribution of density

PB bijΨ
� �

depending on a population parameter Ψ; in the population approach, this
parameter vector allows for a data from several subjects to be considered simulta-

neously. Each component bil may follow a different distribution, l ¼ 1, … , qð Þ, and a

standard choice for the joint density function PB bijΨ
� �

of the vector bi could be the

Gaussian distribution; however, any other distributions may be considered contin-
uous or discrete:

bi � i:i:d N ϑ,ϕð Þ: (2)

The joint density function of the vector bi is parameterized by a q-dimensional
parameter ϑ∈ υ⊂

q and a q� q-dimensional matrix ϕ∈Φ⊂
q�q representing the

covariance matrix of bi and specifying the parameters of the marginal distributions

of the components bil, 1≤ l≤ qð Þ; the components of ϕ and ϑ represent the popula-

tion parameters Ψ. For Y i
0, it is not necessarily known, and when its components are

unknown, they must be considered as random effects since they change between
individuals; but in some cases it can be known and assumed equal to a real constant.

Also, we assume that the distribution of Y i tð Þ given bi, θ
� �

and Y i t0ð Þ ¼ yt0 , t
0
< t, has

a strictly positive density with regard to the Lebesgue measure on E:

y ! PY y, t� t0j yt0 , b
i, θ

� �

>0, y∈E: (3)

W i tð Þ are the standard Brownian motions, and they are assumed mutually

independent with bj for all 1≤ i, j≤M. The functions μ �ð Þ : E� � Θ� B !  and
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Σ �ð Þ : E� Θ� B ! 
þ represent, respectively, the drift and the diffusion term of

the model and are assumed to have some properties sufficiently regular to ensure a
unique solution to the model [33].

According to the model Eq. (1), the process Y is the same and follows the same
form for each individual of the population, and the SDME model of type Itô
expresses the dynamic of the individual i perturbed by the Brownian motion. So,
the differences between the subjects are modeled on the one hand by the different

realizations of the Brownian motion paths W i
t

� �

t≥ ti0
and, on the other hand, by the

incorporation of the random parameters bi in the model. Therefore, the introduc-
tion of parameters varying randomly between subjects allows the model Eq. (1) to
explain the variability between individuals.

The goal is to estimate the vector of fixed parameters θ and the parameter vector

Ψ characterizing the distribution of random parameters bis, but the statistical
inference for such models is a difficult issue, and the level of difficulty is not the
same whether the transition density is explicit or not and whether the process is
observed directly or with measurement noise; in this work we assume that the
process was exactly observed and no observation noise was considered.

2.1 Maximum likelihood estimation in SDME model

The likelihood function of an SDME model is expressed as follows:

L θ,Ψð Þ ¼
Y

M

i¼1

P yijθ,Ψ
� �

¼
Y

M

i¼1

ð

PY yijbi, θ
� �

PB bijΨ
� �

dbi (4)

with

PY yijbi, θ
� �

¼
Y

ni

j¼1

PY yij,Δ
i
jjy

i
j�1, b

i, θ
� �

, (5)

where ni is the number of observations for the subject i at discrete points of time

ti0, t
i
1, … , tini

n o

, i ¼ 1, … ,M and Δ
i
j ¼ tij � tij�1, j ¼ 1, … , ni. The conditional den-

sity PY yij�
� �

is equal to the product of the transition densities Eq. (5) for given

random effects and θ, but the availability of the explicit transition density is the
second constraint for the statistical issue of model Eq. (1) to obtain an exact likeli-
hood function and exact estimators, since computing the transition density is not
always obvious and requires approximation methods. However, there are some
cases where the exact likelihood function is known, and the exact MLEs of θ are
obtained (see references in the introduction). In fact, to compute the likelihood
function in a closed form of an SDME model, we can encounter two types of
problems that require approximate methods to overcome them: First, when the

transition density PY yij,Δ
i
jjy

i
j�1, b

i, θ
� �

is known but the integral in Eq. (4) has no

solution, in this case, the numerical methods of approximation of the integral are

required. Or, second, when PY yij,Δ
i
jjy

i
j�1, b

i, θ
� �

cannot even be expressed explicitly

and must also be approximated, see next paragraphs. Usually, in realistic examples,
we have both an unknown transition density and an integral that is difficult to solve
analytically. In theory, several methods for approximating transition densities and
integrals have been proposed (see references cited in the introduction).
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In this work, we propose an approximate method to estimate the transition
density for a time-inhomogeneous NLME model with SDEs in a closed approximate
form. So, we suggest to derive the transition density by solving the motion equa-
tions of the process using the Fokker-Planck equation, and we deal with the use of
its solution given in [34]. Then, using the expression obtained, we get a closed form
approximation of the likelihood function that we maximize to obtain the approxi-

mated MLEs θ̂ and Ψ̂. The approximated transition density obtained from the

proposed method is denoted by P
að Þ
Y Y i

j,Δ
i
jjY

i
j�1, b

i, θ
� �

that we substitute in Eq. (4)

to obtain the following approximated likelihood function for the SDME model
Eq. (1):

L að Þ θ,Ψð Þ ¼
Y

M

i¼1

ð

Y

ni

j¼1

P
að Þ
Y yij,Δ

i
jjy

i
j�1, b

i, θ
� �

 !

PB bijΨ
� �

dbi: (6)

2.1.1 Laplace approximation

For a multidimensional vector of random parameters, if the exact transition
density or its closed form approximation is available, we can use the Laplace
approximation method [16, 20, 35] to obtain an explicit expression of the likelihood
function to maximize, despite the fact that the integral in Eq. (4) has no closed

solution. So, for a q-dimensional random vector bi, the likelihood function Eq. (4)
can be approximated as:

logL θ,Ψð Þ≃
X

M

i¼1

logPY yij~b
i
, θ

� �

þ logPB
~b
i
jΨÞ þ

q

2
log 2πð Þ �

1

2
log j�H ~b

i
jθ,ΨÞj

� i

,

�	

(7)

where

~b
i
¼ argmaxbi f bijθ,Ψ

� �� �

and f bijθ,Ψ
� �

¼ logPY yij~b
i
, θ

� �

þ logPB
~b
i
jΨ

� �

(8)

and ∣ � ∣ denotes the determinant of the Hessian matrix H bijθ,Ψ
� �

:

H ~b
i
jθ,Ψ

� �

¼
∂
2 logPY yij~b

i
, θ

� �

þ logPB
~b
i
jΨ

� �h i

∂~b
i
∂~b

iT
(9)

2.2 Approximate transition density for multidimensional and nonlinear SDME
model

Usually, a formal general solution of the stochastic differential equations as in
Eq. (1) cannot be given, which makes the calculation of the transition density for
this process more complicated. Moreover, this process has a lot of fluctuations that
its exact position cannot be determined but can be known given a region by its
probability density; with the FP equation, such a probability density can be deter-
mined. The FP equation is a differential equation for the distribution function
describing a Brownian motion by which the probability density of the stochastic
process can be calculated in a much simpler way by solving this equation. This
motion equation is usually used for variables describing a macroscopic but small
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system, where the fluctuations are important as for some cases in physics, e.g., the
position and the speed of the Brownian motion of a small particle. However, it can
be also used for the larger system where, in spite of their small fluctuations, the
stochastic description remains necessary when the deterministic equations may not
be stable for this type of system.

So, under some assumptions, the transition density PY yij,Δ
i
jjy

i
j�1, b

i, θ
� �

of the

process Y in the SDME model Eq. (1) is the solution of the following functional
partial differential Equation [23, 34]:

∂PY yij,Δ
i
jjy

i
j�1, b

i, θ
� �

∂t
¼ LFPPY yij,Δ

i
jjy

i
j�1, b

i, θ
� �

, (10)

where LFP is the FP operator and LFP ¼ �
PN

k¼1
∂

∂Yk
μk Y i, t, θ, bi
� �
 �

þ

1
2

PN
k¼1

PN
l¼1

∂
2

∂Yk∂Y l
Σkl½ � and μk is the k-th element of the drift vector and Σkl is the kl-

th element of the diffusion matrix. We assume that the diffusion matrix is positive
definite so that its inverse exists Det Σð Þ 6¼ 0.

In [34], H. Risken deals in this book with the derivation of the FP equation and
its solution methods with some of its applications especially for problems of
Brownian motion. So, here, we propose to characterize the transition density of the

N-dimensional process Y i
t in Eq. (1) using the Risken approximation based on the

formal solution of Eq. (10) proposed in [34], p: 4.109, denoted by

P
að Þ
Y yij,Δ

i
jjy

i
j�1, b

i, θ
� �

:

P
að Þ
Y Y i

j,Δ
i
jjY

i
j�1, b

i, θ
� �

¼ 2
ffiffiffiffiffiffiffiffiffi

ΠΔj

p

� ��N
DetΣ½ ��

1
2 ∗ exp

�

�
1

4Δj

X

N

l¼1

X

N

k¼1

Σ
�1


 �

lk

Y i
j

� �

l
� Y i

j�1

� �

l
� μl Y i

j�1, t, θ, b
i

� �

Δ
i
j

h i

Y i
j

� �

k
� Y i

j�1

� �

k
� μk Y i

j�1, tj�1, θ, b
i

� �

Δ
i
j

h i



(11)

To test the effectiveness of this approach, we will guide our statistical methodology
by simulation studies in order to examine the flexibility of its application to deduce its

advantages and disadvantages. So, we substitute P að Þ
Y Y i

j,Δ
i
jjY

i
j�1, b

i, θ
� �

in Eq. (6), and

by solving the integral with respect to the random effects density and maximizing the

obtained likelihood function, we get the approximated estimators θ̂ and Ψ̂.

2.2.1 Approximated estimators

For a nonlinear SDME model with Gaussian random effects using Eqs. (6), (7),
and (11), we obtain the following approximated likelihood function:

logL að Þ
θ,Ψð Þ≃

X

M

i¼1

	

�
q

2
log 2πð Þð Þ �

1

2
log det ϕð Þð Þ �

ni
2
log det Σð Þð Þ þ

�

X

ni

j¼1

log 2
ffiffiffiffiffiffiffiffiffi

ΠΔj

p� ��N
� �

�
1

4Δj

Σ
�1


 �

lk
Y i
j

� �

l
� Y i

j�1

� �

l
� μl Y i

j�1, t, θ,
~b
i

� �

Δ
i
j

h i

Y i
j

� �

k
� Y i

j�1

� �

k
� μk Y i

j�1, tj�1, θ, ~b
i

� �

Δ
i
j

h i



�
1

2
~b
i
� ν

� �0

ϕ�1 ~b
i
� ν

� �

þ
q

2
log 2πð Þ �

1

2
log det �H ~b

i
jθ,Ψ

� �� �� �

�

:

(12)

The MLEs of θ,Ψð Þ can be obtained using one of the optimization tools and
numerical computation software, especially when it is complicated to compute the
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gradients of the likelihood analytically. Here, we propose to use the genetic algo-
rithm as an optimization tool to maximize the approximate likelihood function
Eq. (12) using MATLAB software:

θ̂, Ψ̂
� �

¼ argminGA � log L að Þ θ,Ψð Þ
� �� �

: (13)

2.3 Genetic algorithm

The genetic algorithm is a random search technique to look for an exact or
approximated optimum points for optimization problems [36–38]. It is based on
the concepts of natural genetic evolution which contains the following stages: the
reproduction, the crossing, and the mutation of a constantly evolving population.
It sets up the evolution of a random population of potential solutions of the N
cardinal; then, the N simultaneous iterative trajectories interact with each
other by following or imitating the biological evolution, for a convergence
of certain elements of the population towards an optimal point of the fitness
function.

The GA can search in multiple directions to explore all the search space by the
possibility of jumping across them, so that the seeds spread uniformly over the
whole search space. In this algorithm, we have a diversity of initial populations
which gives the global optimum faster than other algorithms, where the initial value
is very important and should be enough close to the global optimum. All of these
features allows the GA to be regarded as a driving tool of evolution giving good
results for optimization processes [37, 39]. In the literature, there were many works
about the application of GA in optimizing problems specially for likelihood function
[40, 41]. For the use of GA, we must first define some parameters of the algorithm:
Population size N, EN, SR, CP, MP, fitness function, and convergence criteria. In
the following we present the GA steps:

Steps of GA:

1. Generate initial population β
0ð Þ
1 , β 0ð Þ

2 , … , β 0ð Þ
N

n o

,m ¼ 0 via an initialization

strategy (random generation), in our case β ¼ θ,Ψð Þ.
For m ¼ 0:

2. Evaluate the Fitness function log �L að Þ θ mð Þ,Ψ mð Þ
� �� �

.

3. While (convergence criteria are not satisfied):
Do:
4. Replacement step (by using SR and EN): At the SR rate, individuals with the

worst results in step 2 of fitness function are replaced by new ones randomly
generated, and a number EN of individuals is selected and accepted for the next
step.

5. Selection operator by using roulette wheel method, based on the fact that the
more the individual has a good result of fitness function, the more likely he will be
selected.

6. Crossover operator by using CP and mutation operator by using MP: It is a
mechanism of perturbation on the candidate individuals (parents) according to CP
and MP to generate new groups of individuals, and we obtain a new mþ 1ð Þnd

population β
mþ1ð Þ
1 , β mþ1ð Þ

2 , … , β mþ1ð Þ
N

n o

.

Else:
7. Evolution stops; get GA output.
8. m ¼ mþ 1.
End For.
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In the simulation studies paragraphs, the GA is implemented using the MATLAB
software, where the function “ga,” to generate the genetic algorithm, requires
inputs that are chosen according to the constraints of each example (see the help
window in MATLAB). Moreover, the algorithm parameters are chosen according to
what is early used in the literature [39], EN ¼ 4, MP ¼ 0:2, CP ¼ 0:8 and SR ¼
1=3, and the search spaces are around the confidence interval of the minimal model
parameters (see [42] and references therein).

3. Simulation studies for SDME model

3.1 The two-dimensional Ornstein-Uhlenbeck process

To apply the proposed methodology and evaluate its effectiveness, we consider
the two-dimensional OU process that is very useful in pharmacokinetic/pharmaco-
dynamic studies and in biology [43], physics, engineering, finance, and neurosci-
ence applications [14, 44]. Indeed, the choice of this process is due to the fact that it
is one of the few known multivariate SDME models with known transition density.
For this reason, we choose the OU process to evaluate the methodology presented
above, and we perform a comparison study between the results obtained using the
proposed transition density in Eq. (11) and those obtained using the exact density.
The model is defined as follows:

dY 1ð Þi tð Þ ¼ � β11b
i
11 Y 1ð Þi tð Þ � α1

� �

þ β12b
i
12 Y 2ð Þi tð Þ � α2

� �� �

dtþ Σ11dW
1ð Þi tð Þ, Y i

0 ¼ y
1ð Þi
0 , i ¼ 1, … ,M

dY 2ð Þi tð Þ ¼ � β21b
i
21 Y 1ð Þi tð Þ � α1

� �

þ β22b
i
22 Y 2ð Þi tð Þ � α2

� �� �

dtþ Σ22dW
2ð Þi tð Þ, Y i

0 ¼ y
2ð Þi
0 , i ¼ 1, … ,M

(14)

With Y i tð Þ ¼
Y 1ð Þi tð Þ

Y 2ð Þi tð Þ

 !

; β ¼
β11 β12

β21 β22

� 

; α ¼
α1

α2

� 

; Σ ¼
Σ11 0

0 Σ22

� 

;

W i tð Þ ¼
W 1ð Þi tð Þ

W 2ð Þi tð Þ

 !

; Y i 0ð Þ ¼
Y 1ð Þi 0ð Þ

Y 1ð Þi 0ð Þ

 !

and bi ¼
bi11 bi12

bi21 bi22

 !

where bill0 i:i:d �

Γ rll0 , r
�1
ll0

� �

, l, l0 ¼ 1, 2; i ¼ 1, … ,M.

We rewrite the system in matrix notation under the Itô formula; we denote by
�ð Þ the elementwise multiplication:

dY i tð Þ ¼ β � bi α� Y i tð Þ
� �

dtþ ΣdW i tð Þ, Y i
0 ¼ yi0, i ¼ 1, … ,M: (15)

Here, the random effects bi are a matrix and not a vector in order to have a
uniform dimension writing of the Eq. (15) and are assumed mutually independent

and independent of Y i
0 and W i. The fixed parameter vector is θ ¼ β11, β12,ð

β21, β22, α1, α2, Σ11, Σ22Þ, and the population parameter vector is Ψ ¼
r11, r12, r21, r22ð Þ. The exact transition density of model Eq. (15) for a given
realization of the random effects is a bivariate normal:

PY Y i
tj
,Δi

jjY
i
tj�1

, bi, θ
� �

¼ 2πð Þ�1
ςj j

�1
2 exp

� Y i
tj
� μ

� �0
ς�1 Y i

tj
� μ

� �

2

0

B

@

1

C

A
, (16)
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with mean vector μ ¼ αþ Y i
tj�1

� α
� �

exp � β:bi
� �

Δ
i
j

� �

and covariance matrix

ς ¼ τ � exp � β:bi
� �

Δ
i
j

� �

τ exp � β:bi
� �0

Δ
i
j

� �� �

, where

τ ¼
1

2tr β:bi
� �

∣β:bi∣
jβ:bijΣΣ0 þ β:bi � tr β:bi

� �

:I
� �

ΣΣ
0 β:bi � tr β:bi

� �

:I
� �0

� �

: (17)

We assume that the matrices β:bi and Σ have full rank and the real parts of the

eigenvalues of β:bi are positive definite in order that a stationary solution to Eq. (15)
exists. Under these assumptions, we derive from Eqs. (14) and (11) the following
approximated transition density of Y:

P
að Þ
Y Y i

tj
,Δi

jjY
i
tj�1

, bi, θ
� �

¼ 2
ffiffiffiffiffiffiffiffiffi

ΠΔj

p� ��2
Σ11Σ22ð Þ�

1
2 ∗ exp

�

�
1

4Δj
Σ
�1
11

� �

h

Y
1ð Þi
tj � Y

1ð Þi
tj�1

þ
�

β11b
i
11 Y

1ð Þi
tj�1

� α1

� �

þ β12b
i
12 Y

2ð Þi
tj�1

� α2

� ��

Δ
i
j

i

2 þ Σ
�1
22

� �

Y
2ð Þi
tj � Y

2ð Þi
tj�1

þ β21b
i
21 Y

1ð Þi
tj�1

� α1

� �

þ β22b
i
22 Y

2ð Þi
tj�1

� α2

� �� �

Δ
i
j

h i2


:

(18)

In Figure 1, we illustrate in (a) the simulation of the OU process using the Euler
scheme [45] with the following set of parameters:

Figure 1.
A sample path of the OU process in the third graph of (a) for the given parameters set with the initial condition:
Y0 ¼ (3,3) and time interval [3,10]; and the transition density for a transition from Yj to Yjþ1 in (b).
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β11 ¼ 2:8, β12 ¼ 2:5, β21 ¼ 1:8, β22 ¼ 2, α1 ¼ 0:8, α2ð ¼ 1:5,Σ11 ¼ 0:3,Σ22 ¼ 0:5, r11 ¼
45, r12 ¼ 100, r21 ¼ 100, r22 ¼ 125Þ, and a time step of Δj ¼ 0:001 and represent in
(b) the graph of the two transition densities given by Eqs. (16) and (18) for Y j to
Y jþ1 using the same set of parameters and time step.

3.1.1 Simulation results

In this simulation study, we generate 1000 artificial datasets of dimension 2�
nþ 1ð Þ �M from Eq. (15), where M is the number of subjects and n presents the
number of repetitions of the experiment for each subject; then we estimate the
parameters using the proposed approximated method, and we obtain 1000 sets
of parameter estimates. The observations are obtained by linear interpolation
from simulated trajectories using the Euler-Maruyama scheme with step size

equal to 10�3.
By plugging Eq. (16) in Eq. (4) and Eq. (18) in Eq. (6), we obtain a huge

expression of the likelihood function but without a closed solution of integrals, so
the exact estimators of θ and Ψ are unavailable. Therefore, in both cases, either
using the exact or the approximated transition density, the Hessian matrix in
Laplace approximation can be obtained analytically after a tedious calculation; then
we apply the GA to obtain parameter estimates. But we cannot ignore the time
consumed by this algorithm to get the results because of the long and complex
expressions.

Table 1 shows that, for the given sample size, the results can be correctly
identified using this estimated approach; even if some of parameters are
overestimated or underestimated, the results remain acceptable because the results
belong to the confidence interval. However, we believe that these results could be
further proven by using other sample sizes and by adding alternative assumptions
for the model that we did not consider in the methodology proposed in this chapter,
which could further complicate the problem and be more time-consuming, as well
as the present methodology suffers from some limitations. For the random param-
eters, the estimates can be provided using the optimization algorithm on Eq. (8)
using the obtained estimate results of the parameters vector Ψ. Moreover, we
conduct this simulation study using Figure 2, which shows that the empirical

True

values

Mean and (Std) (M ¼ 40, n ¼ 10)

β11 β12 β21 β22 β̂11 β̂12 β̂21 β̂22

2.8 2.5 1.8 2 3.10–3.25 2.48–2.56 1.72–1.65 2.11–2.37

(0.164)–(0.283) (0.015)–(0.283) (0.095)–(0.189) (0.153)–(0.255)

α1 α2 Σ11 Σ22 α̂1 α̂2 Σ̂11 Σ̂22

0.8 1.5 0.3 0.5 1.06–1.13 1.57–1.64 0.28–0.37 0.56–0.45

(0.071)–(0.102) (0.109)–(0.158) (0.026)–(0.073) (0.023)–(0.061)

r11 r12 r21 r22 r̂11 r̂12 r̂21 r̂22

45 100 100 25 44.75–52.43 100–112.75 102.35–89.64 24.72–31.02

(0.523)–(9.372) (01.166)–(28.113) (01.04)–(22.05) (2.297)–(11.20)

Table 1.
Ornstein-Uhlenbeck model: maximum likelihood estimates from 1000 simulations of model Eq. (14), using the
exact and the approximated transition density.
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distribution of the most approximated estimators seems to be reasonably close to a
normal distribution:

3.2 Stochastic minimal model

The minimal model describes the glucose-insulin kinetics and the dynamics of
these processes illustrating the diabetes disease mechanisms. The diabetes is one of
the most prevalent diseases in individuals and the nature and degree of its assign-
ment changes from an individual to another and depends on certain individual
characteristics, which implies that the concepts of stochastic modeling with random
effects could be a good approach to modeling this disease. The Diabetes may be due
to the insufficient insulin production (type 1 diabetes) or to the fact that the cells do
not respond to the secreted insulin (type 2 diabetes) and the T2D patients tend to
have substantially lower insulin sensitivity than healthy individuals, so that the T2D
can be characterized by the level of insulin sensitivity for each individual. There-
fore, to model the T2D, we observe how a person’s body responds to insulin in the
process of transporting glucose to tissues by measuring his insulin sensitivity. So,
we present in this section the estimation of the minimal model which represents a
powerful model describing the glucose-insulin kinetics for an individual’s body in
three differential equations, see the mathematical formulation of the model in
[46–49]. So, it is already clear that the model will contain both fixed and random
effects, because the study of diabetes disease takes into account the response of each
individual according to his own parameters and other common parameters that
describe the process of glucose-insulin for the entire population. See the description
of the glucose-insulin kinetics in Figure 3.

From the mentioned literature and Figure 3, the glucose-insulin disposal can be
represented, with respect to time, by the following nonlinear stochastic differential
equations, perturbed by the stochastic terms σ1dw1 tð Þ, σ2dw2 tð Þ, and σ3dw3 tð Þ:

dG tð Þ ¼ � p1 þ X tð Þ
� �

G tð Þ þ p1Gb


 �

dtþ σ1dw1 tð Þ, G 0ð Þ ¼ G0

dX tð Þ ¼ �p2X tð Þ þ p3 I tð Þ � Ibð Þ

 �

dtþ σ2dw2 tð Þ, X 0ð Þ ¼ 0

dI tð Þ ¼ �n I tð Þ � Ibð Þ þ γ G tð Þ � hð Þt½ �dtþ σ3dw3 tð Þ, I 0ð Þ ¼ I0,

(19)

where G tð Þ and I tð Þ are, respectively, the concentration of glucose and insulin at
time t in the blood. Gb and Ib indicate the basal level of glucose and insulin
concentration before the glucose injection, this injection will cause a disturbance of
the concentrations according to the mechanism described in these equations, and
these values are assumed known for each individual. And, G0 and I0 are the
theoretical measure of the concentrations at glucose injection moment at the begin-
ning of the experiment.

Figure 2.
Empirical distribution of estimates obtained using the exact and approximated transition density.
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The insulin sensitivity is defined by combining the two rates p3 and p2 as SI ¼
p3=p2, representing insulin’s ability to increase the net glucose utilization [51].

Finally, the stochastic minimal model under the Itô sense re-parameterized by
SG and SI can be rewritten as:

dY i tð Þ ¼

� SiG þ X tð Þi
� �

G tð Þi þ SiGG
i
b

�p2 X tð Þi þ SiI I tð Þi � Iib

� �� �

�n I tð Þi � Iib

� �

þ γ G tð Þi � h
� �

t

0

B

B

B

B

@

1

C

C

C

C

A

dtþ ΣdW tð Þ; Y i
0 ¼

Gi
0

0

Ii0

0

B

@

1

C

A
,

(20)

where Y i tð Þ ¼

G tð Þi

X tð Þi

I tð Þi

0

B

@

1

C

A
and Σ is the diagonal diffusion matrix which contains

the unknown constants σ1, σ2, and σ3. The parameters SiG, p2, S
i
I, n, γ, h,G

i
0 and Ii0 are

unknown in the model and will be estimated. The parameters SiG, S
i
I, Ii0 and Gi

0 are
assumed random, because they represent individual parameters that change from

an individual to another. Each person has its own insulin sensitivity SiI which allows
to know if the cells of his body react correctly or not to the insulin and if the insulin
produced by the pancreas is sufficient or not, which can make some people with

T2D and others without diabetes. Also, for glucose effectiveness SiG, which repre-
sents the glucose’s own ability to be eliminated independently of insulin, it is unique
to each individual and changes from a person to another, as well as for the mea-
surement of glucose and insulin concentration. For the rest of the parameters, we
consider them fixed since they describe the common side of the glucose-insulin

Figure 3.
At first, glucose and insulin concentrations in the blood are described by two sets of differential equations (see
[50]); at a rate p1, glucose leaves and enters the glucose space in proportion to the difference between the plasma
glucose concentration G(t) and the basal plasma concentration Gb that represent the known pre-injection
glucose level for each individual. Therefore, the parameter p1 represents the glucose’s own ability to be
eliminated in muscles, liver, and tissues independently of insulin which is called glucose efficiency and denoted
by SG. Then, the glucose disappears from the glucose space at a rate proportional to insulin concentration in the
insulin compartment X tð Þwhich represents the dynamic of insulin response according to the two rates p2 and p3.
These two parameters represent, respectively, the decreased glucose absorption capacity in tissues and its
increased insulin dependency. For insulin secretion I(t), it is secreted by the pancreas independently of the
glucose concentration, and proportional to a rate n to its own level already in the body and to the glucose level
deferred from a threshold h at a rate γ when G tð Þ is above h, the insulin secretion does not only depend on the
hyperglycemia level but also to the time spent since glucose injection.
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process for the entire population (all individuals). So, we have the following ran-

dom effect vector bi ¼ SiG, SiI, Ii0, Gi
0

� �

, and we assume that:

SiG � N μSG , σSG
� �

, SiI � N μSI , σSI
� �

, Ii0 � N μI0 , σI0
� �

, Gi
0 � N μG0

, σG0

� �

: (21)

Random effects are assumed to be independent with a multinormal joint density
function, with the mean ϑ ¼ μSG , μSI , μI0 , μG0

� �

and the covariance matrix ϕ ¼

diag σSG , σSI , σI0 , σG0ð Þ, so we have Ψ ¼ μSG , μSI , μI0 , μG0
, σSG , σSI , σI0 , σG0

� �

and θ ¼

p2, n, γ, h, σ1, σ2, σ3ð Þ.
So, here we deal with a time-inhomogeneous NLME model with SDE describing

the glucose-insulin kinetics (see [52] for the implementation of SDE time-
inhomogeneous model) and [53] where the maximum likelihood estimation for a
time-inhomogeneous stochastic differential model of glucose dynamics was treated.
The measurements in the model Eq. (20) are assumed directly observed without
measurement errors as well as in the theoretical approach presented above.

So, we wish to estimate θ,Ψð Þ given the observations y ¼ y1, … , yM
� �

from

model Eq. (20). By using the approximated transition density (Eq. (11)), we get the
following approximated likelihood function for model Eq. (20):

L að Þ θ,Ψð Þ ¼
Y

M

i¼1

2πð Þ�2
σSGσSIσI0σG0ð Þ

�1
2

Y

ni

j¼1

2
ffiffiffiffiffiffiffiffiffi

ΠΔj

p� ��3
� �

σ1σ2σ3½ ��
1
2Þ

ð

R4
exp

�

X

ni

j¼1

	

�1

4Δj

	

1

σ1
Ai

1j

� �2
þ

1

σ2
Ai

2j

� �2
þ

1

σ3
Ai

3j

� �2�i

�
1

2
σ�1
SG

SiG � μSG

� �2
� σ�1

SI
SiI � μSI

� �2
� σ�1

I0
Ii0 � μI0

� �2
� σ�1

G0
Gi

0 � μG0

� �2
� �

ÞdSG
idSI

idI0
idG0

i

(22)

with

Ai
lj ¼ Y i

j

� �

l
� Y i

j�1

� �

l
� μl Y i

j�1, tj�1, θ, b
i

� �

Δ
i
j

h i

: (23)

We have no closed form solution to this integral, so exact estimators of θ and Ψ

are unavailable. So, we use the Laplace approximation method described in Section
2 to obtain a closed form approximation to the log-likelihood function

log L að Þ θ,Ψð Þ
� �

for the model Eq. (20); then by applying the GA, we get the

approximate estimates θ̂ and Ψ̂.

3.2.1 Simulation results

We start this study with an application on artificial data generated on the intra-
venous glucose tolerance test principle (see [53] for a mathematical modeling of the
test where glucose and insulin concentrations in plasma are subsequently sampled
after an intravenous glucose injection). We generate 5000 sets of simulated artificial
data of dimension ni þ 1ð Þ �M from Eq. (20) using the Euler-Maruyama scheme

[45] with a step size of 10�3 and a set of true parameters that are chosen according to
[53, 54] representing the normal range of parameters values to simulate healthy
subjects (without diabetes), with M being the number of units and ni being the
number of observations or repeated measurements collected on each unit i.

For each data from 5000 generated data sets, we estimate θ,Ψð Þ by applying the
proposed method. We first assume that the number of repeated measurements
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collected on each unit is constant ni ¼ m and Δ
i
j ¼ Δ for all 1≤ i≤M and 1≤ j≤ ni;

then we apply the GA after choosing the good algorithm parameters (N, EN, SR, CP,
MP), and we get 5000 sets of parameters estimates. We repeat this for large and small
data with different possibilities of repetition of the experiment m,Mð Þ ¼
40, 60ð Þ; 40, 10ð Þ and 10, 20ð Þ; for each parameter the sample mean and standard
deviation are reported in Table 2. The simulation study on small data is treated in
order to see if the size of the sample influences on the results and if the number of
measures taken over time has a negligible effect or not, in other words, to see if it is
possible to select only the essential measuring moments without repeating the mea-
surements several times to well simulate a subject. We treat this issue in relation to
our model and its study context, since in epidemiology the availability of data (mea-
surements) at any point of time is an interesting constraint. We note that quantities
of Gb and Ib are randomly simulated from the normal range of healthy subjects.

In Table 2, we report the results obtained on large and small data by maximizing
Eq. (22) using the GA. We notice that, for the case of the large data, the true values

True

values

(M,m) Mean and (Std)

p2 n γ h p̂2 n̂ γ̂ ĥ

0.074 0.10 0.0007 90 (40,60) 0.0737

(0.0014)

0.100

(0.0013)

0.00073

(2.02 � 10�4)

89.08

(0.031)

(40,10) 0.0784

(0.0059)

0.209

(0.0295)

0.00068

(2.54 � 10�4)

91.34

(0.712)

(10,20) 0.0794

(0.0402)

0.156

(0.046)

0.00054

(0.0016)

62.11 (1.13)

σ1 σ2 σ3 σSG σ̂1 σ̂2 σ̂3 σ̂SG

0.01 0.06 0.03 0.006 (40,60) 0.009

(0.0012)

0.0616

(0.0011)

0.0343

(0.0027)

0.0061

(0.00010)

(40,10) 0.014

(0.0023)

0.0708

(0.0060)

0.0340

(0.0035)

0.0073

(0.00030)

(10,20) 0.015 (0.0031) 0.0938

(1.0196)

0.0480

(0.0108)

0.0067

(0.0006)

σSI σI0 σG0 μSG σ̂SI σ̂I0 σ̂G0 μ̂SG

0.000025 46 50 0.03 (40,60) 0.000021

(3 � 10�6)

44.98

(1.25)

45.96 (2.11) 0.0315

(0.0007)

(40,10) 0.000029

(4.4 � 10�6)

43.94

(1.75)

45.16 (2.53) 0.0349

(0.0036)

(10,20) 0.000016

(0.8 � 10�5)

41.09

(2.82)

44.64 (3.07) 0.0178

(0.0051)

μSI μI0 μG0
μ̂SI μ̂I0 μ̂G0

0.0002 95 320 (40,60) 0.00021

(1.2 � 10�6)

94.20

(1.12)

321.2 (1.07)

(40,10) 0.00025

(1.6 � 10�6)

92.05

(2.25)

318.6 (3.11)

(10,20) 0.00037

(1.35 � 10�5)

122.51

(2.51)

281.5 (4.88)

Table 2.
Approximated maximum likelihood estimates and standard deviation from simulations of model Eq. (20),
using the approximated transition density Eq. (11) with large and small DATA.
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of the parameters are well identified with the exception of some in which, in all the
simulations and samples, the true value does not belong to the estimated confidence
interval, such as σSI , σI0 , and σG0 ; nevertheless, the results are more satisfactory
when the sample size M is large for all parameters. As mentioned before, we cannot
ignore the limitations of this method, and the results could be improved by elimi-
nating these limits and improving this approach, but for the given assumptions and
tools, we can say that the results are still satisfactory even for a sample of M ¼ 10
with 20measures taken on each subject. So, we can conclude that we can rely on the
results obtained from small samples with a small number of measurement repeti-
tions of at least 20 observations. In addition, although we can use a relatively small
number of measurements, we need to know how to choose the time points to
perform the measurements in the blood, as this could, physiologically, affect
selected observations and results. Thus, it is specified here that the essential task is
to know how to choose the good moments of measurement after the injection, even
in small numbers, chosen according to medical knowledge. Figure 4 shows that, in
the case of M;mð Þ ¼ 40; 60ð Þ, the empirical distribution of the most approximated
estimates seems to be reasonably close to a normal distribution.

Finally, from this simulation study where we have considered two SDME
models, we can conclude that the parameters values of the models appear to be
correctly identified using the proposed approach based on the Risken approxima-
tion to approximate the transition density of a stochastic process.

4. Conclusions

In this work, we have proposed a procedure to estimate the parameters of a
mixed effects model containing stochastic differential equations, known by the
SDME models, by proposing an approach to approximate its likelihood function to
obtain the MLEs. This method has been evaluated by simulation studies on two
SDME models in epidemiology: the two-dimensional Ornstein-Uhlenbeck process
and stochastic minimal model. In fact, in models with SDEs instead of ODEs with
random effects, the estimation of parameters is still not obvious even for one
individual (one trajectory) because of the difficulties in deriving the transition
densities, and difficulties become more interesting in using the population approach
that treats the entire population simultaneously. The derivation of the exact density

Figure 4.
SMM: empirical distribution of population parameter estimates obtained using (18) for (M, m) = (40,60).
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is not always possible for a stochastic and continuous process in an SDME model, so
the search for an approximation of this density is an important step and requires an
expensive calculation. This task is very interesting to give good results with good
statistical properties of the estimators obtained by maximizing the likelihood func-
tion. In this work, the proposed estimation method has been applied to
multidimensional and nonlinear SDME models with many random parameters nor-
mally distributed that can be extended to random parameters of any distribution.

So, an approximation of the transition density P
að Þ
Y is obtained in a closed form using

the Risken approximation for the formal solution of the Fokker-Planck equation
proposed by Risken [34], and then the approximated likelihood is obtained using
the Laplace approximation method and optimized using the genetic algorithm;
these calculation procedures can be obtained using any numerical calculation soft-
ware or with symbolic computing capabilities.

The classical inference of SDME models implies the problem of the numerical
evaluation of the integral for the given random effects in the likelihood function,
which becomes complicated especially when the model contains more than two
random parameters. In the literature, several methods have been proposed and
tested for the approximation of the integral (see references in the introduction) and
the following examples: [8] which proposes the Gaussian quadrature method to
solve the integrals for the case of an SDME models with a single random effect and
[20] where the study was revised for a general case with several random parameters
using the Laplace approximation to compute the integral in Eq. (4) and Eq. (6)
numerically. For the mixed effects framework, see [3, 16, 55, 56]. In the case of
using the Laplace method, as in this chapter, the calculation of the Hessian matrix
can be done analytically when it is possible, as the examples in Section 2, or with
the help of a symbolic calculus software or the automatic differentiation (AD)
tools [57].

The results of simulation studies are satisfactory and can be obtained either by
using moderate values for the number of experimental units M and of observations
n taken for each experimental unit or by using a small sample size but with a
number of measurements taken for each subject of 10 at least; this is relevant for
applications where large sets of data are not available, such as biomedical applica-
tions where the mixed effect theory is widely applied.

The advantages of this approach, compared to those proposed in the literature
for multidimensional SDME models with more than one random parameter [26],
are that the computation of the approximate density is very easy and does not
require a lot of time to calculate it or to program it in a software; the only task that
can be time-consuming is in the optimization step to search for the optimum
solution of the likelihood function, and also the proposed method is effective even
with large data with a MATLAB program on a common PC (Intel Pentium IV
3.0 GHz with 512 MB of RAM). Nevertheless, the method suffers some limitations,
for example, when the conditions to use Eq. (11) are not verified when, e.g., the
inverse of the diffusion term does not exist and when, in certain cases, it is not
obvious to derive the gradients and Hessians terms. Another limitation is that
measurement errors are not considered in this work, and for a good stochastic
version, it will be better to include noise on process increments and noise on
observations that may be significant compared to system noise. These limitations
may provide a perspective towards a more elaborate extension of the statistical
study for SDME models, particularly in the field of epidemiology.

In conclusion, in this work, we proposed a method of parameter estimation for a
mixed effects models with SDEs proposing an approximation method for the tran-
sition density in the case when it cannot be obtained in a closed form, with an
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approximation method of integral computation for the case of an SDME model with
several random parameters. We have treated two examples to illustrate the effec-
tiveness of this approach using computer tools. Indeed, we believe that this type of
models is very interesting and provides a powerful and flexible modeling approach
for repeated measurement studies such as biological and pharmacokinetic/pharma-
codynamic and financial studies, as they combine the good characteristics of mixed
effects and stochastic increments in intra-subject dynamics for a good modeling of a
phenomenon.
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