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Chapter

Numerical Solutions to Some
Families of Fractional Order
Differential Equations by Laguerre
Polynomials
Adnan Khan, Kamal Shah and Danfeng Luo

Abstract

This article is devoted to compute numerical solutions of some classes and
families of fractional order differential equations (FODEs). For the required
numerical analysis, we utilize Laguerre polynomials and establish some operational
matrices regarding to fractional order derivatives and integrals without discretizing
the data. Further corresponding to boundary value problems (BVPs), we establish a
new operational matrix which is used to compute numerical solutions of boundary
value problems (BVPs) of FODEs. Based on these operational matrices (OMs), we
convert the proposed (FODEs) or their system to corresponding algebraic equation
of Sylvester type or system of Sylvester type. The resulting algebraic equations are
solved by MATLAB® using Gauss elimination method for the unknown coefficient
matrix. To demonstrate the suggested scheme for numerical solution, many suitable
examples are provided.

Keywords: FODEs, numerical solution, Laguerre polynomials, operational matrices

1. Introduction

The theory of integrals as well as derivatives of arbitrary order is known by the
special name “fractional calculus.” It has an old history just like classical calculus.
The chronicle of fractional calculus and encyclopedic book can be studied in [1, 2].
Researchers have now necessitated the use of fractional calculus due to its diverse
applications in different fields, specially in electrical networks, signal and image
processing and optics, etc. For conspicuous work on FODEs in the fields of dynam-
ical systems, electrochemistry, advanced techniques of microorganisms culturing,
weather forecasting, as well as statistics, we refer to peruse [3, 4]. Fractional deriv-
atives show valid results in most cases where ordinary derivatives do not. Also
annotating that fractional order derivatives as well as fractional integrals are global
operators, while ordinary derivatives are local operators. Fractional order derivative
provides greater degree of freedom. Therefore from different aspects, the aforesaid
areas were investigated. For instance, many researchers have provide understanding
to existence and uniqueness results about FODEs, for few results, we refer [5–7],
and many others have actualized the instinctive framework of fractional differential
equations in various problems [8–19] with many references included in them.
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Often it is very difficult to obtain the exact solution due to global nature of
fractional derivatives in differential equations. Contrarily approximate solutions are
obtained by numerical methods assorted in [20–22]. Various new numerical
methods have been developed, among them is one famous method called “spectral
method” which is used to solve problems in various realms [23]. In this method
operational matrices are obtained by using orthogonal polynomials [24]. Many
authors have successfully developed operational matrices by using Legender,
Jacobi, and various other polynomials [25, 26]. For delay differential and various
other related equations, Laguerre spectral methods have been used [27–32]. Bern-
stein polynomials and various classes of other polynomials were also used to obtain
operational matrices corresponding to fractional integrals and derivatives [33–40].
Apart from them, operational matrices were also developed with the collocation
method (see Refs. [41–43]). Since spectral methods are powerful tools to compute
numerical solutions of both ODEs and FODEs. Therefore, we bring out numerical
analysis via using Laguerre polynomials of some families and coupled systems of
FODEs under initial as well as boundary conditions. In this regard we investigate
the numerical solutions to the given families under initial conditions

c
0D

γ
t z tð Þ � z tð Þ ¼ 0, 0< γ ≤ 1,

z 0ð Þ ¼ z0, z0 ∈R,

�

(1)

and subject to boundary conditions

c
0D

γ
t z tð Þ � z tð Þ ¼ 0, 1< γ ≤ 2,

z 0ð Þ ¼ z0, z 1ð Þ ¼ z1, z0, z1 ∈R:

�

(2)

By similar numerical techniques, we also investigate the numerical solutions to
the following systems with fractional order derivatives under initial and boundary
conditions as

c
0D

γ
t z tð Þ þ az tð Þ þ by tð Þ ¼ f tð Þ,

c
0D

γ
t y tð Þ þ cy tð Þ þ dz tð Þ ¼ g tð Þ,

(

z 0ð Þ ¼ z0, y 0ð Þ ¼ y0

(3)

for 0< γ ≤ 1 and

c
0D

γ
t z tð Þaz tð Þ þ by tð Þ ¼ f tð Þ,

c
0D

γ
t y tð Þ þ cy tð Þ þ dz tð Þ ¼ g tð Þ,

z 0ð Þ ¼ z0, y 0ð Þ ¼ y0, z 1ð Þ ¼ z1, y 1ð Þ ¼ y1,

8

>

<

>

:

(4)

for 1< γ ≤ 2 where f , g : 0, 1½ � � R2 ! R and z0, y0, z1, y1 ∈R: We first obtain
OMs for fractional derivatives and integrals by using Laguerre polynomials. Also
corresponding to boundary conditions, we construct an operational matrix which is
needed in numerical analysis of BVPs. With the help of the OMs we convert the
considered problem of FODEs under initial/boundary conditions to Sylvester-type
algebraic equations. Solving the mentioned matrix equations by using MATLAB®,
we compute the numerical solutions of the considered problems.

2. Preliminaries

Here we recall some basic definition results that are needed in this work onward,
keeping in mind that throughout the paper we use fractional derivative in Caputo sense.
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Definition 1. The fractional integral of order γ >0 of a function z : 0,∞ð Þ ! R is
defined by

0I
γ
t z tð Þ ¼

1

Γ γð Þ

ðt

0

z sð Þ

t� sð Þ1� γ
ds,

provided the integral converges at the right sides. Further a simple and impor-
tant property of 0I

γ
t is given by

0I
γ
t t

δ ¼
Γ δþ 1ð Þ

Γ δþ γ þ 1ð Þ
t γþδ:

Definition 2. Caputo fractional derivative is defined as

c
0D

γ
t f tð Þ ¼

1

Γ n� γð Þ

ðt

0
t� sð Þn� γ�1f nð Þ sð Þds,

where n is a positive integer with the property that n� 1< γ ≤ n: For example, if
0< γ ≤ 1, then Caputo fractional derivative becomes

c
0D

γ
t f tð Þ ¼

1

Γ 1� γð Þ

ðt

0
t� sð Þ� γ�1f 0 sð Þds:

Theorem 1. The FODE given by

c
0D

γ
t f tð Þ ¼ 0

has a unique solution, such that

f tð Þ ¼ d0 þ d1tþ d2t
2 þ … þ dn�1t

n�1, n ¼ γ½ � þ 1:

Lemma 1. Therefore in view of this result, if h∈Ln 0,T½ �, then the unique
solution of nonhomogenous FODE

c
0D

γ
t f tð Þ ¼ h tð Þ, n� 1< γ ≤ n

is written as

f tð Þ ¼ d0 þ d1tþ d2t
2 þ … þ dn�1t

n�1þ0I
γ
t h tð Þ,

where di for i ¼ 0, 1, 2, 3… n� 1 are real constants.
The above lemma is also stated as

f tð Þ¼0I
γ
t h tð Þ þ

X

n�1

i¼0

f i 0ð Þ

i!
ti:

Definition 3. The famous Laguerre polynomials are represented by L γ
i tð Þ and

defined as

L γ
i tð Þ ¼

X

i

k¼0

�1ð ÞkΓ iþ γ þ 1ð Þ

Γ kþ 1þ γð ÞΓ i� kþ 1ð ÞΓ kþ 1ð Þ
tk:
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They are orthogonal on 0,∞½ �: If L γ
i tð Þ and L γ

j tð Þ are Laguerre polynomials, then

the orthogonality condition is given as

ð∞

0
L γ
i tð ÞL γ

j tð ÞW γ tð Þdt ¼ δi,jUk,

where

W γ tð Þ ¼ t γ e�t,

is the weight function and

Uk ¼

Γ 1þ γ þ kð Þ

Γ 1þ kð Þ
, i ¼ j

0 i 6¼ j:

8

<

:

Now let Z tð Þ be any function, defined on the interval 0,∞½ �: We express the
function in terms of Laguerre polynomials as

Z tð Þ ¼
X

n

i¼0

ciL
γ
i tð Þ:

¼ c0L
γ
0 tð Þ þ c1L

γ
1 tð Þ þ … þ cNL

γ
N tð Þ

¼ c0 c1 … cN½ �

L γ
0 tð Þ

⋮

L γ
n tð Þ

2

6

6

4

3

7

7

5

:

(5)

We set the above two vectors into their inner product and represent the column
matrix by Ψ tð Þ, so that

Z tð Þ ¼ ctΨ tð Þ:

Again as

Z tð Þ ¼
X

n

i¼0

ciL
γ
i tð Þ,

ðL

0
Z tð ÞW γ tð ÞL γ

j tð Þdt ¼

ðL

0

X

n

i¼0

ciL
γ
i tð ÞL γ

j tð ÞW γ tð Þdt,

which is written as

X

n

i¼0

ci

ðL

0
L γ
i tð ÞL γ

j tð ÞW γ tð Þdt:

We call hi to the general term of integration

ðL

0
Z tð ÞW γ tð ÞL γ

j tð Þdt ¼
X

n

i¼0

cihi:

Hence the coefficient ci is

4
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ci ¼
1

hi

ðL

0
Z tð ÞW γ tð ÞL γ

j tð Þdt:

In vector form we can write Eq. (5) as

Z tð Þ ¼ ctMΨM tð Þ:

where M = mþ 1, cM is the M terms coefficient vector and ΨM tð Þ is the M terms
function vector.

2.1 Representation of Laguerre polynomial with Caputo fractional order
derivative

If the Caputo fractional order derivative is applied to Laguerre polynomial, by

considering whole function constant except tk: We use the definition of Caputo

fractional order derivative for tk to obtain (6) as

c
0D

γ
t L

γ
i tð Þ ¼

X

i

k¼0

tk� γ
� � �1ð ÞkΓ iþ γ þ 1ð Þ

Γ kþ 1þ γð ÞΓ i� kþ 1ð ÞΓ 1þ k� γð Þ
: (6)

2.2 Error analysis

The proof of the following results can be found with details in [20].

Lemma 2. Let Lβ
i tð Þ be given; then

c
0D

γ
t L

β
i tð Þ ¼ 0, i ¼ 0, 1, 2,⋯, β½ � � 1, γ >0:

Theorem 2. For error analysis, we state the theorem such that, a be any integer
and 0≤ s≤ a, and then

∥PM,az � z tð Þ∥As
α,Λ≤ cM

s�a
2 ∣z tð Þ∣Aa

α,Λ, ∀z tð ÞϵAa
α Λð Þ,

where Aa
α ¼ f z=z is measurable on Λ and ∥z∥ Aa

α, Λð Þ < ∞ g and

∣z∣Aa
α, Λð Þ ¼ ∥∂apz∥wαþa,Λ,

∥z∥Aa
α, Λð Þ ¼

X

a

k¼0

zj j2Aa
α, Λð Þ

 !1
2

:

Now let Λ ¼ ϱ=0< ϱ<∞ with χ ϱð Þ be a weight function. Then

L2
χ Λð Þ ¼ fκ = κ is measurable on Λ and ∥u∥L2

χ
,Λ < ∞g.

with the following inner product and norm

u, vð Þχ,Λ ¼

ð

Λ

u ϱð Þv ϱð Þdϱ, ∥v∥χ,Λ ¼
ffiffiffiffiffiffiffiffiffiffiffi

u, vh i
p

χ,Λ:

3. Operational matrices corresponding to fractional derivatives and
integrals

Here in this section, we provide the required OMs via Laguerre polynomials of
fractional derivatives and integrals.
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Lemma 3. Let ΨM tð Þ be a function vector; the fractional integral of order γ for
the function ΨM tð Þ can be generalized as

0I
γ
t ΨM tð Þ≈G γ

N�NΨM tð Þ,

where G γ
N�N is the OM of integration of fractional order γ and given by

ℸ
γ

0,0,k,r ℸ
γ

0,1,k,r ⋯ ℸ
γ

0,j,k,r ⋯ ℸ
γ

0,m,k,r

ℸ
γ

1,0,k,r ℸ
γ

1,i,k,r ⋯ ℸ
γ

1,j,k,r ⋯ ℸ
γ

1,m,k,r

⋮ ⋮ ⋮ ⋮ ⋯ ⋮

ℸ
γ

i,0,k,r ℸ
γ

i,1,k,r ⋯ ℸ
γ

i,j,k,r ⋮ ℸ
γ

i,m,k,r

⋮ ⋮ ⋮ ⋮ ⋯ ⋮

ℸ
γ

m,0,k,r ℸ
γ

m,1,k,r ⋯ ℸ
γ

m,j,k,r ⋯ ℸ
γ

m,m,k,r

2

6

6

6

6

6

6

6

6

6

4

3

7

7

7

7

7

7

7

7

7

5

,

where

ℸ
γ

i,j,k,r ¼
X

i

k¼0

X

i

r¼0

�1ð Þkþr
Γ jþ 1ð ÞΓ iþ γ þ 1ð ÞΓ kþ γ þ αþ rþ 1ð Þ

Γ j� rþ 1ð ÞΓ i� kþ 1ð ÞΓ rþ 1ð ÞΓ kþ γ þ 1ð ÞΓ kþ αþ 1ð ÞΓ γ þ rþ 1ð Þ
:

Proof. We apply the fractional order integral of order γ to the Laguerre
polynomials

c
0I

γ
t L

γ
i tð Þ ¼

X

i

k¼0

Γ iþ γ þ 1ð Þ

Γ i� kþ 1ð ÞΓ kþ γ þ 1ð ÞΓ kþ 1ð Þ

c

0

I γt t
k: (7)

Since from (7), we have

c
0I

γ
t t

k ¼
Γ kþ 1ð Þ

Γ 1þ kþ αð Þ
tkþ γ :

Therefore Eq. (7) implies that

c
0I

γ
t L

γ
i tð Þ ¼

X

i

k¼0

tkþ γ Γ iþ γ þ 1ð Þ

Γ i� kþ 1ð ÞΓ kþ γ þ 1ð ÞΓ kþ 1ð Þ

Γ kþ 1ð Þ

Γ 1þ kþ αð Þ
,

which is equal to

c
0I

γ
t L

γ
i tð Þ ¼

X

i

k¼0

�1ð Þk
Γ iþ γ þ 1ð Þ

Γ i� kþ 1ð ÞΓ kþ γ þ 1ð ÞΓ 1þ k� γð Þ
tkþ γ : (8)

We approximate tkþ γ in (8) with Laguerre polynomials, i.e.

tkþ γ ≈
X

n

j¼0

HjL
γ
j tð Þ:

By using the relation of orthogonality, we can find coefficients

Hj ¼
X

j

r¼0

�1ð Þk
Γ jþ 1ð ÞΓ kþ αþ rþ γ þ 1ð Þ

Γ 1þ j� rð ÞΓ 1þ rð ÞΓ 1þ rþ γð Þ
:

6
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So Eq. (8) implies

c
0I

γ
t L

γ
i tð Þ ¼

X

i

k¼0

�1ð Þk
Γ iþ γ þ 1ð Þ

Γ i� kþ 1ð ÞΓ kþ γ þ 1ð ÞΓ 1þ k� γð Þ

�
X

j

r¼0

�1ð Þr
Γ jþ 1ð ÞΓ kþ αþ rþ γ þ 1ð Þ

Γ j� rþ 1ð ÞΓ rþ 1ð ÞΓ rþ γ þ 1ð Þ:

c
0I

γ
t L

γ
i tð Þ ¼

X

i

k¼0

X

j

r¼0

�1ð Þkþr Γ jþ 1ð ÞΓ iþ γ þ 1ð ÞΓ kþ αþ rþ γ þ 1ð Þ

Γ 1� kþ ið ÞΓ j� γ þ 1ð ÞΓ γ þ 1ð ÞΓ kþ γ þ 1ð ÞΓ kþ αþ 1ð ÞΓ γ þ rþ 1ð Þ
:

which is the desired result.
Lemma 4. Let ΨM tð Þ be a function vector; then the fractional derivative of order

γ for ΨM tð Þ is generalized as

c
0D

γ
t ΨM tð Þ≈W γ

M�MΨM tð Þ,

where W γ
M�M is the OM of derivative of order γ , defined as in (9)

W γ
M�M ¼

0 0 0 0 ⋯0

⋮ ⋮ ⋮ ⋮ ⋮

Θ
γ

γd e,0,k,α Θ
γ

γd e,1,k,α ⋯Θ
γ

γd e,j,k,α ⋯ ⋯ Θ
γ

γd e,n,k,α

Θ
γ

i,0,k,α Θ
γ

i,1,k,α Θ
γ

i,j,k,α ⋯ ⋯ Θ
γ

i,n,k,α

⋮ ⋮ ⋮ ⋮ ⋮

Θ
γ

n,0,k,α Θ
γ

n,1,k,α Θ
γ

n,j,k,α ⋯ ⋯ Θ
γ

n,n,k,α

2

6

6

6

6

6

6

6

6

6

4

3

7

7

7

7

7

7

7

7

7

5

, (9)

where

Θ
γ

i,j,k,α ¼

X

i

k¼ γ

X

i

r¼0

�1ð Þ γþk
Γ jþ 1ð ÞΓ iþ αþ 1ð ÞΓ kþ α� rþ γ þ 1ð Þ

Γ j� rþ 1ð ÞΓ i� kþ 1ð ÞΓ rþ 1ð ÞΓ kþ αþ 1ð ÞΓ k� γ þ 1ð ÞΓ αþ γ þ 1ð Þ
:

Proof. Leaving the proof as it is very similar to the proof of the above lemma.

Lemma 5.We consider a function Z tð Þ defined on 0,∞½ � and y tð Þ ¼ KMΨ
T
M tð Þ; then

Z tð Þ 0I
γ
t y tð Þ½ � ¼ KMQ

γ
M�MΨM tð Þ,

where Q γ
M�M is the operational matrix, given by

C0,0, C0,1 ⋯ C0,j ⋯ C0,m

C1,0 C1,1 ⋯ C1,j ⋯ C1,m

⋮ ⋮ ⋮ ⋮ ⋯ ⋮

Ci,0 Ci,1 ⋯ Ci,j ⋮ Ci,m

⋮ ⋮ ⋮ ⋮ ⋯ ⋮

Cm,0 Cm,1 ⋯ Cm,j ⋯ Cm,m

2

6

6

6

6

6

6

6

6

4

3

7

7

7

7

7

7

7

7

5

,
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where

Ci,j ¼
1

hi

ð1

0
Δi, γ ,kZ tð ÞL γ

j tð Þdt,

with

wi ¼
X

i

k¼0

�1ð Þiþ1
Γ iþ 1þ γð Þ

Γ kþ γ þ 1ð ÞΓ 1� kþ ið ÞΓ kþ γð Þ
:

Proof. By considering the general term of ΨM tð Þ

0I
γ
1 Li tð Þ ¼

1

Γ γð Þ

ð1

0
1� sð Þ γ�1Li sð Þds:

0I
γ
1 Li tð Þ ¼

1

Γ γð Þ

ð1

0
1� sð Þ γ�1

X

i

k¼0

sð Þk
�1ð ÞkΓ iþ 1þ γð Þ

Γ �kþ 1þ ið ÞΓ kþ 1þ γð ÞΓ 1þ kð Þ
ds:

0I
γ
1 Li tð Þ ¼

X

i

k¼0

�1ð ÞkΓ iþ 1þ γð Þ

Γ γð ÞΓ �kþ 1þ ið ÞΓ kþ 1þ γð ÞΓ 1þ kð Þ

ð1

0
1� sð Þ γ�1 sð Þkds:

(10)

Using the famous Laplace transform, we have from (10)

£ð

ð1

0
1� sð Þ γ�1skds ¼

Γ γð ÞΓ kþ 1ð Þ

Γ γ þ kð Þ
:

0I
γ
1 Li tð Þ ¼

X

i

k¼0

�1ð ÞkΓ iþ 1þ γð Þ

Γ γð ÞΓ �kþ 1þ ið ÞΓ kþ 1þ γð ÞΓ 1þ kð Þ

Γ γð ÞΓ kþ 1ð Þ

Γ γ þ kð Þ
:

X

i

k¼0

�1ð ÞkΓ iþ 1þ γð Þ

Γ �kþ 1þ ið ÞΓ kþ γ þ 1ð ÞΓ 1þ kð Þ
¼ Δi, γ ,k:

Now using Laguerre polynomials, we have

Δi, γ ,kz tð Þ ¼
X

m

j¼0

Ci,jLi tð Þ,

where Ci,j is calculated by using orthogonality as

Ci,j ¼
1

hi

ð1

0
Δi, γ ,kz tð ÞL γ

j tð Þdt: (11)

To get the desired result, we evaluate the above (11) relation for i ¼ 0, 1, … ,m
and j ¼ 0, 1, … ,m.

4. Main result

In this section, we discuss some cases of FODEs with initial condition as well as
boundary conditions. The approximate solution obtained through desired

8
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method is compared with the exact solution. Similarly we investigate numerical
solutions to various coupled systems under some initial conditions
as well as boundary conditions.

4.1 Treatment of FODEs under initial and boundary conditions

Here we discuss different cases.
Case 1. In the first case, we consider the fractional order differential equation

c
0D

γ
t z tð Þ � z tð Þ ¼ 0, 0< γ ⩽1,

z 0ð Þ ¼ z0, z0 ∈R

�

(12)

we see that

c
0D

γ
t z tð Þ ¼ ŁMψ

T
M tð Þ:

and applying 0I
γ
t by the Lemma 1, on (12) we write

z tð Þ ¼ e0 þ 0I
γ
t ŁMψ

T
M tð Þ

� �

,

Using the initial condition to get e0 ¼ z0 and approximate z0 as z0 ≈FM ψT
M tð Þ,

Eq. (12) implies

ŁM ψT
M tð Þ þ ŁM G γ

M�M ψT
M tð Þ þ FM ψT

M tð Þ ¼ 0:

Finally the Sylvester-type algebraic equation is obtained as

ŁM þ ŁM G γ
M�M ψT

M tð Þ þ FM ¼ 0:

Solving the Sylvester matrix for ŁM, we get the numerical value for z tð Þ.
Example 1.

c
0D

γ
t z tð Þ � z tð Þ ¼ 0, 0< γ ≤ 1,

z 0ð Þ ¼ 1, z0 ∈R:

�

Since the exact solution is given by

z tð Þ ¼ E γ �t γð Þ,

where E γ is the Mittag-Leffler representation, and at γ ¼ 1, z tð Þ ¼ e�t:
Approximating the solution through the proposed method and plotting the exact

as well as numerical solution by using scale M ¼ 8 corresponding to γ ¼ 1 in
Figure 1, we see that the proposed method works very well.

Case 2.

c
0D

γ
t z tð Þ þ z tð Þ ¼ 0, 1< γ ⩽2,

z 0ð Þ ¼ z0, z 1ð Þ ¼ z1, z0, z1 ∈R:

�

(13)

We take

c
0D

γ
t z tð Þ ¼ KMψ

T
M tð Þ: (14)

9
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Applying Lemma 1 to Eq. (14), we get

z tð Þ ¼ e0 þ e1 tð Þþ0I
γ
t KMψ

T
M tð Þ: (15)

Using the conditions by putting t ¼ 0 and t ¼ 1 to get e0 ¼ z0 and

e1 ¼ z1 � z0 � KM0I
γ
1 ψ

T
M tð Þ=t¼1:

Equation (15) implies

z tð Þ ¼ z0 þ z1 � z0ð Þt� tKM0I
γ
1 ψ

T
M tð Þ=t¼1þ0I

γ
t KMψ

T
M tð Þ,

where z0 þ z1 � z0ð Þt is the smooth function of t and constants; we approximate
it as

z0 þ z1 � z0ð Þt≈G γ
M�Mψ

T
M tð Þ

and

tKM0I
γ
1 ψ

T
M 1ð Þ≈KMQ

γ
M�Mψ

T
M tð Þ:

Hence

z tð Þ ¼ G γ
M�Mψ

T
M tð Þ � KMQ

γ
M�Mψ

T
M tð Þ þ KMG

γ
M�Mψ

T
M tð Þ

So Eq. (13) implies

KMψ
T
M tð Þ þG γ

M�Mψ
T
M tð Þ � KMQ

γ
M�Mψ

T
M tð Þ þ KMG

γ
M�Mψ

T
M tð Þ ¼ 0

which is further solved for KM to get the required numerical solution.
For Case 2, we give the following example.
Example 2.

c
0D

γ
t z tð Þ þ z tð Þ ¼ 0, 0< γ ≤ 2,

z 0ð Þ ¼ �1, z 1ð Þ ¼ 1:

�

(16)

At γ ¼ 2, we get the exact solution as of (16) as given by (17)

z tð Þ ¼ 114:58 sin xð Þ � cos xð Þ (17)

Figure 1.
Plots of both approximate and exact solution for the Example 1 for Case 1.
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Upon using the suggested method, we see from the subplot at the left of Figure 2
that exact and numerical solutions are very close to each other for very low scale
level. Also, the absolute error is given in subplot at the right of Figure 2.

4.2 Coupled systems of linear FODEs under initial and boundary conditions

In this subsection, we consider different forms of coupled systems of FODEs
with the initials as well as boundary conditions.

Case 1. First we take the coupled system of FODEs as

c
0D

γ
t z tð Þ þ az tð Þ þ by tð Þ ¼ f tð Þ

c
0D

γ
t y tð Þ þ cy tð Þ þ dz tð Þ ¼ g tð Þ,

�

(18)

with the conditions

z 0ð Þ ¼ z0, y 0ð Þ ¼ y0, z0, y0 ∈R: (19)

Let

c
0D

γ
t z tð Þ ¼ ŁMψ

T
M tð Þ, c

0D
γ
t y tð Þ ¼ KMψ

T
M tð Þ: (20)

Applying Lemma 1 to Eq. (20), we get

z tð Þ ¼ e0 þ ŁMG
γ
M�Mψ

T
M tð Þ,

y tð Þ ¼ d0 þ KMG
γ
M�Mψ

T
M tð Þ:

(

(21)

Using the initial conditions given in Eq. (19), from Eq. (21), we get

z tð Þ ¼ F1
Mψ

T
M tð Þ þ ŁMG

γ
M�Mψ

T
M tð Þ,

y tð Þ ¼ y0 ≈F2
Mψ

T
M tð Þ þ KMG

γ
M�Mψ

T
M tð Þ:

(

(22)

We take approximation as

z0 ≈F1
Mψ

T
M tð Þ,

and

Figure 2.
The plot of exact and approximate solution for Example 2 for Case 2.
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y0 ≈F2
Mψ

T
M tð Þ,

while source functions are approximated as

f tð Þ≈F3
MΨ

T
M tð Þ,

and

g tð Þ≈ F4
MΨ

T
M tð Þ:

Therefore the consider system on using (19)–(22), (18) becomes

ŁMψ
T
M þ a F1

Mψ
T
M tð Þ þ ŁMG

γ
M�Mψ

T
M tð Þ

� �

þbðF2
Mψ

T
M tð Þ þ KMG

γ
M�Mψ

T
M tð Þ ¼ F3

Mψ
T
M tð Þ:

(

KMψ
T
M þ c F2

Mψ
T
M tð Þ þ KMG

γ
M�Mψ

T
M tð Þ

� �

þd F1
Mψ

T
M tð Þ þ ŁMG

γ
M�Mψ

T
M tð Þ ¼ F4

Mψ
T
M tð Þ:

�

(

On further rearrangement we have

ŁM þ a F1
M þ ŁMG

γ
M�M

� �

þ bðF2
M þ KMG

γ
M�M ¼ F3

M

KM þ c F2
M þ KMG

γ
M�M

� �

þ d F1
M þ ŁMG

γ
M�M ¼ F4

M:
�

(

which further can be written as

ŁM IM�M þ aG γ
M�M

� �

þ KM bG γ
M�M

� �

þ aF1
M þ bF2

M � F3
M

� �

¼ 0

KM IM�M þ cG γ
M�M

� �

þ ŁM dG γ
M�M

� �

þ cF2
M þ dF1

M � F4
M

� �

¼ 0:

(

In matrix form we write as

ŁM KM½ �
IM�M þ aG γ

M�M 0

0 IM�M þ cG γ
M�M

" #

þ
ŁM KM

" #

0 dG γ
M�M

bG γ
M�M 0

" #

þ
aF1

M þ bF2
M � F3

M

cF2
M þ dF1

M � F4
M

" #

¼ 0:

We solve this system of matrix equation for ŁM KM½ � by using Gaussian’s elim-

ination method. The considered system is in the form of XAþ XBþ C ¼ 0, .

where X ¼ ŁM KM½ � A ¼
IM�M þ aG γ

M�M 0

0 IM�M þ cG γ
M�M

� 	

, .

B ¼
0 dG γ

M�M

bG γ
M�M 0

� 	

and C ¼
aF1

M þ bF2
M � F3

M

cF2
M þ dF1

M � F4
M:

" #

:

Upon computation of matrices ŁM,KM by using MATLAB®, we put these
matrices in Eq. (22) to find zapp and yapp, respectively.

Example 3. We now provide its example by considering the system of FODEs:

c
0D

γ
t z tð Þ þ z tð Þ þ y tð Þ ¼ f tð Þ

c
0D

γ
t y tð Þ þ y tð Þ þ z tð Þ ¼ g tð Þ,

z 0ð Þ ¼ 2, y 0ð Þ ¼ 1:

8

>

<

>

:
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By taking γ ¼ 1, the exact solution is obtained as

z tð Þ ¼ cos tð Þ þ et, y ¼ sin tð Þ þ e�t,

where the external source functions are given by f tð Þ ¼ cos tð Þ þ e�t þ 2et and
g tð Þ ¼ e�t þ sin tð Þ þ 2 cos tð Þ: The exact solution zex, yex can be computed by any
method of ODEs. Approximating the problem by the considered method, we see
that the computed numerical and exact solutions have close agreement at very
small-scale level. The corresponding accuracy has been recorded in Table 1. Further
the comparison between exact and numerical solution and the results about abso-
lute error have been demonstrated in Figures 3 and 4, respectively. In Figure 3
we are given the comparison between exact solution and approximate solutions
by using proposed method. Similarly the absolute errors have been described in
Figure 4.

By comparing the exact and numerical solution through the proposed method,
we observe that our numerical solution does not show any disagreement with the
exact solution as can be seen in Figure 3. The absolute errors ∥zapp � zex∥ and
∥yapp � yex∥ plotted at the scale M ¼ 5 are very low as given in Figure 4, which

describes the efficiency of the proposed method.
Case 2. Similarly for the coupled system of FODEs with boundary conditions,

we consider

c
0D

γ
t z tð Þ þ az tð Þ þ by tð Þ ¼ f tð Þ,

c
0D

γ
t y tð Þ þ cy tð Þ þ dz tð Þ ¼ g tð Þ,

(

z 0ð Þ ¼ z0, y 0ð Þ ¼ y0, z 1ð Þ ¼ z1, y 1ð Þ ¼ y1:

(23)

t CPU time (s) Absolute error ∥zapp � zex∥ Absolute error ∥y
app

� y
ex
∥ CPU time (s)

0 30.5 0.00003 0.000006 32.5

0.15 32.7 0.000016 0.000034 33.3

o.35 35.8 0.000013 0.00003 33.9

0.65 33.6 0.000012 0.00003 35.6

0.87 34.8 0.000018 0.000036 36.5

1 35.9 0.00003 0.000006 36.8

Table 1.
Absolute error at M ¼ 5, γ ¼ 0:9, for different values of t in Example 3.

Figure 3.
Plots of exact and approximate solution of Example 3.
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Let us assume

c
0D

γ
t z tð Þ ¼ ŁMψ

T
M tð Þ,

c
0D

γ
t y tð Þ ¼ KMψ

T
M tð Þ:

(

(24)

Applying Lemma 1 to Eq. (24), we get

z tð Þ ¼ e0 þ e1 tð Þ þ ŁMG
γ
M�MΨ

T
M tð Þ

y tð Þ ¼ d0 þ d1 tð Þ þ KMG
⋆ γ
M�MΨ

T
M tð Þ,

(

(25)

where d0, d1, e0, e1 ∈R: Using the initial conditions in Eq. (25), we have e0 ¼ z0,
d0 ¼ y0: On using boundary conditions, we have from Eq. (25)

z 1ð Þ ¼ z0 þ e1 þ ŁMG
γ
M�MΨ

T
M tð Þ







t¼1
,

z 1ð Þ � z0 � ŁMG
γ
M�MΨ

T
M tð Þ







t¼1
¼ e1:

Similarly

y 1ð Þ ¼ y0 þ d1 þ KMG
⋆ γ
M�MΨ

T
M tð Þ







t¼1
,

y 1ð Þ � y0 � KMG
⋆ γ
M�MΨ

T
M tð Þ







t¼1
¼ d1:

Equation (25) implies that

z tð Þ ¼ z0 þ t z1 � z0ð Þ � tðLMG
γ
M�MΨ

T
M tð Þ







t¼1
Þ þ LMG

γ
M�MΨ

T
M tð Þ

y tð Þ ¼ y0 þ t y1 � y0
� �

� t KMG
⋆ γ
M�MΨ

T
M tð Þ

� 





t¼1
Þ þ KMG

⋆ γ
M�MΨ

T
M tð Þ:

(

(26)

Let z0 þ t z1 � z0ð Þ≈F1
MΨ

T
M tð Þ and y0 þ t y1 � y0

� �

≈F2
Mψ

T
M tð Þ, with

ŁMG
γ
M�MΨ

T
M tð Þ ¼ ŁMQ

γ ,z
M�MΨ

T
M tð Þ

tKMG
⋆ γ
M�MΨ

T
M tð Þ ¼ KMQ

γ ,y
M�MΨ

T
M tð Þ:

(27)

Hence Eq. (26) implies

z tð Þ ¼ F1
MΨ

T
M tð Þ � LMQ

γ ,z
M�MΨ

T
M tð Þ þ LMG

γ
M�MΨ

T
M tð Þ

y tð Þ ¼ F2
MΨ

T
M tð Þ � KMQ

γ ,y
M�MΨ

T
M tð Þ þ KMG

⋆ γ
M�MΨ

T
M tð Þ:

(

(28)

Figure 4.
Plots of absolute error of Example 3.
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approximating f tð Þ and g tð Þ such that

f tð Þ≈F3
MΨ

T
M tð Þ

g tð Þ≈F4
MΨ

T
M tð Þ:

(

(29)

On using (24)–(29), system (23) can be written as

LMΨ
T
M tð Þ þ a F1

MΨ
T
M tð Þ � LMQ

γ ,z
M�MΨ

T
M tð Þ þ LMG

γ
M�MΨ

T
M tð Þ

� �

þb F2
MΨ

T
M tð Þ � KMQ

γ
M�MΨ

T
M tð Þ þ KMG

γ
M�MΨ

T
M tð Þ

� �

� F3
MΨ

T
M tð Þ ¼ 0

KMΨ
T
M tð Þ þ c F2

MΨ
T
M tð Þ � KMQ

γ ,y
M�MΨ

T
M tð Þ þ KMG

γ
M�MΨ

T
M tð Þ

� �

þd F1
MΨ

T
M tð Þ � ŁMQ

γ ,z
M�MΨ

T
M tð Þ þ ŁMG

γ
M�MΨ

T
M tð Þ

� �

� F4
MΨ

T
M tð Þ ¼ 0:

8

>

>

>

>

<

>

>

>

>

:

On rearrangement of terms, the above equations give

ŁM IM�M � aQ γ ,z
M�M þ aG γ

M�M

� �

þ KM IM�M � bQ
γ ,y
M�M þ bG γ

M�M

� �

þ aF1
M þ bF2

M � F3
M ¼ 0

KM IM�M � cQ
γ ,y
M�M þ cG γ

M�M

� �

þ ŁM IM�M � dQ γ ,z
M�M þ dG γ

M�M

� �

þ cF2
M þ dF1

M � F4
M ¼ 0:

8

>

>

>

>

<

>

>

>

>

:

In matrix form, we can write

ŁM KM½ �
IM�M � aQ γ ,z

M�M þ aG γ
M�M 0

0 IM�M � cQ
γ ,y
M�M þ cG γ

M�M

" #

þ LMKM½ �
0 IM�M � dQ γ ,z

M�M þ dG γ
M�M

IM�M � bQ
γ ,y
M�M þ bG γ

M�M 0

" #

þ
aF1

M þ bF2
M � F3

M

cF2
M þ dF1

M � F4
M

" #

¼ 0:

We convert the system to algebraic equation by considering

L ¼
IM�M � aQ γ ,z

M�M þ aG γ
M�M 0

0 IM�M � cQ
γ ,y
M�M þ cG γ

M�M

" #

M ¼
0 IM�M � dQ γ ,z

M�M þ dG γ
M�M

IM�M � bQ
γ ,y
M�M þ bG γ

M�M 0

" #

and N ¼
aF1

M þ bF2
M � F3

M

cF2
M þ dF1

M � F4
M

" #

:

so that the system is of the form

XLþ XMþN ¼ 0,

and solving the given equation for the unknown matrix X ¼ LMKM½ �, we get the
required solution.

Example 4. As an example, we consider the Caputo fractional differential equa-
tion for the coupled system with the boundary conditions as
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c
0D

γ
t z tð Þ þ 2z tð Þ � 2y tð Þ � f tð Þ ¼ 0,

c
0D

γ
t y tð Þ � 3y tð Þ þ 2z tð Þ � g tð Þ ¼ 0,

z 0ð Þ ¼ 4 z 1ð Þ ¼ �4,

y 0ð Þ ¼ 2, y 1ð Þ ¼ �2:

8

>

>

>

<

>

>

>

:

At γ ¼ 2, the exact solutions are

z tð Þ ¼ t6 þ t5 þ t4 � t3 þ tþ 1,

y tð Þ ¼ t7 � t6 þ t5 þ t4 þ t3 � t2 � tþ 1:

(

where the source functions are given by

f tð Þ ¼ �2t7 þ 4t6 þ 30t4 þ 16t3 þ 12t2 � 2tþ 2

g tð Þ ¼ �3t7 þ 12t6 þ 35t5 � 27t4 � 19t3 þ 20t2 þ 9t� 4:

(

We approximate the solution at the considered method by taking scale level
M ¼ 5: One can see that numerical plot and exact solution plot coincide very well as
shown in Figure 5. Similarly the absolute error has been plotted at the given scale
M ¼ 5 in Figure 6, which is very low. The lowest value of absolute error ∥zapp � zex∥

and ∥yapp � yex∥ indicates efficiency of the proposed method. The table shows the

Figure 5.
Plots of exact and approximate solution for Case 4, boundary value problem.

Figure 6.
Plots of absolute error for Case 4, boundary value problem.
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comparison of errors for exact and approximate solutions for fixed scale levelM ¼ 5
and order γ ¼ 1:9: Further the absolute error has been recorded at different values
of space variable in Table 2 which provides the information about efficiency of the
proposed method.

5. Conclusion

We have successfully used the class of orthogonal polynomials of Laguerre
polynomials to establish a numerical method to compute the numerical solution of
FODEs and their coupled systems under some initial and boundary conditions. By
using these polynomials, we have obtained some operational matrices
corresponding to fractional order derivatives and integration. Also we have com-
puted a new matrix corresponding to boundary conditions for boundary value
problems of FODEs. Using the aforementioned matrices, we have converted the
considered problem of FODEs to Sylvester-type algebraic equations. To obtain the
numerical solution, we easily solved the desired algebraic equations by taking help
from MATLAB®. Corresponding to the established procedure, we have provided
numbers of examples to demonstrate our results. Also some error analyses have
been provided along with graphical representations. By increasing the scale level,
the accuracy is increased and vice versa. On the other hand, when the fractional
order is approaching to integer value, the solutions tend to the exact solutions of the
considered FODE. Therefore in each example, we have compared the exact and
approximate solution and found that both the solutions were in closure contact with
each other. Hence the established method can be very helpful in solving many
classes and systems of FODEs under both initial and boundary conditions. In future
the shifted Laguerre polynomials can be used to compute numerical solutions of
partial differential equations of fractional order.
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t Absolute error ∥zapp � zex∥ CPU time (s) Absolute error ∥y
app

� y
ex
∥ CPU time (s)

0 0.011 49.4 0.010 50.0

0.15 0.0062 50.3 0.0052 52.5

0.35 0.0058 51.2 0.0047 54.6

0.65 0.006 51.5 0.005 55.5

0.85 0.0075 52.6 0.007 56.4

1 0.011 53.8 0.010 56.2

Table 2.
Absolute error at different values of t for Example 4.
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