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Chapter

Gas Turbine Simulation Taking
into Account Dynamics of Gas
Capacities
Sergiy Yepifanov and Roman Zelenskyi

Abstract

The chapter considers one of the main dynamic factors of the turbine engine—
the dynamics of gas capacities. Typically, the most influencing capacities in the
turbine engine are combustion chamber, afterburner, mixing chamber, secondary
duct of turbofan, and jet nozzle. Simulation of high-frequency transients in turbine
engines needs taking into account this factor. For the needs of automatic control
and parametric diagnostics, the equations of capacities must be combined with the
equations of rotor dynamics and, sometimes, with the equations of a measurement
system and actuators. The model complexity consists in two features. The first
feature is in how many segments are used to simulate the capacity. The second
feature is in what of three basic laws are taken into account at the gas motion
description: the mass conservation law, the energy conservation law, and the
momentum conservation law. This chapter includes the analysis of models of dif-
ferent complexity followed by the conclusions about their applicability. In the last
part of the chapter, the real case of the engine dynamics analysis is considered when
the designer does not need the simulation of the capacities’ dynamics in time, but
needs estimating of the capacities’ ability to oscillate and in their natural oscillation
frequencies.

Keywords: turbine engine dynamics simulation, gas capacities,
differential equations, linearization, Eigen frequency

1. Introduction

Engine development is known to include numerous stages and, among them,
control systems and engine health management systems development. The devel-
opment of these systems, however, includes conducting much experimental work,
which is not a good choice, keeping in mind the cost of tests and time expenses. An
alternative choice to be made is the involvement of the mathematical modeling into
a development process [1]. One of the topics to be discussed in this chapter deals
with the problem of considerable pneumatic volumes of a gas turbine: main and
afterburning combustion chambers, bypass, exhaust nozzle, transition ducts, etc.
Stationary gas turbines have extra volumes that must be considered when building
up the mathematical model: intake with an air purification system and stack with a
noise suppression device. In the models of a gas turbine-driven natural gas pumping
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compressor, the volumes of interest are input and output manifolds as well as a
main pipeline. In all abovementioned cases, the designers must allow for the
dynamics of pneumatic volumes when studying the transient behavior of an iso-
lated engine or the engine as a component of a power plant.

The design process engages numerous kinds of models depending on the stage
the development is at and the problems to be resolved by the particular model. But
the “mother” of each and every model is a nonlinear component level model (ther-
modynamic model), which describes gas path variables using thermodynamic rela-
tions and performance maps of all main engine components, such as compressors,
turbines, combustors, and input and output devices. When looking carefully at the
transients described by this kind of models, one can conclude that the main factors
affecting the engine transients are the inertia of rotors, the thermal inertia of engine
parts, and the inertia of pneumatic volumes. Usually, designers are good to go with
the model that eliminates the last two factors and considers only the rotor dynam-
ics. Nevertheless, for some cases, it is good to have a model that is able to carefully
simulate the processes, taking place in the pneumatic volumes, and the phenome-
non of thermal inertia. Many researchers have paid their attention to the problem of
pneumatic volumes within a total thermodynamic model. Next you will find a brief
overview of their findings.

Almost five decades ago, Fawke and Saravanamuttoo proposed a method to
simulate gas turbine inter-component volumes within the thermodynamic
model [2, 3]. The proposed method found its niche in the field, but it has an
increasing degree of differential equations and is too complicated for real-life calcu-
lations. The equations that describe the volumes in this method are also known for
their low robustness. To cope with these challenges, the designer that is up to use this
must take many assumptions to cope with these challenges. In this case, the equa-
tions can be simplified, which makes the solution more robust. But, unfortunately,
the above studies do not provide any recommendations about a proper algorithm on
how to compile the list of requirements for a particular engine. It is not even known
whether the dynamics of all inter-component volumes should be simulated.

A few years later, a pretty complete analysis of the general problem of pneu-
matic volume simulation was made by Glikman in [4]. He described many methods
to simulate the volume effect, but, unfortunately, did not pay enough attention to
their comparison and highlighting the use cases. Moreover, the book does not cover
the specific features of gas turbine engine simulation.

For the past two decades, many scientists have turned their sight to the problem
of pneumatic volumes and its effect on engine transients [1, 5–11]. Most of the
papers consider the pneumatic volume consisting of a single region with the per-
formance described by the set of differential equations of mass and energy conser-
vation. Conservation laws are added to the equation sets that describe the operation
of components. The resulting set of the conservation laws and the equations of
components’ operation compile the final set of equations, known as thermodynamic
model. However, some of the works mentioned above still consider an isothermal
process in the volume. Thus, only the pressure alternation is simulated keeping the
temperature constant.

Wrapping up the analysis made above, the thermodynamic models including the
models of pneumatic volumes take the assumptions listed below:

• In many cases the process in the volume is considered to be isothermal.

• The momentum conservation is omitted.

• The volume model can be called an “all-in-one-volume.”
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One of the shortcomings of the methods overviewed before consists in omitting
the momentum conservation law [12]; however, it plays a considerable role in an
overall accuracy of the simulation.

The importance of the momentum conservation was also confirmed by Shi et al. in
the study [13]. The authors deal with three engine models called “no volume effect,”
“traditional simplified volume effect,” and “compressibility volume effect.” How-
ever, this study focuses only on the time delay of the transient because of the volume
effect. The other parameters of the transient were not discussed in the study.

The gas turbine models allowing for the momentum conservation in pneumatic
volumes are also presented in papers [14–16]. However, the authors do not indicate
the range of tasks when it is essential to take into consideration the volume effect.

A new software PROOSIS for simulation in the area of propulsion allows more
precise pneumatic volume description that includes the momentum conservation
law. Henke et al. in their paper [17] introduce the PROOSIS capabilities in simulating
gas turbine transients. One of their conclusions is that the time of transients caused by
the volume effect is generally determined by the mass conservation. This is disput-
able, and it will be shown in the present chapter that indeed the transients are longer.

Wrapping up the overview of the existing methods to simulate the dynamics of
the gas path with pneumatic volumes, one can draw the following conclusions:

• These volumes cause the delay of the transients.

• Most of the methods consider the phenomena of mass, energy, and momentum
conservation, as well as hydraulic volume resistance; however, no method
covers these phenomena simultaneously. Moreover, the used combinations of
some phenomena are not compared.

• When the pneumatic volume algorithm is employed for control system design,
it must be able to satisfy some specific needs related to the volume, such as
oscillation analysis, time response evaluation, and analysis of the natural
frequencies. The above tasks should be performed with minimum computation
time expenses and, if possible, without simulation of the whole engine.
However, none of the overviewed methods can solve these tasks.

• The authors of the overviewed studies did not focus on making faster the
engine dynamic model with the algorithms describing pneumatic volumes.

The present chapter aims to overcome the mentioned bottlenecks and propose
the best model of pneumatic volumes to be used as a component of either an engine
dynamic model or an autonomous usage. Section 1 determines the set of differential
equations to generally describe a pneumatic volume. This section introduces seven
alternative volume models that adopt different simplifications. Section 2 provides
numerical simulation of the volume by each model and, using the simulation
results, the models’ comparison. The linearization algorithms are described in Sec-
tion 3, and the linearization accuracy is studied in Section 4.

2. Mathematical models of the pneumatic volumes

2.1 Basic equations

To make a fast computational algorithm, the present approach assumes that a
pneumatic volume has a constant transversal section. The proposed thermodynamic
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model deals with the gas path variables averaged over the radius and the circum-
ference, i.e., it considers the averaged variables of a one-dimensional gas flow.
Because most of the methods cited in the introduction use the total pressure and
total temperature to characterize the flow (see [1–3, 6–12, 14–17]), the same vari-
ables are employed in the present study. In the present approach, the difference
between total and static parameters is ignored as the subject of the study is low-
speed flow (M<0:4). For the same reason, static density is determined by the total
pressure and temperature in the ideal gas state equation p ¼ ρRT.

Let us introduce the volume of interest by Figure 1 and formulate the conserva-
tion laws for this volume. The mass conservation can be presented by

dm

dt
¼ Win �Wout (1)

Let us then use the ideal gas equation and express the mass as m ¼ ρV ¼ P
RTLA,

whence the mass conservation law transforms to

dm

dt
¼ LA

R

1

T

dP

dt
� P

T2

dT

dt

� �

(2)

The internal energy conservation law for an adiabatic flow is written as

dU

dt
¼ hinWin � houtWout: (3)

After expressing the internal energy by the pressure, one obtains the energy
conservation law that reflects the differential equation for the pressure:

U ¼ mcvT ¼ LAcv
R

P, (4)

dU

dt
¼ LAcv

R

dP

dt
, (5)

dP

dt
¼ γR

LA
TinWin � TWoutð Þ (6)

Let us now get the differential equation for the temperature using Eqs. (6)
and (2):

dT

dt
¼ RT2

PLA
γ
Tin

T
� 1

� �

Win � γ� 1ð ÞWout

� �

(7)

Figure 1.
Gas capacity design scheme.
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The next equation to form presents the momentum conservation law expressed
through the Darcy-Weisbach equation (it relates the pressure loss due to friction to
the average velocity of the flow for an incompressible fluid):

ΔP ¼ ξ
RT

2PA2 W
2
: (8)

It helps to describe the relations between the variables of two elementary vol-
umes situated to the left and to the right from the calculation point:

dWin

dt
¼ 2A

L
Pin � P� ξ

RTin

2PinA
2 W

2
in

� �

; (9)

dWout

dt
¼ 2A

L
P� Pout � ξ

RT

2PA2 W
2
out

� �

, (10)

where ξ ¼ ς L
2D is the Darcy friction factor, ς is the specific frictional resistance,

D ¼ 4A
Π
is the hydraulic diameter, and Π is the wetted perimeter of the cross section.

Eqs. (6), (7), (9) and (10) constitute a closed set of first-order nonlinear differ-
ential equations. The set describes four parameters P, T, Win, and Wout that char-
acterize the volume dynamics.

As proven before, the processes in the gas path pneumatic volumes can be
simulated with different precision.

The simplest method only regards the mass conservation (see [18]). According
to this method, the time derivative of temperature in Eq. (2) is considered negligi-
bly small. Modification of this approach is used in the paper [19] for compressor
dynamics simulation. The method described by Shevyakov [20] suggests the energy
conservation to be considered only when deducing the set of equations. The prob-
lem of calculation accuracy is omitted. The method used by Dobryansky [21]
already considers the mass and energy conservation. One of last publications on
volume dynamic modeling [22] is based on the same suppositions. However, the
relation between the internal energy and the temperature employs the heat capacity
at constant pressure instead of the constant volume heat capacity. The method
considered by Jaw and Mattingly [1] is also based on mass and energy conservation,
but Eq. (2) has no time derivative of temperature. The method described by
Gurevich [23] already takes into consideration the difference between the static and
total parameters but still neglects the momentum conservation. Such diversity of
the methods for simulating the pneumatic volumes of gas turbines implies the
necessity to perform their comparative study.

The present chapter introduces and compares three groups of pneumatic volume
models.

The first group unites all isothermal models. The assumption about the minute-
ness of the second item on the right side of Eq. (2) is equivalent to an assumption
about the isothermal process in the volume. Keeping the temperature constant
requires heat exchange with the ambiance, and hence the volume process cannot be
adiabatic in this case. Indeed, the volumes in real engines are not absolutely adia-
batic because the heat exchange is always present between the working substance
and the construction elements surrounding the cavity. However, the characteristic
time of the heat exchange is several orders greater than that of the mass and energy
accumulation in the volumes. This fact proves the use of the adiabatic models.
Although the isothermal models are not the best option for the volume effect
simulation, the present chapter uses them for comparing the errors of different
models.
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The second group includes the models based on the mass and energy conserva-
tion. The volume process in these models is adiabatic.

The third group consists of adiabatic models considering all conservation laws
(mass, energy, and momentum).

2.2 Model 1.1: Isothermal volume without hydraulic resistance

Given the assumptions that are taken for this model ξ = 0, dTdt ¼ 0, it follows that

T ¼ Tin-const.
Let us differentiate Eq. (6) and then substitute the flow rate time derivatives

that correspond to the case ξ = 0. As a result, we have

τ21
d2P

dt2
þ P ¼ 1

2
Pin � Poutð Þ, (11)

where τ1 ¼ 1
2 τ0, τ0 ¼ L

a is a time required for the disturbance to pass through the

volume, and a ¼ ffiffiffiffiffiffiffiffiffi

γRT
p

is the sonic velocity in the cavity.
Thus, the lossless isothermal volume is modeled by a single second-order linear

differential equation, whose solution depends on input disturbances and the time
constant τ1.

2.3 Model 1.2: Isothermal volume with hydraulic resistance (momentum
conservation is omitted)

Having applied the condition dWin

dt ¼ dWout

dt ¼ 0 for Eqs. (9) and (10), we get the

following:

Win ¼ A

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2Pin Pin � Pð Þ
ξRTin

s

;Wout ¼ A

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2P P� Poutð Þ
ξRT

s

: (12)

Then, the Eq. (6) is transformed to

dP

dt
¼ γ

L

ffiffiffiffiffiffiffiffiffi

2RT

ξ

s

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Pin Pin � Pð Þ
p

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

P P� Poutð Þ
p

h i

: (13)

Thus, in the case of isothermal volume with hydraulic losses, the volume is
described by a first-order nonlinear differential equation.

2.4 Model 1.3: Isothermal volume with hydraulic resistance (momentum
conservation is taken into account)

The volume is modeled by the following set of equations consisting of Eq. (6)
modified for the constant temperature condition and Eqs. (9) and (10):

dP

dt
¼ γRT

LA
Win �Woutð Þ; (14)

dWin

dt
¼ 2A

L
Pin � P� ξ

RTin

2PinA
2 W

2
in

� �

; (15)

dWout

dt
¼ 2A

L
P� Pout � ξ

RT

2PA2 W
2
out

� �

: (16)
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2.5 Model 2.1 based on mass and energy accumulation in the volume
without hydraulic resistance

As momentum loss is neglected, we can state that dWin

dt ¼ dWout

dt ¼ 0. Since the

pressure loss in Eqs. (9) and (10) is equal to zero, we have P ¼ Pin ¼ Pout. But then

it follows from Eq. (1) that dm
dt ¼ 0, and we can transform Eq. (7) to

dT

dt
¼ γRWT2

PLA

Tin

T
� 1

� �

: (17)

2.6 Model 2.2 based on mass and energy accumulation in the volume
with hydraulic resistance

By substituting Eq. (12) into Eq. (6) and Eq. (7), we arrive to the following
equations for the model under analysis:

dP

dt
¼ γT

L

ffiffiffiffiffiffi

2R

ξ

s
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Pin Pin � Pð Þ
Tin

s

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

P P� Poutð Þ
T

r
" #

; (18)

dT

dt
¼ T2

P

1

L

ffiffiffiffiffiffi

2R

ξ

s γ
Tin

T
� 1

� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Pin Pinl � Pð Þ
Tin

r

�

� γ� 1ð Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

P P� Poutð Þ
T

r

2

6

6

6

4

3

7

7

7

5

: (19)

2.7 Model 3.1 based on mass and energy accumulation and momentum
conservation in the volume without hydraulic resistance

The set of equations, constituting this model, consists of Eqs. (6) and (7), and
also Eqs. (9) and (10) changed for the lossless conditions (ξ = 0):

dWin

dt
¼ 2A

L
Pin � Pð Þ; (20)

dWout

dt
¼ 2A

L
P� Poutð Þ: (21)

This model contains a contradiction that can be illustrated by the following
example. The change of pressure in a volume inlet results in the pressure drop
between the volume inlet and outlet. So the pressure drop in its turn makes the gas
flow to become transient (see Eqs. (20) and (21)). Since the volume of interest is
lossless, the pressure at the inlet and outlet will eventually become equal when the
transient comes to the steady state. However, this will never happen as the inlet
pressure has already changed, and the outlet pressure will remain immutable for-
ever. Thus, the transient will not stop within this model.

Despite the above contradiction, the considered model is not expelled from the
study, because it still can be used autonomously to estimate the dynamic process in
the volume.

2.8 Model 3.2 based on mass and energy accumulation and momentum
conservation in the volume with hydraulic resistance

As it has been mentioned above, this model is the most comprehensive. It is
based on Eqs. (6), (7), (9) and (10).
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3. Simulation

The language VisSim was used for programming the algorithm of volume
dynamic simulation with the above models. To ensure the accuracy, the simulation
was performed by different integration algorithms (Euler, Runge Kutta 2nd order,
Runge Kutta 4th order, adaptive Runge Kutta 5th order) and with different inte-
gration steps. The simulation results were trusted only when all integration algo-
rithms provided similar results and the integration step was small enough not to
influence them.

As proposed in the paper [12], to simulate the transients, we have chosen the
volume with standard geometrical characteristics L = 1 m and A = 1 m2. This volume
is placed between two infinite capacities, whose parameters are Pin = 300 kPa,
Pout = 150 kPa, and Tin = Tout = 300 K. The first capacity was simulated as a single
volume. Having experimented with different integration technics and diverse inte-
gration steps, we arrived to proper computation conditions at which the integration
method and integration step do not influence simulation results. Under these con-
ditions, the computations were conducted with the seven models described above.
The results are plotted in Figure 2 (the disturbing factor is a pressure drop at the
inlet ΔP = 10 kPa) and Figure 3 (the disturbing factor is a temperature drop at the
inlet ΔТ = 50 K).

Using these figures, let us firstly analyze the dynamic performance of each
model and then study the effect of volume split-off on simulated parameters.

3.1 Model dynamic performances

Since Model 3.2 is the most comprehensive, we will employ its performance as a
pattern to compare the performances of the other models with it.

Figure 2.
Reaction of the volume parameters on the perturbation in the inlet pressure (single volume model).
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Plots of model 1.1 express the results in the constant-amplitude continuous
oscillations. The model response has this form because Eq. (11) is similar to a
conservative element [24]. Thus, this model cannot be used to properly simulate the
volume effect within the gas path model. However, this model represents the
frequency of the parameter oscillations well enough and can be used in a volume
Eigen frequency analysis.

Models 1.2 and 2.2 give the similar results when simulating the pressure. The
transient lags in this case. Its time constant is very small (about 0.002 s), much
smaller than the total transient simulation time. Models 2.1 and 2.2 output a very
similar response when simulating the temperature (however, as mentioned above,
model 2.1 cannot simulate the pressure).

The pressure simulation using models 1.2., 1.3, 2.2, and 3.2 for the case of an inlet
pressure perturbation gives the same values to the end of the transient. The pressure
transient computed by model 3.1 ends with the different value, which is equal to the
average between the inlet and outlet pressure. The difference appears because
models 1.2., 1.3, 2.2, and 3.2 consider hydraulic losses in contrast to model 3.1.

The parameters simulated by models 1.3, 3.1, and 3.2 change according to a
damped oscillation law. Obviously, this is because these models take into account
the momentum conservation law.

As shown in the figures, model 1.3 has a bit higher frequency of oscillations than
model 3.2. In general, the frequencies of different models are close to each other.
Hence, all these models can be used when estimating the amplitude-frequency
characteristic of the volume.

As regards the oscillation decay time, it is two times greater for model 1.3 and
five times greater for model 3.1 than the model 3.2 time.

Let us now consider the effect of volume split-off on the simulated parameters.

Figure 3.
Reaction of the volume parameters on the perturbation in the inlet temperature (single volume model).
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3.2 Volume split-off effect simulation

The most advanced model 3.2 has been chosen to study this effect. Three cases
were considered: the entire cavity not split, the cavity split in the axial direction into
three equal volumes, and the cavity split into five volumes. The section area
remained the same.

The presented above equations, corresponding to the model chosen, were
applied to each one elementary volume. The output parameters (pressure, temper-
ature, and flow rate) of one volume were the input parameters of the next volume.
The specific frictional resistance ξ of each elementary volume was determined in
the way that results in the total pressure loss equal to that of the non-split cavity.

The simulation results for the three cases are plotted in Figures 4 and 5. As seen
in these figures, the transient plots corresponding to these cases are pretty similar,
i.e., all of them obey the damped oscillation law. When the pressure disturbance is
considered (Figure 4), the rate of the damping is greater for the three-volume and
five-volume models than for the single volume model. For the temperature distur-
bance, the damping rates of all the models are equal. The fundamental frequencies
for different volume numbers are very close as well. As to the amplitude, the three-
volume and five-volume models have approximately equal amplitudes that are
about 20% greater than that of the single volume model.

Figure 4.
Reaction of the volume parameters on the perturbation in the inlet pressure: (1, )—Single volume, (3, )—
Three volumes, and (5, )—Five volumes.

Figure 5.
Reaction of the volume parameters on the perturbation in the inlet temperature: (1, )—Single volume,
(3, )—Three volumes, and (5, )—Five volumes.
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4. Linear analysis of volume effect

The differential equations of the models described in the previous section can be
generally presented by

dy

dt
¼ f x1, … , xn, y
� �

: (22)

The nonlinear form of the equations does not allow the direct use of the univer-
sal methods [24, 25] that have been specially developed for the dynamic analysis
of the set of linear differential equations. Hence, let us linearize the equations
describing the volume effect and transform them introducing small variations of
arguments from their steady-state magnitudes denoted by the subscript “0.”
We arrive to

d Δy
� �

dt
¼ df

dx1
Δx1 þ … þ df

dxn
Δxn þ

df

dy
Δy, (23)

where Δxi ¼ xi � xi 0 and Δy ¼ y� y0. The time derivatives were evaluated
here in the point (x1 0,… , xn 0, y0).

Let us transform absolute deviations to relative deviations δy ¼ Δy
y0
, δx1 ¼ Δx1

x1 0
,… ,

δxn ¼ Δxn
xn 0

. Eq. (23) is then changed to

y0
d δy
� �

dt
¼ ∂f

∂x1
x1 0δx1 þ … þ ∂f

∂xn
xn 0δxn þ

∂f

∂y
y0δy: (24)

Using the linearization principle described above, linear differential equations
have been formed for all the models under consideration, and their analytical
solutions for volume pressure and temperature were derived (see Appendix). These
solutions are determined by the totality of the physical laws and assumptions that
are used in each of the considered models.

Let us now analyze basic properties of these solutions. Specifically, in the next
section we will determine the order of equations, their parameters, and type of
transients that they describe.

5. Analysis of the transients in the volume based on the linearized
equations of each model

5.1 Model 1.1

Solution (51) of this model corresponds to the undamped harmonic oscillations
with the angular frequency ω ¼ 1

τ1
. When L = 1 m and a0 = 500 m�s�1, then

τ1=0.001 s.

5.2 Model 1.2

Eq. (55) corresponds to an aperiodic system, whose dynamics is described by the
time constant τp.
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For the rough estimation of the time constant and the gain coefficient, we can

neglect the Darcy friction factor and assume that Pin 0

P0
≈

Pout 0

P0
≈ 1. As a result, we

arrive to

τp ¼ 1

2
ξτ0M0; K

P
in ¼ 1

2
; KP

out ¼
1

2
: (25)

Provided that L = 1, ξ = 0.02, and a = 500 ms�1, the time constant is
τp = 0.00006 s.

It is obvious that the model simulates the volume like an almost inertia-free
object.

5.3 Model 1.3

Let us analyze Eq. (61) that presents this model. The aperiodicity conditions can
be given by an inequality:

τP

1þ 0:25ξγM2
0

 !2

>4
τ20

2þ 0:5ξγM2
0

: (26)

The Darcy friction factor and squared Mach number are minuscule. Hence, this
condition can be simplified to

τ2p>2τ
2
0 or ξ

2τ0M
2
0>8: (27)

As we see, this condition is not fulfilled. Thus, the dynamic processes in the
volume have an oscillatory nature. The coefficients in the right side of Eq. (61) are
positive. Hence, the system is robust, i.e., the oscillations relax. The time constant τ2
determines the intensity of the relaxation. It is inverse to the real root α of the
characteristic equation corresponding to differential Eq. (61):

τ2 ¼
1

α
¼ � 2τ20

τp

1þ 0:25ξγM2
0

2þ 0:5ξγM2
0

≈ � τ20
τP

¼ � 2τ0
ξM0

¼ � 2τ

ξ
, (28)

where τ ¼ L
c0
is the time needed by the flow to cross the volume.

The frequency is equal to an absolute value of the imaginary root:

ω ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

τ2p

1þ0:25ξγM2
0ð Þ2 �

4τ20
2þ0:5ξγM2

0

r

2τ20
2þ0:5ξγM2

0

≈

ffiffiffi

2
p

τ0
¼

ffiffiffi

2
p

a0
L

: (29)

The evaluated time constant is much greater than that from model 1.2. The

frequency is
ffiffiffi

2
p

times lower than the frequency estimated by model 1.1. However,
this difference is acceptable for rough estimation.

5.4 Model 2.1

Eq. (64) corresponds to an aperiodic system, which characteristic time of the
transient is given by the time constant τT.
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If L = 1 m, с0 = 100 m�s�1, and the ratio of specific heats is 1.4, then τT = 0.007 s.
This constant is small, but it is considerably greater than the time constant obtained
for model 1.2.

5.5 Model 2.2

The left sides of Eqs. (70) and (71) that represent this model have the same order
and similar coefficients. This proves the dynamics of pressure and temperature in
the volume to be equal.

The aperiodicity condition for these equations can be formulated as

τ

γ
þ γþ 1

2γ
τP

� �2

>4
ττP

γ
: (30)

As τP ¼ 1
2 ξτ0M0, the condition τP < < τ is fulfilled, and the aperiodicity condi-

tion is transformed to τ< 4γτP. It is obvious that this condition is fulfilled. Hence,
the transients have an aperiodic form. The dynamics of the volume is determined
by its time constants:

τ1 ≈
τ

γ
and τ2 ≈ τP: (31)

5.6 Model 3.1

Let us analyze Eqs. (79) and (80) derived for model 3.1. For doing so, we must
form a characteristic equation, which is common for both equations:

s3 þ as2 þ bsþ c ¼ 0, (32)

where a ¼ γ

τ
, b ¼ 4

τ20
, and c ¼ 4

ττ02
.

Let us use the method proposed by Gerolamo Cardano [26]. For this we first
check whether the volume dynamics is oscillatory. The condition of the oscillations
is Q>0, where

Q ¼ p

3

� �3

þ q

2

	 
2
; p ¼ � a2

3
þ b ¼ � γ2

3τ2
þ 4

ττ0M0
; q ¼ 2

a

3

� �3

� ab

3
þ c

¼ 2
γ

3τ

� �3

� 4γ

3ττ20
þ 4

ττ20
:

Since (1) τ0 < τ, (2) γ2

3τ2 < <
4
τ20
and 4γ

3ττ20
<

4
ττ20
, (3) p>0, and (4) q>0, the condition

Q>0 is fulfilled. This obviously means that the transient has an oscillatory
character.

The characteristic Eq. (32) has a single real root s1 and two complex conjugate
roots s2 and s3:

s1 ¼ Aþ B� a

3
¼ Aþ B� γ

3τ
; (33)

s2,3 ¼ α� iω ¼ �Aþ B

2
� γ

3τ
� i

A� B

2

ffiffiffi

3
p

, (34)

where A ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

� q
2 þ

ffiffiffiffiffi

Q
p

3

q

; B ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

� q
2 �

ffiffiffiffiffi

Q
p

3

q

.
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Analyzing Eqs. (33) and (34), we can see that they have some infinitesimal
summands that can be neglected. In this way, we get the simplified equations:

p ≈b ¼ 4

τ20
; q ≈ � ab

3
bþ c ¼ 4M0

τ30
1� γ

3

� �

; Q ≈
1

τ60
cþ x2
� �

≈
4

3τ20

� �3

; (35)

A ≈ � 1

τ0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x�
ffiffiffiffiffiffiffiffiffiffiffiffiffi

cþ x2
p

3

q

; B ≈ � 1

τ0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

xþ
ffiffiffiffiffiffiffiffiffiffiffiffiffi

cþ x2
p

3

q

, (36)

where x ¼ 2M0 1� γ

3

� �

; c ¼ 4
3

� �3
;

s1 ≈ � 1

τ0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x�
ffiffiffiffiffiffiffiffiffiffiffiffiffi

cþ x2
p

3

q

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

xþ
ffiffiffiffiffiffiffiffiffiffiffiffiffi

cþ x2
p

3

q

þ 1

3
γM0

� �

; (37)

α ≈ � 1

τ0

1

3
γM0 �

1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x�
ffiffiffiffiffiffiffiffiffiffiffiffiffi

cþ x2
p

3

q

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

xþ
ffiffiffiffiffiffiffiffiffiffiffiffiffi

cþ x2
p

3

q� �� �

; (38)

ω ≈

ffiffiffi

3
p

2τ0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

xþ
ffiffiffiffiffiffiffiffiffiffiffiffiffi

cþ x2
p

3

q

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x�
ffiffiffiffiffiffiffiffiffiffiffiffiffi

cþ x2
p

3

q� �

: (39)

Taking into account the Mach number being less than 0.3, these formulas for the
characteristic equation roots can be further simplified. Let us change the equations
to linear relations of the following form:

y ¼ y M0 ¼ 0ð Þ þ dy

dM
M ¼ 0ð ÞM0: (40)

The required derivatives are.

ds1
dM

M0 ¼ 0ð Þ ¼ � 1

τ0
;
dα

dM
M0 ¼ 0ð Þ ¼ � γ� 1

2τ0
;
dω

dM
M0 ¼ 0ð Þ ¼ 0, (41)

that is why,

s1 ≈ �M0

τ0
¼ � 1

τ
; α ≈ � γ� 1

2τ
;ω ≈

1

τ0
: (42)

5.7 Model 3.2

The differential Eqs. (88) and (89) of this model have the common characteristic
Eq. (32), where

a ¼ γþ 4ξ

τ
, b ¼ 2

τ20
2þ 2γþ 1ð ÞξM2

0

� �

, and c ¼ 2C

ττ02
: (43)

The following parameters were evaluated by the Cardano’s method:

p ¼ � a2

3
þ b ≈

2

τ20
2þ 2γþ 1ð ÞξM2

0

� �

, q ¼ 2
a

3

� �3

� ab

3
þ c ≈

4M0

3τ30
3� γ� 4ξð Þ, (44)

Q ¼ p

3

� �3

þ q

2

	 
2
≈

2

3τ20
2þ 2γþ 1ð ÞξM2

0

� �

 �3

; (45)

A ≈ � 1

τ0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x�
ffiffiffiffiffiffiffiffiffiffiffiffiffi

cþ x2
p

3

q

; B ≈ � 1

τ0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

xþ
ffiffiffiffiffiffiffiffiffiffiffiffiffi

cþ x2
p

3

q

, (46)
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where x ¼ 2
3M0 3� γ� 4ξð Þ; c ¼ 2

3τ20
2þ 2γþ 1ð ÞξM2

0

� �

n o3
.

The expressions for the parameters of the characteristic equation roots are
similar to that of Eqs. (37) and (38) (for model 3.1):

s1 ≈ � 1

τ0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x�
ffiffiffiffiffiffiffiffiffiffiffiffiffi

cþ x2
p

3

q

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

xþ
ffiffiffiffiffiffiffiffiffiffiffiffiffi

cþ x2
p

3

q

þ 1

3
γþ 4ξð ÞM0

� �

; (47)

α ≈ � 1

τ0

1

3
γþ 4ξð ÞM0 �

1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x�
ffiffiffiffiffiffiffiffiffiffiffiffiffi

cþ x2
p

3

q

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

xþ
ffiffiffiffiffiffiffiffiffiffiffiffiffi

cþ x2
p

3

q� �� �

: (48)

Eq. (39) for ω remains the same.
In the same way as it was done for Eq. (78), the linearization of these expressions

over the Mach number allows their simplification:

s1 ≈ � 1

τ
; α ≈ � γ� 1þ 4ξ

2τ
;ω ≈

1

τ0
: (49)

It follows from Eq. (49) that the hydraulic resistance of the volume mostly
affects the oscillation damping rate but does not influence the frequency and the
aperiodic component of the transient.

5.8 Simulation results

To verify that the linearization did not introduce big error and the obtained
results can be trusted, we have compared them with the original nonlinear models.
Figures 6 and 7 illustrate this comparison by plotting pressure for the transients

Figure 6.
Reaction of the volume pressure on the perturbation in the inlet pressure (single volume cavity, nonlinear
model, and linear model).

Figure 7.
Reaction of the volume pressure on the perturbation in the inlet temperature (single volume cavity,
nonlinear model, and linear model).
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caused by inlet pressure and inlet temperature perturbations. As seen in the
figures, the linear model correctly simulates the main features and parameters of
the transient: oscillatory nature, time of the transient, oscillation frequency, and
the magnitude of the first overshoot. It is worth to mention that just these perfor-
mances are the subject of the dynamics analysis for the development of ACSs. The
comparison results for all the models confirm that the dynamic behavior of the
linear models agree with the behavior of the nonlinear models. This allows
recommending the obtained linear models and corresponding analytical solutions
for practical usage.

The dynamic parameters obtained as a result of the linearization are presented in
Table 1 for all the models. The numerical values correspond here to the input
conditions of the example: L = 1 m, c = 100 m/s, a = 500 m/s, and ξ = 0.42.

6. Conclusions

The following conclusions can be drawn on the results of the carried-out
research:

1.The use of the momentum conservation law makes a tangible contribution in
the transient state simulation. Thus, it cannot be omitted, when simulating the
engine transients by the engine model with the volume model integrated.

2.The volume effect can be accurately simulated by the single volume model.
The simulation of big connected volumes (e.g., annular manifolds of gas
pumping units or station or trunk pipelines) requires deeper understanding
and further researching to prove the model applicability.

3.The isothermal models are not recommended to be integrated into the gas path
models because they do not correspond to the operating conditions in the
engines.

4.The time of transients evaluated by the conventional volume models 2.1 and
2.2 is significantly lower against the models that among other consider

Model Transient Time constants Eigen frequency ω

Formula Value, s Formula Value, 1/s

1.1 Oscillatory ∞ ∞ 2
τ0

1000

1.2 Aperiodic τP ≈
1
2 ξτ0M0 0.000084 —

1.3 Oscillatory 2τ
ξ

0.0476
ffiffi

2
p

τ0
707

2.1 Aperiodic τ
γ

0.00714 — —

2.2 Aperiodic τ
γ
, τP 0.00714, 0.000084 — —

3.1 Oscillatory τ, 2τ
γ�1

0.01, 0.05 1
τ0

500

3.2 Oscillatory τ, 2τ
γ�1þ4ξ

0.01, 0.00962 1
τ0

500

Table 1.
Dynamic parameters of the volume.

16

Modeling of Turbomachines for Control and Diagnostic Applications



momentum conservation. Hence, when this time delay effect is the subject of
simulation, it is reasonable to use model 3.2.

5. In some instances, it may become important to study the volume effect on the
frequency responses of the engine. In this case, we once more recommend
model 3.2, which consists of Eqs. (6), (7), (9) and (10). The momentum
transformation in the cavity causes oscillations of the parameters. The
frequency of oscillations depends on the velocity of sound and the volume
length only.

6.The time of the transients depends on the aperiodic component duration and
the oscillation decay time. The aperiodic component duration in its turn
depends on the time during which the gas crosses the volume. The decay time
may be greater than the time of the aperiodic process.

7.The hydraulic resistance mostly affects the oscillation decay time. High
hydraulic resistance reduces it. If the hydraulic losses are negligible, then the
oscillation decay time is about five times longer than the aperiodic process
duration.

8.The analytical method to solve the equations of volume dynamics makes it
possible to determine the main dynamic properties of the volume and to get
simple equations for determining the dynamic parameters on the basis of
known geometrical characteristics and gas properties.

9.The obtained analytical equations and solutions (Eqs. (88)–(93) are the most
accurate) can be implemented when developing the combined algorithm of
engine dynamic simulation with the volume effect integrated. Integration of
differential equations of the rotor dynamics will be performed iteratively using
the required integration step, and the volume effect will be computed
analytically. The application of this method will allow significant reduction
of the operational time.
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Nomenclature

a velocity of sound
cv specific heat capacity at constant volume condition
c gas velocity
D hydraulic diameter
A constant section area
W gas flow rate
h enthalpy
ɣ ratio of specific heats
L length of the volume
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M Mach number
m mass
P pressure
R gas constant
T temperature
U internal energy
V volume
ρ static density
ζ specific frictional resistance
ξ friction factor
ω Eigen frequency
τ time constant

Indexes

in inlet
out outlet
0 initial static value

Appendix

A.1 Linearized equations’ derivation

A.1.1 Model 1.1

Differential Eq. (11) is already linear, and thus its structure is conserved despite
switching to the relative deviations:

τ21
d2

δPð Þ
dt2

þ δP ¼ 1

2
δPinl � δPoutð Þ: (50)

The system, which behaves like this, is oscillatory. The solution of this
equation in the case of inlet or outlet pressure step is changed by δP ¼ AP must
be found as

δP tð Þ ¼ 1

2
Ap 1� cos

t

τ1

� �

: (51)

A.1.2 Model 1.2

Let us start from linearizing Eq. (13):

d ΔPð Þ
dt

¼ γ

L

ffiffiffiffiffiffiffiffiffi

2RT

ξ

s

2Pinl 0 � P0ð ÞΔPinl � Pinl 0ΔP

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Pinl 0 Pinl 0 � P0ð Þ
p

"

� 2P0 � Pout 0ð ÞΔP� P0ΔPout 0

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

P0 P0 � Pout 0ð Þ
p

#

: (52)

One must consider then

W0 ¼ A

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2Pinl 0 Pinl 0 � P0ð Þ
ξRT

s

¼ A

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2P0 P0 � Pout 0ð Þ
ξRT

s

, (53)
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whence

P0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

P2
inl 0 þ

Pinl 0 � Pout 0

2

� �2
s

� Pinl 0 � Pout 0

2
: (54)

Then, when switching to the relative deviations, we get

τP
d δPð Þ
dt

þ δP ¼ KP
inlδPinl þ KP

outδPout, (55)

where τP ¼ P0

Pinl 0þ2P0�Pout 0
ξτ0M0 is a time constant; M0 ¼ c0

a is a Mach number;

and KP
inl ¼ 2Pinl 0�P0

Pinl 0þ2P0�Pout 0

Pinl 0

P0
and KP

out ¼ Pout 0

Pinl 0þ2P0�Pout 0
are gain coefficients.

The solution of this equation in the case of inlet pressure perturbation δPinl ¼ AP

can be presented by

δP tð Þ ¼ APK
P
inl 1� e

� t
τp

	 


: (56)

A.1.3 Model 1.3

Let us linearize Eqs. (6), (9) and (10):

LA

γRT

d ΔPð Þ
dt

¼ ΔWinl � ΔWout; (57)

d ΔWinlð Þ
dt

¼ 2A

L
ΔPinl � ΔP� ξRT

2A2

2W0

Pinl 0
ΔWinl �

W2
0

P2
inl 0

ΔPinl

 !" #

; (58)

d ΔWoutð Þ
dt

¼ 2A

L
ΔP� ΔPout �

ξRT

2A2

2W0

P0
ΔWout �

W2
0

P2
0

ΔP

 !" #

: (59)

Next, we differentiate the equation for the pressure and substitute the deriva-

tives of airflow. Then, considering P0

Pinl 0
ΔWinl � ΔWout ≈

LA
γRT

d ΔPð Þ
dt , we get

L2

2γRT

d2
ΔPð Þ
dt2

¼ 1

2
þ ξRTW2

0

4A2P2
inl 0

 !

ΔPinl þ
1

2
ΔPout � 1þ ξRTW2

0

4A2p2
0

 !

ΔP

� ξRTW0

2A2p0

LA

2γRT

d ΔPð Þ
dt

: (60)

In a relative deviations format

τ20

2þ 0:5ξγM2
0

d2 δPð Þ
dt2

þ τP

1þ 0:25ξγM2
0

d δPð Þ
dt

þ δP

¼ 2þ ξγM2
0

4þ ξγM2
0

δPinl þ
2

4þ ξγM2
0

Pout 0

P0
δPout: (61)

The transient process, which is initiated by the inlet pressure perturbation
δPinl ¼ AP, is expressed as

P tð Þ ¼ AP 1� e�
ξ

2τt cosωtþ ξ

2
ffiffiffi

2
p sinωt

� �� �

, (62)

where ω ≈

ffiffi

2
p

τ0
.
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A.1.4 Model 2.1

The linearization of Eq. (17) outputs the equation in the absolute deviations

PLA

γRG

d ΔTð Þ
dt

¼ �Tinl 0ΔTþ T0ΔTinl, (63)

which in the relative deviations has the following form:

τT
d δTð Þ
dt

þ δT ¼ δTinl, (64)

where τT ¼ PAL
γRG0T0

¼ τ
γ
is a time constant.

The transient process, which is initiated by the inlet temperature perturbation
δTinl ¼ AT, is described as

δT tð Þ ¼ AT 1� e�
t
τT

	 


: (65)

A.1.5 Model 2.2

Let us transform Eq. (18) and linearize it:

L

γ

ffiffiffiffiffiffi

ξ

2R

r

dP

dt
¼ T

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Pinl Pinl � Pð Þ
Tinl

s

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

P P� Poutð Þ
T

r
" #

; (66)

L

γ

ffiffiffiffiffiffi

ξ

2R

r

d ΔPð Þ
dt

¼ W0

2A

ffiffiffiffiffiffi

ξR

2

r

ΔTinl � ΔTð Þ

þ A

2W0

ffiffiffiffiffiffi

2

ξR

s

2Pinl 0 � P0ð ÞΔPinl þ P0ΔPout½ � Pinl 0 þ 2P0 � Pout 0ð ÞΔP�:

(67)

Next, we transform the coefficients and change the equation to the relative
deviations:

τ0P
d δPð Þ
dt

þ δP ¼ KP
T δT� δTinlð Þ þ KP

inlδPinl þ KP
outδPout, (68)

where τ0P ¼ 2τP
P0

Pinl 0þ2P0�Pout 0
; KP

T ¼ 1
2 ξγM

2
0

P0

Pinl 0þ2P0�Pout 0
.

In a similar manner we transform Eq. (19):

2τ

γþ 1

d δTð Þ
dt

þ δT ¼ δTinl þ KT
inlδPinl þ KT

outδPout � KT
pδP, (69)

where KT
inl ¼

2 γ�1ð Þ
γ γþ1ð ÞξM2

0

2Pinl 0�P0

P0

Pinl 0

P0
; KT

out ¼
2 γ�1ð Þ

γ γþ1ð ÞξM2
0

Pout 0

P0
;

KT
P ¼ 2 γ� 1ð Þ

γ γþ 1ð ÞξM2
0

Pinl 0 þ 2P0 � Pout 0

P0
:

Having combined (68) and (69), we will get the differential equations for
pressure and temperature:
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ττp

γ

d2
δPð Þ

dt2
þ τ

γ
þ γþ 1

2γ
τP

� �

d δPð Þ
dt

þ δP ¼ τ

2γ

dδPinl

dt
þ dδPout

dt

� �

þ 1

2
δPinl þ δPoutð Þ

� τ

4
ξM2

0

d δTinlð Þ
dt

(70)

ττP

γ

d2
δTð Þ

dt2
þ τ

γ
þ γþ 1

2γ
τP

� �

d δTð Þ
dt

þ δT ¼ γþ 1

2γ
τP

dδTinl

dt
þ δTinl

� γ� 1

γ

τP

ξγM2
0

d δPinlð Þ
dt

þ d δPoutð Þ
dt

� �

:

(71)

The transient that is initiated by the pressure perturbation AP is described as

δP tð Þ ¼ AP

2τP
Aeat þ Bebt þ τP
� �

, (72)

where A ¼ aþd
a a�bð Þ; B ¼ bþd

b b�að Þ; d ¼ γ

τ
;

a ¼ 1
ττP

�2τ� γþ 1ð ÞτP �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2τþ γþ 1ð ÞτPð Þ2 � 16kττP

q

� �

;

b ¼ 1

ττP
�2τ� γþ 1ð ÞτP þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2τþ γþ 1ð ÞτPð Þ2 � 16γττP

q
� �

;

δT tð Þ ¼ AP γ� 1ð Þ
ξγτM2

0

A1e
at þ B1e

bt
� �

, (73)

where A1 ¼ a
a a�bð Þ; B1 ¼ b

b b�að Þ.

The transient state, which is initiated by the temperature perturbation
δTinl ¼ AT, is described as

δP tð Þ ¼ �ATξγM
2
0

4τP
A1e

at þ B1e
bt

� �

; (74)

δT tð Þ ¼ AT γþ 1ð Þ
2τ

A2e
at þ B2e

bt þ 2τ

γþ 1

� �

, (75)

where A2 ¼ aþd1
a a�bð Þ; B1 ¼ bþd1

b b�að Þ; d1 ¼
2γ

τP γþ1ð Þ.

A.1.6 Model 3.1

The linearized Eqs. (6), (7), (20), and (21) in the relative deviations format are

τ

γ

d δPð Þ
dt

¼ δWinl � δWout þ δTinl � δT; (76)

τ

γ

d δTð Þ
dt

¼ �δTþ δTinl þ
γ� 1

γ
δWinl � δWoutð Þ; (77)

1

2
γτ0M0 δWinl � δWoutð Þ ¼ δPinl þ δPout � 2δP: (78)

Let us transform Eqs. (76)–(78) to get the differential equations for the pressure
and the temperature:
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1

4
τ2τ0M0

d3
δPð Þ

dt3
þ 1

4
γττ0M0

d2
δPð Þ

dt2
þ τ

d δPð Þ
dt

þ δP ¼

¼ 1

4
γττ0M0

d2Tinl

dt2
þ 1

2
τ

d δPinlð Þ
dt

þ d δPoutð Þ
dt

� �

þ 1

2
δPinl þ δPoutð Þ:

(79)

1

4
τ2τ0M0

d3
δTð Þ

dt3
þ 1

4
γττ0M0

d2 δTð Þ
dt2

þ

þ τ
d δTð Þ
dt

þ δT ¼ 1

4
γττ0M0

d2Tinl

dt2
þ δTinl þ

γ� 1

2γ
τ

d δPinlð Þ
dt

þ d δPoutð Þ
dt

� �

:

(80)

The transient that is initiated by the temperature perturbation δTinl= AT is
described as

δT tð Þ ¼ AT
γ

τ
A3e

αt sin ωtþ β1ð Þ þ B3e
s1t þ Kð Þ, (81)

where α and ω are expressed by (38) and (39); A3 ¼ 1
ω

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

α2�ω2þ 4
γτ2
0

� �2

þ 2αωð Þ2

α2þω2ð Þ α�s1ð Þ2þω2½ �

v

u

u

u

t

;

B3 ¼
s21þ 4

γτ2
0

s1 s1�αð Þ2þω2½ �; K ¼ � 4
γτ20s1 α2þω2ð Þ; β ¼ arctg 2αω

α2�ω2þ 4
γτ2
0

� arctg ω
α�s1

� arctg ω
α
;

δP tð Þ ¼ AT
γ

τ
A4e

αt sin ωtþ βð Þ þ B4e
s1tð Þ, (82)

where A4 ¼ 1
ω

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

α2�ω2ð Þ2þ 2αωð Þ2
α2þω2ð Þ α�s1ð Þ2þω2½ �

r

; B4 ¼ s21
s1 s1�αð Þ2þω2½ �.

The transient that is initiated by the pressure perturbation AP is described as

δT tð Þ ¼ AT
2 γ� 1ð Þ
γτ20

A5e
αt sin ωtþ β1ð Þ þ B5e

s1tð Þ, (83)

where A5 ¼ 1
ω

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1
α�s1ð Þ2þω2

q

; B5 ¼ 1
s1�αð Þ2þω2

; β1 ¼ �arctg ω
α�s1

;

δP tð Þ ¼ AT
2

τ20
A6e

αt sin ωtþ β2ð Þ þ B6e
s1t þ K2ð Þ, (84)

where A6 ¼ 1
ω

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

τ2
0
2τþα

	 
2

þω2

α2þω2ð Þ α�s1ð Þ2þω2½ �

v

u

u

t

; B6 ¼ s1þ
τ2
0
2τ

s1 s1�αð Þ2þω2½ �; K2 ¼ � τ20
2τs1 α2þω2ð Þ;

β2 ¼ �arctg ω

αþ
τ2
0
2τ

� arctg ω
α�s1

� arctg ω
α
.

A.1.7 Model 3.2

The model consists of Eqs. (6), (7), (9) and (10). Linearized Eqs. (6) and (7) are
of the format presented in Eqs. (76) and (78). As a result of the linearization, we get

the missing difference dWinl

dt � dWout

dt :
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dWinl

dt
� dWout

dt
¼ 2

γτ0M0
f Pinl 0

P0
þ ξγM2

0

P0

Pinl 0

� �

δPinl þ
Pout 0

P0
δPout � 2þ ξγM2

0

� �

þ δP

�ξγM2
0 2 δWinl � δWoutð Þ þ δTinl � δT½ �g:

(85)

On the other hand, from Eq. (77) we get

dWinl

dt
� dWout

dt
¼ γ

γ� 1

τ

γ

d2
δTð Þ

dt2
þ d δTð Þ

dt
� d δTinlð Þ

dt

 !

: (86)

Let us determine d δPð Þ
dt from (76) and (78):

d δPð Þ
dt

¼ γ

γ� 1

d δTð Þ
dt

þ 1

τ
δT� δTinlð Þ

� �

: (87)

Having equalized the right sides of Eqs. (85) and (86), derived the obtained
equation, and substituted the derivative (87) in it, we get a differential equation for
the temperature in the volume:

ττ20
2C

d3
δTð Þ

dt3
þ τ20

C
0:5γþ 2ξð Þd

2
δTð Þ

dt2
þ τ

C
2þ 2γþ 1ð ÞξM2

0

� �d δTð Þ
dt

þ δT

¼ γτ20
2C

d2
δTinlð Þ
dt2

þ γþ 1ð Þξτ0M0

C

d δTinlð Þ
dt

þ δTinl

þ τ γ� 1ð Þ
C

Pinl 0

P0
þ ξγM2

0

� �

d δPinlð Þ
dt

þ Pout 0

P0

d δPoutð Þ
dt

� �

(88)

where C ¼ 2þ ξγM2
0.

Let us use the Laplace transform and transfer functions W
p
T sð Þ, WT

pinl
sð Þ, WT

out sð Þ,
and WT

Tinl
sð Þ to obtain the equation for the pressure. The transfer functions we will

get from Eqs. (87) and (88). The final result is

ττ20
2C

d3
δPð Þ

dt3
þ τ20

C
0:5γþ 2ξð Þd

2
δPð Þ

dt2
þ τ

C
2þ 2γþ 1ð ÞξM2

0

� � d δPð Þ
dt

þ δP ¼

¼ γτ20
2C

d2
δTinlð Þ
dt2

þ τ0ξγM0

C

d δTinlð Þ
dt

þ τ

C

Pinl 0

P0
þ ξγM2

0

� �

d δPinlð Þ
dt

þ Pout 0

P0

d δPoutð Þ
dt

� �

þ

þ 1

C

Pinl 0

P0
þ ξγM2

0

� �

δPinl þ
Pout 0

P0
δPout

� �

:

(89)

The transient state, which is initiated by the temperature perturbation δTinl, (the
magnitude of the step is AT) is described as

δT tð Þ ¼ AT
γ

τ

A6 � 1 tð Þ � A6 þ B6ð Þes1tþ

þ
B6

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

K3

B6
� α

	 
2
þ ω2

r

ω
eαt � sin ωtþ β3ð Þ

0

B

B

@

1

C

C

A

, (90)
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where α and ω are expressed by (48) and (39): A6 ¼ � b1
s1 α2þω2ð Þ;

B6 ¼
2αs1�s21ð ÞA6�s1�a1
α2þω2�s1 2α�s1ð Þ ; K3 ¼ 1þ s1A6 � 2α� s1ð ÞB6; β3 ¼ arctg ω

K3
B6
�α
; a1 ¼ 2 γþ1ð ÞξM0

γτ0
;

b1 ¼ 2C
γτ20

;

δP tð Þ ¼ AT
γ

τ
A7e

s1t þ
B7

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

K4

B7
� α

	 
2
þ ω2

r

ω
eαt � sin ωtþ β4ð Þ

0

B

B

@

1

C

C

A

, (91)

where A7 ¼ �B7; B7 ¼ � a2þs1
α2þω2�s1 2α�s1ð Þ; K4 ¼ α2þω2ð ÞA7�a2

s1
; β4 ¼ arctg ω

D2
C2
�α
;

a2 ¼ 2ξγM0

τ0γ
.

The transient that is caused by the pressure perturbation AP is described as

δT tð Þ ¼ AP
2 γ� 1ð Þ

τ20

Pinl 0

P0
þ ξγM2

0

� �

A8e
s1t þ

B8

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

K5

B8
� α

	 
2
þ ω2

r

ω
eαt � sin ωtþ β5ð Þ

0

B

B

@

1

C

C

A

,

(92)

where A8 ¼ �B8; B8 ¼ � 1
α2þω2�s1 2α�s1ð Þ; K5 ¼

α2þω2ð ÞA8�1

s1
; β1 ¼ arctg ω

K5
B8
�α
.

δP tð Þ ¼ AP
2

τ20

Pinl 0

P0
þ ξγM2

0

� �

A9 � 1 tð Þ � A9 þ B9ð Þes1t þ
B9

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

K6

B9
� α

	 
2
þ ω2

r

ω
eαt � sin ωtþ β6ð Þ

0

B

B

@

1

C

C

A

,

(93)

where A9 ¼ � b3
s1 α2þω2ð Þ; B9 ¼

2αs1�s21ð ÞA9�1

α2þω2�s1 2α�s1ð Þ; K6 ¼ s1A9 � 2α� s1ð ÞB9;

β6 ¼ arctg ω
K6
B9
�α
; b3 ¼ 1

τ
.
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