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Chapter

Mathematical Modeling
and Well-Posedness of
Three-Dimensional Shell
in Disorders of Human
Vascular System
Vishakha Jadaun and Nitin Raja Singh

Abstract

Aortic dissection is the most common aortic emergency requiring surgical inter-
vention. Whether the elective endovascular repair of abdominal aortic aneurysm
reduces long-term morbidity and mortality, as compared with traditional open
repair, remains uncertain. The foundation of shell element based on the Reissner-
Mindlin kinematics assumption is widely applicable, but this cannot model applica-
tions of shell surface stresses as needed in analysis of shell in human vascular
system. The analysis is designed to assess progression of initial lesion in aortic
dissection. Using general shell element analysis and tensor calculus, a higher order
differential geometry-based model is proposed. Since the shell is thin, a variational
formulation for initial lesion is proposed. The variational formulation for initial
lesion is well posed. The weak convergence of the solution to initial lesion model is
mathematically substantiated. Asymptotic analysis shows that initial lesion is mem-
brane-dominated and bending-dominated when pure bending is inhibited and
noninhibited, respectively. At least two observations are to be noted. First, the
mathematical analysis of the initial lesion model is distinct from classical shell
models. Second, the asymptotic analysis of the initial lesion model is based on
degenerating three-dimensional continuum to bending strains in order to assess
initial lesion behavior.

Keywords: aortic dissection, higher order kinematical assumptions, initial lesion
model, variational formulation, asymptotic analysis

1. Introduction

The shell structure is generally a three-dimensional structure that is elongated
in two directions and thinned out in other direction. The shell structures in nature
are profusely impressive such as seashells and eggshells. In various industries
including aeronautics, naval architecture, and automotive engineering milieu, many
engineering designs are analyzed to design shells as thin as possible and optimize
the amount of material [1]. Human anatomy develops cyst-related diseases with
progressive severity. These disease states involve single to multiple cyst formations
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in distinct organ systems including the lung, liver, kidney, brain, bone etc.
Pathophysiologically, these cysts emanate from either the underlying genetic
anomaly or infections such as helminths and mycobacterial, among others. Inter-
estingly, these cysts can be modeled as shells, albeit in higher dimensions.

Different approaches have been formulated for shell elements discretization. One
of the approaches [2] evaluated the shell behavior as the superimposition of mem-
brane bending action as well as plate bending action. The discrete construction of shell
elements requires a combination of plane stress matrices as well as plate bending
stiffness matrices. However, the resultant shell elements are less accurate since cur-
vature effects are not duly incorporated and the membrane behavior and plate
bending behavior are coupled at nodal points only. Another approach [3] is based on
variational formulation and perusing relevant shell theory wherein a specific shell
theory is constituted of higher-order derivatives and required concomitant nodal
point variables beyond the conventional nodal point rotations and displacements.
Such an approach is applicable and relevant to certain shell geometries and associated
pertinent analysis conditions. Thus, it is difficult to model more complex shell struc-
tures. Yet another approach [4] is aimed for very general formulation related to three-
dimensional continuum degeneration. In this approach, the mid-surface of the shell
element that belongs to the three-dimensional continuum is clearly defined and iden-
tified. The first assumption is that the fibers are straight and normal to mid-surface
prior to the deformation which continues to remain straight during the course of
deformation. The second assumption is that the stress normal to the shell mid-surface
is zero throughout the shell motion [5, 6]. The shell models based on the aforemen-
tioned kinematical assumptions can be interpreted as a truncation of the expansion of
displacements in different directions across the thickness of the shell structure. It is to
be noted that such truncated expansion contains terms up to degree one and degree
zero for the tangential displacements and transverse displacements, respectively. The
physiological and pathological states in the human body undergo dynamic transfor-
mations. In cardiovascular dynamics, the interaction of blood to the internal vessel
lining is associated with large through-the-thickness displacement of local vessel wall
surface owing to distension by propulsion of blood and elastic recoil thereafter. Thus,
the aforementioned assumptions might not be applicable to shells in human anatomy.
In order to make better estimate, higher-order kinematical assumptions are effective.
Yet the detailed analysis of biological shell structures frequently presents challenging
problems. One of the difficulties is that the shell structure resists applied loads largely
along its curvature such that, in case, curvature is changed and the load bearing
capacity of shell is transformed. Therefore, analysis of boundary conditions of a shell
structure plays a vital role in shell behavior and its response to stress.

The aorta is the largest diameter blood vessel, emerging from the left ventricle to
supply oxygenated blood to the human body. Whenever nonlinear degeneration of
the tunica media (middle layer of the vessel wall) occurs, the aorta undergoes
dynamic dilatation and marginal elongation. Generally, this degeneration is caused
by genetic anomaly and prolonged untreated hypertension in young and senile
patients, respectively. It is termed as aortic aneurysm [7]. Whenever there is struc-
tural discontinuity in nonconformal internal vessel wall, the blood surges through
the tear causing the inner and middle layers of the aorta to separate. It is termed as
aortic dissection (AD) [8]. AD is a life-threatening condition [9]. If the blood-filled
channel ruptures through the outside aortic wall, AD is often fatal [10]. It is the
most common aortic emergency requiring surgical intervention. AD is classified
according to the regional involvement of the segment of the aorta with the Stanford
type A dissection and the Stanford type B dissection involving the ascending aorta
and occurring distal to the left subclavian artery, respectively. According to the
international guidelines on clinical therapeutics, uncomplicated type B dissection
should receive optimal medical treatment (OMT). However, in spite of adequate
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hypertension-related treatment, patients may develop a significant aortic enlarge-
ment that necessitates operative intervention. These chronic patients will benefit in
the long-term from prophylactic intervention.

Currently, there is no consensus on the management of uncomplicated type B
dissection that may be liable for rapid progression. Thus, seeking multiple high-risk
attributes/features responsible for rapid progression might help to decide when to
treat and how to treat. There is a subgroup of patients who progress very rapidly
to terminal dilatation liable for rupture and torrential bleed leading to death.
Offering early transthoracic endovascular repair to this subgroup seems to be a
life-saving proposition. Finding these patients is a challenge. It is not known that
a patient at risk for catastrophic events is following a personal trajectory of
disease progression. It is also not known that a threshold for disease progression
that can predict a high risk of mortality for a specific patient. By modeling the
initial lesion of AD, we can potentially avoid rupture by crossing over to
transthoracic endovascular repair at a time that minimizes procedural risks. On
asymptotic analysis, we evaluate the point of follow-up; we lose the ability to
achieve the same desirable aortic remodeling observed with transthoracic
endovascular repair in the more acute setting. Therefore, reliable predictors are
needed in the early stage of disease. It aids identification of patients at risk of
aortic enlargement.

In early stages of AD, subintimal intramural hemorrhage occurs due to tunica
media degeneration. In certain situations, when strains are known on a plane, the
low degree of expansion of the transverse displacement is to be recovered. It is to be
noted that by dispensing away the assumption of plane stress, an arbitrary three-
dimensional material law is applicable in three-dimensional formulation of contin-
uum mechanics. The objective of this chapter is to identify higher-order shell model
for initial-stage primary tunica intimal lesion of AD by the general shell element
approach and to perform mathematical analysis.

This chapter is organized in the following manner. In Section 2, we give certain
definitions, conventions, and notations relevant to the shell geometry and its
corresponding deformation. Next in Section 3, we derive initial lesions of AD as the
higher-order shell model perusing general shell analysis approach. Then in Section
4, we do mathematical analyses of the initial lesions described in the previous
section. In Section 5, we assess asymptotic behavior of the model. Finally, in Section
6, we present our conclusions regarding mathematical modeling of shells in human
vascular tissues and future scope.

2. Conventions and notations in higher-order shell geometry

We are interested in modeling early stages of AD; the initial subintimal intra-
mural hemorrhage caused by tunica media degeneration undergoes solidification
due to clot formation. Thus, this initial lesion closely follows the principles of
continuum mechanics. We consider the initial lesion as a solid medium. It is geo-
metrically defined by a mid-surface immersed in the human vascular compartment
ϵ (dimensionless thickness parameter) and a parameter representing the thickness
of the medium around this surface.

In order to understand the initial lesion of AD, we model the initial lesion using
general shell element theory. A shell is defined as a collection of charts. Let us
consider the mid-surface of a shell as a collection of two-dimensional charts. These

charts are smooth ono-one maps from domains of 2 into Euclidean (physical)
space ℰ. We consider an initial lesion with a mid-surface S defined by a two-

dimensional chart φ
!
, which is a one-one map from the closure of a bounded open
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subset of 2, denoted by ω, into ℰ, hence S ¼ φ
!

ω
!
� �

. At each point of the mid-

surface, the vector z
!
α is assumed as partial derivative of φ

!
with respect to ξα

such that

z
!
α ¼

∂φ ξ1, ξ2ð Þ

∂ξα
: (1)

These vectors are linearly independent from each other, so that they form
a basis of the plane tangent to the mid-surface at this point. The unit normal
vector is given by

z3
!¼

z1
!� z2

!

kz1
!� z2

!k
:

Definition 1. (Geometric definition of initial lesion). An initial lesion is a solid
medium whose domain Ω can be defined by a mid-surface whose map is given by

φ : ω⊆
2 ! 

3, s:t: φ ξ1, ξ2
� �

¼ ξ1, ξ2, ξ3
� �

∈
3 (2)

The three-dimensional medium corresponding to the initial lesion is then defined by
three-dimensional chart given by

φ ξ1, ξ2, ξ3
� �

¼ φ ξ1, ξ2
� �

þ ξ3 z
!
3 ξ1, ξ2
� �

, (3)

where ξ1, ξ2, ξ3
� �

∈Ω ¼ ξ1, ξ2, ξ3
� �

∈
3j ξ1, ξ2
� �

∈ω, ξ3 ∈ �
t ξ1, ξ2ð Þ

2 ,
t ξ1, ξ2ð Þ

2

� �� 	

and t ξ1, ξ2
� �

is the thickness of the initial lesion element at ξ1, ξ2
� �

.

In Eq. (1), we have defined tangent vector to a point on the mid-surface of the
initial lesion (2) which lies in the region of the Euclidean space. Since we are inter-
ested in higher-order parameterization of the initial lesion of AD, the three-
dimensional chart (3) of this lesion can be very helpful. Thus, transition from the
Euclidean space to curvilinear coordinate system will aid to model higher-order initial
lesion. It is relevant to grasp few basic notions of surface differential geometry.

2.1 Definitions related to surface differential geometry

Definition 2. (Covariant vector). Let r zð Þ be a position vector; the differentiation of
r zð Þ with respect to each of the coordinate is called covariant basis:

zi ¼
∂r zð Þ

∂zi
(4)

If Eq. (4) defines three vectors z1, z2, and z3

z1 ¼
∂ r z1, z2, z3ð Þ

∂z1
, z2 ¼

∂ r z1, z2, z3ð Þ

∂z2
, z3 ¼

∂ r z1, z2, z3ð Þ

∂z3
: (5)

Let V be a vector in 
3, and then its expansion n terms of basis is

V ¼ V izi ¼ V1z1 þ V2z2 þ V3z3 (6)

The values V i are called contravariant components of vector V.
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Interestingly, covariant basis is useful in the modeling of higher-order initial
lesions in human vascular system given by

g
!
i ¼

∂φ

∂ξi
¼ zi þ ξ3 z

3,i

! ¼ z

i
! � ξ3 bki � zk

!, where z
3,i

! ¼

∂z
3
!

∂ξi
,

g
!
i ¼ δki � ξ3 bki

� �

zk
!,

g
!
3 ¼

∂φ

∂ξ3
¼ z3

!:

8

>
>
>
>
>
>
<

>
>
>
>
>
>
:

(7)

Definition 3. (Covariant metric tensor). The covariant metric tensor is the pairwise
dot product of the covariant basis vectors:

zij ¼ zi:zj ¼

z1:z1 z1:z2 z1:z3

z2:z1 z2:z2 z2:z3

z3:z1 z3:z2 z3:z3

2

6
4

3

7
5, (8)

where zi is in 
3.

Suppose two vectors A and B are located at the same point and their components

are Ai and Bi, then the dot product A:B is given by

A:B ¼ Aizi:B
jzj ¼ zi � zj

� �

Ai � Bj ¼ zijA
iBj: (9)

The length of a vector B can be expressed in terms of covariant metric tensor as

∣B∣ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi

zijB
iBj

q

(10)

Interestingly, covariant tensors are useful in modeling of higher-order initial
lesions in human vascular system given by

1.gij ¼ g
!
i � g

!
j ¼ zij � 2ξ3bij þ ξ3

� �2
cij

2.gi3 ¼ g
!
i � g

!
3 ¼ 0

3.g33 ¼ g
!
3 � g

!
3 ¼ 1

Definition 4. (Contravariant metric tensor zij). The contravariant metric tensor zij

is the matrix inverse of the covariant metric tensor zij:

zij � z
jk ¼ zij � z

kj ¼ δik, (11)

where δik is the Kronecker symbol.

Definition 5. (Contravariant basis zi). The contravariant basis zi is defined as

z
i ¼ zijzj ¼ zjizj (12)

The bases zi and zi are mutually orthonormal:

zi � z
j ¼ δij: (13)

Definition 6. (Christoffel symbol). In affine and curvilinear coordinate systems,
the covariant basis zi is the same at all points and varies from one point to another,

5

Mathematical Modeling and Well-Posedness of Three-Dimensional Shell in Disorders of Human…
DOI: http://dx.doi.org/10.5772/intechopen.89866



respectively. This variation can be described by the partial derivatives ∂zi=∂z
j. Using

decomposition of partial derivatives ∂zi=∂z
j with respect to the covariant basis zk, the

Christoffel symbol Γk
ij is given by

∂zi

∂zj
¼ Γk

ijzk: (14)

Note that the Christoffel symbol is symmetric in lower indices:

Γk
ij ¼ Γk

ji ¼ zk �
∂zi
∂zj

: (15)

2.2 Fundamental forms

The first fundamental form of the surface is also known as the restriction of the
metric tensor to the tangent plane. It is given by its components

zij ¼ zi
!� zj

!:

Alternatively, its contravariant form is given by

zij ¼ z i
!

� z j
!

:

Note that the first fundamental form can be used for the conversion of covariant
components into contravariant components, such as

vi ¼ zikvk

The Euclidean norm of the two-dimensional tensors is denoted by �k kε and the
corresponding inner product by < � , � >ε. Note that the first fundamental form can
be used for the evaluation of such norm quantities:

< u, v>ε ¼ uiz
ijvj, (16)

vk k2ε ¼ viz
ijvj, (17)

<T,U> ¼ Tijz
ikzjlUkl, (18)

T
�
�
�

�
�
�

2

ε
¼ Tijz

ikzjlTkl: (19)

The second fundamental form

bij ¼ z
3
! � z

i,j
!,

where

z
i,j
! ¼

∂
2φ

∂ξi∂ξj
¼ z

j,i
!

is the fundamental form of symmetry.
The second fundamental form is yet another important second-order tensor of

the surface. It is also known as the curvature tensor since it provides information
about the curvature of the surface. The values of these curvatures along the
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directions are called the principal curvatures. The product and the half-sum of the
principal curvatures are classically known as the Gaussian curvature and mean
curvature, respectively.

The third fundamental form

cij ¼ bki bkj

It is a derivative along a curve lying on the surface. Note that the expressions of
surface Christoffel symbols and surface covariant derivative are inferred from the
third fundamental form.

Remark 1. z
3
! � z

3
! ¼ 1 ) z

3,i

! � z

3
! ¼ 0 that is z

3,i

! which lies in the tangent plane.

Hence, we have

z
3,i

! ¼ z

3,i

! � zk

� �

z
k

!
, (20)

and thus

z
3,i

! ¼ �bikz

k
!

¼ �bki z k!: (21)

The initial tunica intimal lesion in AD is heterogenous in terms of various
attributes such as shape, size, and conjugality among others. These notions of
surface differential geometry are helpful to model these lesions as higher-order
initial lesions. To illustrate, the surface of lesion modeled as initial lesion can be
elliptic, parabolic, or hyperbolic according to whether its Gaussian curvature is pos-
itive, zero, or negative, respectively. Note that Gaussian curvature is derived from
the second fundamental form. From now onwards, we simply use initial lesion
model to describe initial lesion of aortic dissection.

3. Modeling of initial lesion

Normally, the aorta is composed of three layers, tunica adventitia, tunica media,
and tunica intima (from outside to inside in cross section). Tunica adventitia is
composed of linear palisades of collagen fibers as an envelope over tunica media
that is a smooth muscle layer, capable of elastic recoil for propelling blood forward.
Tunica intima is quite a thin innermost layer comprised of linear array of
collagen fibers.

3.1 A simplistic view of initial lesions

To simplify, it is assumed that collagen fibers are straight and resist deformation
caused by hemodynamic stresses. In addition, hemodynamic stress, normal to
mid-surface of tunica media, is zero throughout the cardiac cycle. The modeling of
initial lesion of AD based on the aforementioned kinematical assumptions can be
interpreted as a truncation of the expansion of displacements across the thickness of
the normal human aorta. The kinematical assumptions pertain to the displacements
of points located on tunica intima layer of the aorta through the lesion thickness.
Such points are orthogonal to mid-surface in the earlier pre-deformed configura-
tion. Note that the kinematical assumptions connect the displacements of points
located on the tunica intima layer that is orthogonal to the mid-surface of the tunica
media layer in undeformed configuration. The displacement is expressed by the
following equation:
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D
!

ξ1, ξ2, ξ3
� �

¼ d
!

ξ1, ξ2
� �

þ ξ3 θ
!

k ξ1, ξ2
� �

z
!k ξ1, ξ2
� �

, (22)

In Eq. (22), we consider the tunica intima layer in the direction of z
!
3 at the

coordinate ξ1, ξ2
� �

. The displacement d
!

ξ1, ξ2
� �

represents a global infinitesimal
displacement of the linearly arranged endothelial cells of the tunica intima on the

line displacing by the similar amount. The displacement ξ3 θ
!

k ξ1, ξ2
� �

z
!k ξ1, ξ2
� �

is due
to the rotation of the line measured by θ1 and θ2.

Hemodynamic flows can cause both linear and rotational strain. The linear strain
is caused by laminar flow, while the rotational strain is caused by either turbulent
flow and/or concomitant nonlinear geometry of the vessel. Thus, the measure of
linear strain is not sufficient, rather inaccuracies emanate from the increments in
rotation. We choose the principle of deformation gradient to calculate both the
strains. The combined linear and nonlinear strains can be characterized by stretch
tensor called Green-Lagrange strain tensor. The 3D-Lagrange-Green tensor, for

which the components eαβ for general displacement D
!

ξ1, ξ2, ξ3
� �

are

eαβ ¼
1

2
g
!
α �D

!

,β þ g
!
β �D

!

,α

� �

, α, β ¼ 1, 2, 3: (23)

To calculate the components of Green-Lagrange strain tensor, we need to eval-
uate D,α ¼ ∂D=∂ξα (displacement of endothelial cells in a line on the tunica intima
in ξα direction). For the specific displacement in (22), we compute the covariant
components of the linearized strain tensor. We have

∂d

∂ξi
¼

∂

∂ξi
dkz

k þ d3z3
� �

(24)

We peruse the fundamental forms to obtain

∂

∂ξi
dkz

k
� �

¼ zk
∂dk

∂ξi
þ dk

∂zk

∂ξi
¼ zk

∂dk

∂ξi
þ bki dka3: (25)

Hence,

∂d

∂ξi
¼ dk∣iz

k þ bki dkz3 þ d3,iz3 þ d3z3,i

¼ dk∣i � bkid3
� �

zk þ d3,i þ bki dk
� �

z3,

(26)

where dk∣i ¼ ∂dk=∂ξ
i. As we have calculated the derivative for linearized strain,

we calculate the derivative for rotational strain. From (21)

∂

∂ξi
θkzkð Þ ¼ θk∣izk þ bki θkz3: (27)

The overall displacement in Eq. (22) is composed of linear displacement and
rotational displacement. Therefore,

∂D

∂ξi
¼

∂d

∂ξi
þ

∂

∂ξi
ξ3θkzk
� �

¼ dk∣i � bkiz3 þ ξ3θk∣i
� �

zk þ d3,i þ bki dk þ ξ3bki θk
� �

z3:

(28)
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Moreover,

∂D

∂ξ3
¼ θkz

k (29)

Substituting Eqs. (28), (29), and (7) into (23)

eij ¼ γij d
!� �

þ ξ3χij d
!
, θ

� �

� ξ3
� �2

κij θð Þ, i, j ¼ 1, 2

ei3 ¼ ζi d
!
, θ

� �

, i ¼ 1, 2

e33 ¼ 0,

8

>
>
>
<

>
>
>
:

(30)

where

γij d
!� �

¼
1

2
di∣j þ dj∣i
� �

� bijz3

χij d
!
, θ

� �

¼
1

2
θi∣j þ θj∣i � bkj dk∣i � bki dk∣j
� �

þ cijz3

κij θð Þ ¼
1

2
bkj θk∣i þ bki θk∣j
� �

ζi d
!
, θ

� �

¼
1

2
θi þ d3,i þ bki dk
� �

8

>
>
>
>
>
>
>
>
>
>
>
<

>
>
>
>
>
>
>
>
>
>
>
:

(31)

In the framework of the kinematical assumptions, the second-order tensors, γ

and χ, and the first-order tensor ζ are called the membrane strain, bending strain,

and shear strain, respectively.

3.2 Higher-order model for initial lesion

In pathological conditions and even in physiological conditions strained to its
limits, fluid-structure interaction in the aorta does not follow the kinematical
assumptions because the arrangement of collagen fibers in the aortic wall is not
straight. Tunica intima is comprised of a single layer of endothelial cells with a
subendothelial layer of varying thickness. Tunica intimal surface is nonconformal
depending upon the amount of subendothelial ground matrix, contrary to the
conventional perspective of the conformal tunica intimal surface. The tunica media
is a complex three-dimensional network of smooth muscle cells, elastin, and bun-
dles of collagen fibrils. These well-defined concentrically oriented fibers are mutu-
ally reinforcing in radial direction. Tunica adventitia is comprised of fibroblasts,
fibrocytes, collagen fibers (helically arranged), and ground matrix.

The constituents of the aortic wall including collagen fibers, elastin fibers,
smooth muscle fibers, and ground matrix can stretch to deformation and recoil.
Histologically and functionally, these constituents are viscoelastic; hence, aortic
tissues resist deformation, albeit partially. Note that hemodynamic strain normal to
mid-surface of tunica intima will not be zero.

The assumptions in the simplistic case (22) does not hold true in clinical settings.
Thus, an initial lesion model is required to incorporate these attributes. An initial
lesion model that is asymptotically consistent with three-dimensional solid
mechanics without resorting to any independent kinematical assumptions on the
strains requires correction for rotation inaccuracies, while only linearized strain
tensor is perused for displacement equation (22). For initial lesion model, the
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displacement vector D
!

ξ1, ξ2, ξ3
� �

contains at least all terms up to degree two,

namely,

D
!

ξ1, ξ2, ξ3
� �

¼ d
!

ξ1, ξ2
� �

þ ξ3 θ
!

ξ1, ξ2
� �

þ ξ3
� �2

ϱ
!

ξ1, ξ2
� �

: (32)

In the simplistic view, the strain normal to the tunica intima is zero since the

vessel wall does not deform. In higher-order model, the vector θ
!
is arbitrary in the

Euclidean space and not constrained to lie in the tangential plane. The modified
expression for strain components is as follows:

eij D
!� �

¼ γij d
!� �

þ ξ3χij d
!
, θ
!� �

þ ξ3
� �2

κij θ
!
, ϱ
!

� �

þ ξ3
� �3

lij ϱ
!
� �

ei3 D
!� �

¼ ζi d
!
, θ
!� �

þ ξ3mi θ
!
, ϱ
!

� �

þ ξ3
� �2

ni ϱ
!
� �

e33 D
!� �

¼ ϖ θ
!� �

þ ξ3p ϱ
!
� �

8

>
>
>
>
>
<

>
>
>
>
>
:

(33)

where

γij d
!� �

¼
1

2
di∣j þ dj∣i
� �

� bijd3

χij d
!
, θ
!� �

¼
1

2
θi∣j þ θj∣i � bkj dk∣i � bki dk∣j
� �

� bijθ3 þ cijd3

κij θ
!
, ϱ
!

� �

¼
1

2
ϱi∣j þ ϱj∣i � bkj θk∣i � bki θk∣j
� �

� bijϱ3 þ cijθ3

lij ϱ
!
� �

¼ �
1

2
bkj ϱk∣i þ bki ϱk∣j

� �

þ cijϱ3

ζi d
!
, θ
!� �

¼
1

2
θi þ d3,i þ bki dk
� �

mi θ
!
, ϱ
!

� �

¼
1

2
2ϱi þ θ3,ið Þ

ni ϱ
!
� �

¼
1

2
�bki ϱk þ ϱ3,i

� �

ϖ θ
!� �

¼ θ3

P ϱ
!
� �

¼ 2ϱ3

8

>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
<

>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
:

(34)

Here, the tensors, γ and ζ, are called the membrane and shear strain tensors as

defined in Eq. (31). The tensor χ is a generalization of the bending strain tensor, and

k is a generalization of �κ in Eq. (31), since θ3 appears in the expressions of χ and k

in Eq. (34). Because of different orders in ξ3 in higher-order displacement vector,
the newer tensors including l, m, n, ϖ, and p are obtained. In initial lesion model,

the different orders in ξ3 introduces complex interplay of various tensors. The
continuous interplay among tensors of different orders makes it difficult to calcu-
late resultant displacement, comprised of linear and rotational displacements. It
becomes necessary to peruse algebra for weak formulation of this complex interplay
of tensors. The variational formulation using a test function on displacement which
aids to evaluate displacement equation in higher-order is

ð

Ω

Hαβλμeαβ D
!� �

eλμ Δ
!� �

dV ¼

ð

Ω

F
!
:Δ
!
dV, (35)
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where the function, Δ
!

ξ1, ξ2, ξ3
� �

, is called test function; for each Δ
!
∈V (domain

for initial lesion) there exists unique D
!

∈V such that Eq. (35) holds:

Δ
!

ξ1, ξ2, ξ3
� �

¼ δ
!

ξ1, ξ2
� �

þ ξ3 η
!

ξ1, ξ2
� �

þ ξ3
� �2

ς
!

ξ1, ξ2
� �

(36)

It obviously comes to mind: what are kinematical assumptions in initial lesion
model? Keeping the histological and functional perspective of the vessel wall from
the biomechanical point of view, it is known that internal surface of the vessel wall
is not smooth. It becomes obvious that it will not follow banal kinematical assump-
tions as mentioned earlier. Note that the initial lesion of AD might be evolving on
the tunica intima due to medial degeneration. The lesion presence is spatially
nonlinear. It seems plausible that it is governed by quadratic equation as higher-
order tensor has quadratic components. The equation for kinematical assumption in

higher-order displacement equation, setting τ ¼ 2ξ3=t, is given by

D
!

¼
τ τ � 1ð Þ

2
d
!bot

þ 1� τð Þ2
� �

d
!mid

þ
τ τ þ 1ð Þ

2
d
!top

(37)

Since the internal lining is not smooth, a gestalt view of affected tunica intima
has initial lesions at differing heights. Lesions are on the tunica intima surface. To
localize spatial dimension of lesions across tunica intima surface, correction terms
are to be introduced to tunica intima surface levels, viz. top, mid, and bottom in

form of τ τ � 1ð Þ=2, 1� τð Þ2, and τ τ þ 1ð Þ=2, respectively.

4. Mathematical analysis of initial lesion

We did weak formulation to estimate strain tensors. Now, we assess net dis-
placement. In order to do so, well-posedness of variational form (35) is the key. To
understand the evolution of AD, the initial lesion from its inception to the advanced
stage wherein the lesion contributes to nonlinear radial dilatation and marginal
elongation of diseased aortic tissue needs to be evaluated. There are bounds to
emergence of lesion, the lower bound is the status of primal lesion first noticed, and
the upper bound is advanced stage of lesion that contributes to rupture of the aorta.
Within these bounds, the blood flow acts on the lining of the aorta, adversely
impacting the primal lesion that is susceptible to progression from lower bound to
upper bound and contributing to the severity of disease.

The inherent nature of normal aortic tissue is to retain its earlier state despite
varying interplay of tensors in higher-order. But this resistive tendency, called
coercivity, weakens as primal lesion progresses towards upper bound. This transition
from lower bound to upper bound depends on the complex interplay of various
tensors in higher-order. Interestingly, the interplay between tensors in higher-order
and coercivity is responsible for worsening of the disease. Intuitively, coercivity is
inversely proportional to the progression towards upper bound. Thus, gaining
information about the progression towards upper bound and concomitant decline in
coercivity is vital to understand net displacement of initial lesion and progression of
disease.

For a particular bound and coercivity for a test function Δ
!

δ
!
, η
!
, ς
!

� �

, there exists

a uniqueD
!

d
!
, θ
!
, ϱ
!

� �

, exemplifying a particular state of disease. Furthermore, there

are various states of displacement of initial lesion due to progression of the disease.
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Such a compendium is used to characterize a particular displacement state. A
higher-dimensional space, Sobolev space which is comprised of all such possible
combinations, comes handy. It is constituted of functions with sufficiently many
derivative including partial differential equations of fluid-structure interaction and
equipped with the norm that measures size and regularity of these functions. The

test function Δ
!

δ
!
, η
!
, ς
!

� �

is a replica of D
!

d
!
, θ
!
, ϱ
!

� �

in higher-dimensional metric

space, V. Since test function is an idealized version of net displacement vector in

continuum mechanics, evaluating the interaction between test function Δ
!

δ
!
, η
!
, ς
!

� �

and force F
!
yields insights about D

!
d
!
, θ
!
, ϱ
!

� �

. Δ
!

δ
!
, η
!
, ς
!

� �

is a test function present

in Sobolev space. Gaining information about the characteristics of Δ
!

δ
!
, η
!
, ς
!

� �

, we

can infer aboutD
!

d
!
, θ
!
, ϱ
!

� �

. It yields insight about the disease process wherein with

progression the initial lesion is contributed by the blood flow. Interestingly, proving

well-posedness of Eq. (35) gives insights about D
!

d
!
, θ
!
, ϱ
!

� �

present in bilinear

function A d
!
, θ
!
, ϱ
!
; δ
!
, η
!
, ς
!

� �

, which is given by

A d
!
, θ
!
, ϱ
!
; δ
!
, η
!
, ς
!

� �

¼

ð

Ω

Hαβλμeαβ d
!
þ ξ3 θ

!
þ ξ3
� �2

ϱ
!

� �

eλμ δ
!
þ ξ3 η

!
þ ξ3
� �2

ς
!

� �

dV: (38)

The linear function is given by

F δ
!
, η
!
, ς
!

� �

¼

ð

Ω

F
!
: δ

!
þ ξ3 η

!
þ ξ3
� �2

ς
!

� �

dV (39)

The specification of the displacement space is given by

V ¼ δ
!
, η
!
, ς
!

� �

∈H1 Sð Þ �H1 Sð Þ �H1 Sð Þ
n o

∩ℬC, (40)

where H1 is the Sobolev space of order 1, ℬC is space for boundary conditions.

Lemma 1. Let us consider δ
!
, η∈H1 Sð Þ and

γ δ
!� �

, χ δ
!
, η

� �

, ζ δ
!
, η

� �

¼ 0, 0, 0
� �

on S:
�

(41)

Then, the displacement (36) in ℬ (higher-dimensional initial lesion body)

corresponds to an infinitesimal rigid-body motion, i.e., there exists T
!
and R

!
a global

translation vector and an infinitesimal rotation vector, respectively, such that

δ
!

ξ1, ξ2
� �

¼ T
!
þ R

!
∧φ
!

ξ1, ξ2
� �

; η ξ1, ξ2
� �

¼ R
!
∧ z3 ξ1, ξ2

� �

(42)

Lemma 2. For any ξ1, ξ2, ξ3
� �

∈Ω, there exist two constants c, C>0 such that the

following inequalities hold

c

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

z ξ1, ξ2
� �

q

≤

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

g ξ1, ξ2, ξ3
� �

q

≤ C
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

z ξ1, ξ2
� �

q

(43)

cz
ij ξ1, ξ2
� �

Y iY j ≤ gij ξ1, ξ2, ξ3
� �

Y iY j ≤ Czij ξ1, ξ2
� �

Y iY j, ∀ Y1,Y2ð Þ∈
2: (44)

12

Nonlinear Systems - Theoretical Aspects and Recent Applications



cz
ik ξ1, ξ2
� �

z
jl ξ1, ξ2
� �

Y ijYkl ≤ gik ξ1, ξ2, ξ3
� �

gjl ξ1, ξ2, ξ3
� �

Y ijYkl

≤ Czik ξ1, ξ2
� �

z
jl ξ1, ξ2
� �

Y ijYkl, ∀ Y11,Y12,Y21,Y22ð Þ∈
4:

(45)

Lemma 3. The gradient of a vector field is on average not distant from the space of
skew-symmetric matrices, the gradient must not be a far from a particular skew-
symmetric matrices. Thus, there exists a constant δk>0 such that for any first order

surface tensor r∈H1 Sð Þ,

rj jH1 Sð Þ ≤ δk ϵ rð Þ
�
�
�

�
�
�
L2 Sð Þ

þ rk kL2 Sð Þ

� �

, for ϵ rð Þ ¼
1

2
∇ rþ ∇ r

� �T
� �

, (46)

where ϵ is symmetrized gradient tensor.

It is inferred from Lemma 2 that mapping of initial lesion is well-defined in
curvilinear coordinate system wherein quantity g is volume measure. Also, Lemma
2 suggests that this function is well-defined and continuous. Because the initial
lesion is defined over upper bound (C) and lower bound (c), the set of bounds is a
compact set. The mid-surface of initial lesion definitely lies within the bounds.
Thus, the characterization of initial lesion is well-defined. In order to comment on
net displacement of the initial lesion during the progression of disease, we prove the
following theorem to establish well-posedness of weak formulation for displace-
ment vector.

Theorem 1. Assume F
!
∈L2

ℬð Þ; the essential boundary conditions enforced in V are

such that no rigid-body motion is possible, i.e., the only element δ
!
, η
!
, ς
!

� �

in V satisfies

Eq. (42) for some T
!
, R
!� �

is 0
!
, 0
!
, 0
!� �

.

Then there exists a unique d
!
, θ
!
, ϱ
!

� �

in V that satisfies

A d
!
, θ
!
, ϱ
!
; δ
!
, η
!
, ς
!

� �

¼ F δ
!
, η
!
, ς
!

� �

(47)

for any δ
!
, η
!
, ς
!

� �

∈V, and we have

d
!
, θ
!
, ϱ
!

�
�
�

�
�
�
1
≤ C F

!
�
�
�

�
�
�
L2

ℬð Þ
(48)

Proof. We prove coercivity of A and continuity of A and F. Coercivity argument
is explained in three steps. We shall write f instead of function f ,ð Þ to make
equations more compact.

(i) First, we prove

A d
!
, η
!
, ς
!
; δ
!
, η
!
, ς
!

� �

≥ γ γ

�
�
�

�
�
�

2

0
þ χ

�
�
�

�
�
�

2

0
þ k
�
�
�

�
�
�

2

0
þ l
�
�
�

�
�
�

2

0
þ ζ
�
�
�
�
2

0
þ mk k20 þ nk k20 þ ϖk k20 þ pk k20

� �

: (49)

From Eqs. (44) and (45), using gαβgλμeαβeλμ ¼ gαβeαβ
� �2

≥0, we have

A d
!
, η
!
, ς
!
; δ
!
, η
!
, ς
!

� �

≥ γ

ð

Ω

gαβgλμeαβeλμdV

≥ γ

ð

Ω

gikgjleijekl þ gijei3ej3 þ e33ð Þ2
h i

dV

≥ γ

ð

Ω

zikzjleijekl þ zijei3ej3 þ e33ð Þ2
h i

dV

(50)
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Now using Eqs. (43) and (33) and integrating through the thickness, we obtain

A d
!
, η
!
, ς
!
; δ
!
, η
!
, ς
!

� �

≥ γ

ð

ω

tfzikzjl½γijγkl þ
t2

12
χijχkl þ

t2

6
γijkkl

þ
t4

80
kijkkl þ

t4

40
lijχkl þ

t6

448
lijlkl� þ ϖ2 þ

t2

12
p2


 �

þzij ζiζj þ
t2

12
mimj þ

t2

6
ζinj þ

t4

80
ninj


 �

gdS

(51)

To simplify the above expression, we use the following inequality:

∣ab∣ ≤
1

2
ηa2 þ

1

η
b2

� �

, ∀η>0: (52)

Now we have

∣
t2

6
zikzjlγijkkl∣ ¼

1

6
∣ γ, t2k
� �

∣

≤
1

12
a1 γk k2ε þ

t4

a1
kk k2ε

� �

≤
1

12
zikzjl a1γijkkl þ

t4

a1
kijkkl

� �

,

(53)

and similarly

∣
t4

40
zikzjllijχkl∣ ≤

1

80
zikzjl a2t

6lijlkl þ
t2

a2
χijχkl

� �

: (54)

∣
t2

6
zijζinj∣ ≤

1

12
zij a3ζiζj þ

t4

a3
ninj

� �

, (55)

where a1, a2, a3>0. Using suitable values of the constants, a1 ¼ a3 ¼ 10, a2 ¼
6=35, and t>0, Eq. (51) becomes

A d
!
, η
!
, ς
!
; δ
!
, η
!
, ς
!

� �

≥ γ

ð

ω

fzikzjl γijγkl þ χijχkl þ kijkkl þ lijlkl

h i

þ zij ζiζj þmimj þ ninj
h i

þ ϖ2 þ p2
� �

gdS

(56)

Hence, Eq. (49) is proved. The bilinear function is bounded below by the sum of
norm of strain tensors. This function for mid-surface is integrated through the
thickness of the entire lesion giving semblance of the whole lesion.

(ii) Denoting

η3, ς
!�

�
�
�
∗
¼ m η

!
, ς
!

� ��
�
�

�
�
�

2

0
þ n ς

!
� ��

�
�

�
�
�

2

0
þ k 0, η3Þ, ς

!
Þ

� �
�
2

0
þ ϖ η

!
� ��

�
�

�
�
�

2

0
þ p ς

!
� ��

�
�

�
�
�

2

0

� �1=2
�
�
�
�
�

 

(57)

We now show that �k k ∗ provides a norm equivalent to the H1-norm over certain

subspace of the Sobolev space. Note that ϖ η
!
� �

¼ p ς
!
� �

¼ 0 gives η3 ¼ ς3 ¼ 0 and

m η
!
, ς
!

� �

¼ η3 ¼ 0 gives ς ¼ 0. Bounding the norm from above, we get
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η3, ς
!�

�
�
�
∗
≤ C η3, ς

!�
�

�
�
1

(58)

and we get

η3, ς
!�

�
�
�
∗
≤ γ η3, ς

!�
�

�
�
1

(59)

Using Lemma 3 and Eq. (34), we have

ς
�
�
�
�
2

1
≤ C ε ς

� �
�
�
�

�
�
�

2

0
þ ς
�
�
�
�
2

0

� �

≤ C kð 0, η3ð Þ, ς
!
Þ

�
�
�

�
�
�

2

0
þ bς3

�
�
�

�
�
�

2

0
þ cη3

�
�
�

�
�
�

2

0
þ ς
�
�
�
�
2

0

� �

≤ C k 0, η3ð Þ, ς
!
Þ

� �
�
2

0
þ ς3k k20 þ η3k k20 þ ς

�
�
�
�
2

0

�
�
�
�

��

(60)

In addition, from the definition of n and m in Eq. (34), we have

ς3j j21 ≤ C n ς
!
� ��

�
�

�
�
�

2

0
þ ς
�
�
�
�
2

0

� �

(61)

η3j j21 ≤ C m η
!
, ς
!

� ��
�
�

�
�
�

2

0
þ ς
�
�
�
�
2

0

� �

(62)

From Eqs. (60)–(62), we obtain

η3, ς
�
�

�
�
2

1
≤ Cð m η

!
, ς
!

� ��
�
�

�
�
�

2

0
þ kð0, ηÞ, ς

!
Þ

�
�
�

�
�
�

2

0

þ n ς
!
� ��

�
�

�
�
�

2

0
þ ς3k k20 þ η3k k20 þ ς

�
�
�
�
2

0
Þ

≤ C η3, ς
!�

�
�
�
2

∗
þ η3, ς

!�
�

�
�
2

0

� �

:

(63)

Perusing the norm of the gradient of vector fields, the setting of lower and upper
bounds is tantamount to estimating attributes of lesion at the initial and advanced
stages, respectively. The sequence of all lower bounds corresponds to the initial
stage of disease prevalent in affected population. Similarly, the sequence of all
upper bounds corresponds to the advanced stage of disease prevalent in terminally

ill patients. Note that each of these sequences is uniformly bounded in the H1-norm.
There exist a subsequence that converges to some limit for each of these sequences.

The weak convergence in H1 implies strong convergence in L2 for the same norm to

the same limit. Thus, the subsequence in L2-norm converges strongly. This gives a
stronger result about the sequences of upper and lower bounds. Clinically, it indi-
cates various patients might report, at different stages of disease owing to different
reasons, their disease initiation be an element, which is a limit point of the subse-
quence of lower bound sequence. Note that primal lesion presence in any patient
whatsoever can be traced back by the convergence of subsequence of lower bound
sequence. Its corollary equivalently applies to the advanced stage of the disease.

(iii) Coercivity bound: Coercivity is the measure of the ability of the initial lesion
to withstand an external fluid-structure interaction without undergoing
deformation. It is obviously dependent on the intensity of hemodynamic
forces applied to the lesion. Thus, coercivity bound is the limit point of the
ability of initial lesion to withstand deformation. Note that in due course of
the progression of the disease, the evolution of the lesion at each stage is
dependent on the increment of coercivity bound. In normal circumstances, it
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seems plausible that with ascension towards upper bound, coercivity reduces.
Thus, the evaluation of coercivity bound is relevant.

The inequality (52) is valid for any norm. Hence, we infer

v
!
1 þ αv

!
2

�
�
�

�
�
�

2
þ v

!
2

�
�
�

�
�
�

2
≥ γ v

!
1

�
�
�

�
�
�

2
þ v

!
2

�
�
�

�
�
�

2
� �

, (64)

where α is any real number. Using this inequality (64), we obtain

χ δ
!
, η
!

� ��
�
�

�
�
�

2

0
þ ϖ η

!
� ��

�
�

�
�
�

2

0
¼ χðδ

!
, ðη, 0Þ � bη3

�
�
�

�
�
�

2

0
þ η3k k20

≥ γ χ δ
!
, η, 0ð Þ

�
�� �
�
�
�

2

0

þ η3k k20,

 (65)

hence,

γ δ
!� ��

�
�

�
�
�

2

0
þ χðδ

!
, η
!
Þ

�
�
�

�
�
�

2

0
þ ζðδ

!
, η
!
Þ

�
�
�

�
�
�

2

0
þ ϖ η

!
� ��

�
�

�
�
�

2

0
≥ γð γ δ

!� ��
�
�

�
�
�

2

0
þ ζðδ

!
, η
!
Þ

�
�
�

�
�
�

2

0

þ χðδ
!
, ðη, 0ÞÞ

�
�
�

�
�
�

2

0
þ η3k k20 ≥ γ δ

!
, η

�
�
�

�
�
�

2

1
þ η3k k20

� � (66)

Suppose F
!
∈L2 Sð Þ and the essential boundary conditions enforced in V are such that

no rigid-body motion is possible, i.e., the only element δ
!
, η

� �

∈V satisfying (42) for some

T
!
, R
!� �

¼ 0
!
, 0

� �

. Then bilinear form A is coercive over V.

k η
!
, ς
!

� ��
�
�

�
�
�

2

0
þ ∣η 2

1 ≥ γ k 0, η3

�

, ς
!
�� �
�
�
�

2

0

þη

 �
�
�
�
�

2

1

!
�
�
�
�
�
�

0

@

�
�
�
�
�
�

(67)

hence,

k η
!
, ς
!

� ��
�
�

�
�
�

2

0
þ η

�
�
�

�
�
�

2

1
þ mðη

!
, ς
!
Þ

�
�

�
�
2

0
þ n ς

!
� ��

�
�

�
�
�

2

0
þ ϖ η

!
� ��

�
�

�
�
�

2

0
þ p ς

!
� ��

�
�

�
�
�

2

0

≥ γ kð 0, η3ð Þ, ς
!
Þ

�
�
�

�
�
�

2

0
þ mðη

!
, ς
!
Þ

�
�

�
�
2

0
þ n ς

!
� ��

�
�

�
�
�

2

0
þ ϖ η

!
� ��

�
�

�
�
�

2

0
þ p ς

!
� ��

�
�

�
�
�

2

0
þ η

�
�
�

�
�
�

2

1

� �

¼ γ η3, ς
!�

�
�
�
2

∗
þ η

�
�
�

�
�
�

2

1

� �

≥ γ η3, ς
!�

�
�
�
2

1
þ η

�
�
�

�
�
�

2

1

� �

:

(68)

Therefore, from Eqs. (49), (66), and (68), we have

A d
!
, η
!
, ς
!
; δ
!
, η
!
, ς
!

� �

≥ γ γk k20 þ χk k20 þ kk k20 þ lk k20 þ ζk k20 þ mk k20 þ nk k20 þ ϖk k20 þ pk k20

� �

≥ γ δ
!
, η

�
�
�

�
�
�

2

1
þ η3k k20 k

�
�
�

�
�
�

2

0
þ mk k20 þ nk k20 þþ pk k20

� �

≥ γ δ
!
, η

�
�
�

�
�
�

2

1
þ η3, ς

!�
�

�
�
2

1

� �

¼ γ δ
!
, η
!
, ς
!

�
�
�

�
�
�

2

1
:

(69)

The analysis about coercivity bound suggested that it is not membrane strain
tensor alone which progressively alters the structural characteristics of the initial
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lesion. Rather it is the complex interplay of various tensors in Eq. (34) that breaks
the coercivity bound at a particular stage of the disease.

(iv) Completion of the proof.

Since we have proved boundedness and coercivity of the initial lesion, the
continuity of the variational formulation can be derived from the continuity of

linear function (39) related to test function Δ
!

δ
!
, η
!
, ς
!

� �

. There is merit in proving

the continuity of variational formulation because such continuous functions within
closed interval are bounded:

∣

ð

Ω

F
!
� δ

!
þ ξ3 η

!
þ ξ3
� �2

ς
!

� �

dV∣ ≤ F
!
�
�
�

�
�
�
L2

ℬð Þ
δ
!
þ ξ3 η

!
þ ξ3
� �2

ς
!

�
�
�

�
�
�
L2

ℬð Þ

≤ F
!
�
�
�

�
�
�
L2

ℬð Þ
δ
!
, η
!
, ς
!

�
�
�

�
�
�
0
:

(70)

Then, from the H1-coercivity of A infer

γ d
!
, θ
!
, ϱ
!

�
�
�

�
�
�

2

1
≤A d

!
, θ
!
, ϱ
!
; d
!
, θ
!
, ϱ
!

� �

¼ F d
!
, θ
!
, ϱ
!

� �

≤ C F
!
�
�
�

�
�
�
L2

ℬð Þ
d
!
, θ
!
, ϱ
!

�
�
�

�
�
�
0
: (71)

Hence, we infer Eq. (48) directly follows. □

The primary result of this section is sufficient conditions for the variational
formulation (35) which is proved well-posed. In initial lesion model, a fluid-
structure interaction modeled by using bilinear and linear functions specified over

displacement is well-posed. Any transverse point-wise loading in H1 for any lesion

implies transverse displacement in H1. Clinically, progressive interaction of various
tensors within lower and upper bounds implies changes in coercivity bounds. It is
suggestive of progression of the disease. On the other hand, a fracture in internal
lining of vessel wall around the lesion causing blood to flow between tunica intima
and tunica media. This flow either remains static (if there is non-patent false
lumen) or flow out (if there is a patent false lumen track). Thus, the merit of well-
posedness of variational formulation (35) cannot be overemphasized.

5. Asymptotic analysis of the initial lesion

We aim to discuss the asymptotic behavior of initial lesion model. The initial
lesion continues to temporally evolve under the influence of fluid-structure inter-
action; the asymptotic analysis is helpful in this regard. The nonlinearity of pro-
gression of the disease can be assessed by formulating bending strain cases because
membrane and shear strain vanish with the strain ϖ ηð Þ, wherein η � 0 for the test

function Δ
!

δ
!
, η
!
, ς
!

� �

in space V. Let us introduce the space of pure-bending dis-

placements:

V0 ¼ δ
!
, η
!
, ς
!

� �

∈V, j γij δ
!� �

¼ 0, ζi δ
!
, η
!

� �

¼ 0 ∀ i, j ¼ 1, 2
n o

: (72)

Based on peculiar geometry and associated bounds, the initial lesion may or may
not have nonzero pure-bending displacements. Situation 1, when pure bending is
inhibited
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V0∩ δ
!
, η
!
, ς
!

� �

∈V
n o

¼ 0, 0, 0ð Þf g, (73)

and situation 2, when pure bending is non-inhibited

V0∩ δ
!
, η
!
, ς
!

� �

∈V
n o

6¼ 0, 0, 0ð Þf g, (74)

Let us define higher-dimensional body force as

F
!
¼ ε ρ�1ð ÞG

!
, (75)

where the exponent (ρ� 1) is used for consistency when the external work
involves an integration over the thickness which is relevant for general asymptotic

analysis; G
!
represents a force field:

G
!

ξ1, ξ2, ξ3
� �

¼ G
!

0 ξ1, ξ2
� �

þ ξ3B
!

ξ1, ξ2, ξ3
� �

, (76)

where G
!

0 is in L2 Sð Þ and B
!
is a uniformly bounded function over ℬ in t. Since it

is improbable to obtain strong convergence result in context of asymptotic analysis,

we make weaker assumption about G
!
. We also forgo regularity assumption in

context of weak convergence to introduce abstract bilinear forms. Depending upon
boundary conditions, nonzero pure-bending displacements of initial lesion are
assessed. The displacement is in response to inhibited and non-inhibited pure-
bending lesion as we have already argued that only bending strain matters in
asymptotic analysis. In the current framework of asymptotic analysis for
initial lesion of a given thickness, specific membrane-dominated bilinear form
is given by

Am d
!
, θ
!
; δ
!
, η
!

� �

¼

ð

ω

l½0Hijklγij d
!� �

γkl δ
!� �

þ0Hij33 γij d
!� �

ϖ η
!
� �

þ γij δ
!� �

ϖ θ
!� �� �

þ40Hi3j3ζi d
!
, θ
!� �

ζj d
!
, η
!

� �

þ0H3333ϖ θ
!� �

ϖ η
!
� �

�dS,

(77)

bending-dominated bilinear form is given by

Ab d
!
, θ
!
, ϱ
!
; δ
!
, η
!
, ς
!

� �

¼

ð

ω

l3

12

0

Hijklχij d
!
, θ
!� �

χkl δ
!
, η
!

� �

þ0Hij33 χij d
!
, θ
!� �

p ς
!
� �

þ χij δ
!
, η
!

� �

p ϱ
!
� �� �

þ40Hi3j3mi θ
!
, ϱ
!

� �

mj η
!
, ς
!

� �

þ0H3333p ϱ
!
� �

p ς
!
� �

�dS,

(78)

where the tensor 0H is defined by

0Hαβλμ ¼ Hαβλμ
�
�
ξ3¼0

,

and linear form is given by

G δ
!� �

¼

ð

ω

lG
!

0 � δ
!
dS:
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We now discuss the cases of non-inhibited pure bending versus inhibited pure
bending.

5.1 The impact of non-inhibited pure bending on the initial lesion

Assume that V displacement space for the initial lesion contains few nonzero

elements. The terms of order zero in ξ3 in the strain Eq. (33) vanishes by a penali-
zation mechanism, and the appropriate scaling factor is then ρ ¼ 3. We define the
norm

δ
!
, η
!
, ς
!

�
�
�

�
�
�
b
¼ δ

!
�
�
�

�
�
�

2

1
þ η

�
�
�

�
�
�

2

1
þ η3k k20 þ ς3k k20 þ ςþ

1

2
∇η3

�
�
�
�

�
�
�
�

2

0

 !1
2

(79)

for which the convergence is anticipated. Since dε
!

; θε
!
; ρε
!

� �

is uniformly

bounded in the norm �k kb, we extract a subsequence weakly converging in V to a

limit dw
!

; θw
!
; ϱw
!

� �

. Since in the early stage of the disease, the internal lining of the

vessel wall, tunica intima, is smooth, we can expand the constitutive tensor:

Hαβλμ ξ1, ξ2, ξ3
� �

¼0Hαβλμ ξ1, ξ2
� �

þ ξ3H
αβλμ

ξ1, ξ2, ξ3
� �

, (80)

where H
αβλμ

ξ1, ξ2, ξ3
� �

is bounded over initial lesion body ℬ. Using the uniform

boundedness of ε dε
!

; θε
!
; ϱε
!
k1

�
�
� , we get

lim
ε!0

1

ε
A d

!ε
, θ
!ε; ρ

!ε, δ
!
, η
!
, ς
!

� �

¼ Am d
!w

, θ
!w; δ

!
, η
!

� �

, (81)

where Am is the bilinear form to assess net displacement caused by the mem-
brane strain. This is equivalent to

1

ε
A d

!ε
, θ
!ε, ϱ

!ε; δ
!
, η
!
, ς
!

� �
�
�
�
�

�
�
�
�
¼

1

ε

ð

Ω

F
!
: δ

!
þ ξ3 η

!
þ ξ3
� �2

ς
!

� �

dV

�
�
�
�

�
�
�
�

≤ Cε2 δ
!
, η
!
, ς
!

�
�
�

�
�
�
b
þ Cε2 δ

!
, η
!
, ς
!

�
�
�

�
�
�
0
:

(82)

When δ
!
, η
!
, ς
!

� �

is fixed in V, we get

Am d
!w

, θ
!w; δ

!
, η
!

� �

¼ 0 ∀ δ
!
, η
!
, ς
!

� �

∈V: (83)

Using equivalence relations among norms and semi-norms, infer that

d
!w

, θ
!w, ϱ

!w
� �

∈V. This result (83) shows that bilinear form for the membrane

strain tensor vanishes. In this case, non-inhibited pure bending, bending strain
tensor predominates whose bilinear form is given by

Ab d
!w

, θ
!w, ϱ

!w; δ
!
, η
!
, ς
!

� �

¼ G δ
!� �

, ∀ δ
!
, η
!
, ς
!

� �

∈V0: (84)
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Eq. (84) equivalently holds for any δ
!
, η
!
, ς
!

� �

∈V0 (pure-bending subspace of

initial lesion). The uniqueness of solution implies that d
!w

, θ
!w, ϱ

!w
� �

¼ d
!0

, θ
!0, ϱ

!0
� �

.

If Eq. (83) equivalently holds for any weakly converging subsequence d
!w

, θ
!w, ϱ

!w
� �

,

we affirmatively conclude that the whole sequence converges weakly to d
!0

, θ
!0, ϱ

!0
� �

.

5.2 The impact of inhibited pure bending on the initial lesion

We define pure-bending subspace V#, of displacement space V for initial lesion
such that

V# ¼ δ
!
, η
!

� �

j δ
!
, η
!
, 0
!� �

∈V
n o

:

In this case, pure bending is inhibited; �k km gives a norm in pure-bending
subspace V# such that

δ
!
, η
!

�
�
�

�
�
�
m
¼ γ δ

!� ��
�
�

�
�
�
0
þ ζ δ

!
, η
!
Þ

� �
�
�
0
þ ϖ η

!
� ��

�
�

�
�
�
0
:

�
�
�

Since d
!ε

, θ
!ε

� �

is uniformly bounded in pure membrane subspace of displace-

ment space for initial lesion, ε2 δ
!
, η
!
, ς
!

� �

is uniformly bounded in H1 Sð Þ; we infer

that the sequence d
!ε

þ t2

12 ς
!
, θ
!ε

� �

is also uniformly bounded in V. Due to the weak

convergence in pure membrane subspace Vm,

γ d
!ε

þ
t2

12
ϱ
!ε

� �

, ζ d
!ε

þ
t2

12
ϱ
!ε, θ

!ε

� �

,ϖ θ
!ε
� �

� �

!
ε!0

γ d
!w
� �

, ζ d
!w

, θ
!w

� �

,ϖ θ
!w
� �� �

,

converges weakly in L2 Sð Þ. Hence, for any fixed δ
!
, η
!
, ς
!

� �

in displacement space

V, we infer

lim
ε!0

1

ε
A d

!ε
, θ
!ε, ϱ

!ε; δ
!
, η
!
, ς
!

� �

¼ Am d
!w

, θ
!w; δ

!
, η
!

� �

: (85)

We have

1

ε
A d

!ε
, θ
!ε, ϱ

!ε; δ
!
, η
!
, ς
!

� �

¼ G δ
!� �

þ
R

ε
: (86)

Here, R
ε
! 0 when ε ! 0. As δ

!
, η
!
, ς
!

� �

is fixed, we infer

Am d
!w

, θ
!w; δ

!
, η
!

� �

¼ G δ
!� �

∀ δ
!
, η
!

� �

∈V: (87)

Eq. (87) equivalently holds for any δ
!
, η
!

� �

∈Vm (membrane subspace of initial

lesion). From the uniqueness of the weak convergence result, it follows that

d
!w

, θ
!w

� �

¼ d
!m

, θ
!m

� �

. If this equivalently holds for any weakly converging
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subsequence d
!w

, θ
!w, ϱ

!w
� �

, we affirmatively conclude that the whole sequence

d
!ε

þ t2

12 ς
!
, θ
!ε

� �

converges weakly to d
!m

, θ
!m

� �

in Vm.

Finally, asymptotic analysis, both types of initial lesion problems, including case
of non-inhibited pure bending and case of inhibited pure bending, has weak con-
vergence. Asymptotic analysis revealed that initial lesion is bending-dominated
when pure bending is non-inhibited and that initial lesion is membrane-dominated
when pure bending is inhibited. Clinically, the primal lesion undergoes transforma-
tions under the influence of membrane, bending, and shear tensors. In advanced
stages, the transition towards upper bound occurs due to change in coercivity
bounds. During the advanced stages of disease, the bending is responsible for
introducing progressive disarray of collagen fibers, smooth muscle cells, and ground
matrix and thus contributes to rapid progression. Asymptotic analysis suggests that
bending strain is relevant for the progression of disease in advanced stages. Hence,
asymptotic analysis is a valuable technique for theoretical supplementation to
model building and provide insights into the behavior of initial lesion.

6. Concluding remarks

6.1 Conclusion

We constructed the model by using higher-order kinematical assumptions rele-
vant to human cardiovascular system. We called this model the initial lesion model.
The weak convergence of the solution to initial lesion model was mathematically
substantiated. In the analysis of the initial lesion, we concentrated to seek biological
and mathematical insights in order to understand early stages of AD. A general
understanding of evolution of initial lesion in aortic dissection is presented. The
results presented in this chapter are relevant for the assessment of shell-type lesion
in biological systems including human physiology and pathology. At least two
observations are to be noted. First, the mathematical analysis of the initial lesion
model is distinct from classical shell models. Second, the asymptotic analysis of the
initial lesion model is based on degenerating three-dimensional continuum to
bending strains to initial lesion behavior. For very thin shells as seen in human
vessels’ internal lining, the analytical perspective to the initial lesion model given in
this chapter can be used in the convergence studies.

6.2 Future scope

Clinically complex situations such as the formation of false lumen either blind or
patent in advanced stage of AD merit mathematical analysis perusing coercivity
bounds.
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