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Abstract

Cotton (Gossypium hirsutum L.) is a vital fiber crop that is being cultivated 
under diverse climatic conditions across the globe. The demand for cotton and its 
by-products is increasing day by day due to more consumption of this fiber in the 
textile industry and the utilization of cotton seed as a source of edible oil. However, 
the average seed cotton yield in the world is below that of the potential yield of cul-
tivars. The factors responsible for low yield includes shortage of approved seed, pest 
and disease attack, weed infestation, unwise use of nutrients, and the incidence of 
abiotic stresses (including drought, heat, and salinity). Among these, the abiotic 
stresses are a single major factor, which is responsible for reducing the yield now 
and will affect the productivity of cotton in future. In this scenario, it is necessary to 
adopt ways to improve the tolerance of cotton against abiotic stresses. The strategies 
for improving tolerance against abiotic stresses may include the wise use of macro- 
and micronutrients, the use of osmoprotectants, the use of arbuscular mycorrhizal 
fungi, and the plant-growth promoting rhizobacteria.

Keywords: nutrient management, PGPRs, osmolytes, plant hormones, fiber

1. Introduction

Abiotic stresses are major limiting factors that affect the growth, yield, and 
development of cotton. It is a fiber crop. It is cultivated in many countries across the 
globe. Medicinal products, home stuff, and cloth products are being processed from 
cotton crop. The raw material for the textile industry and also human oil consump-
tion requirement are fulfilled by this crop. Extreme temperature, salinity stress, 
and water depletion are the main abiotic stresses that are considered the primary 
factors, which limit the productivity of cotton. The worldwide reduction of cotton 
crop is 50% due to the abiotic stress [1].

For maximum yield of cotton crops, they require optimum growth conditions 
like other field crops. For example, a temperature of 27–32°C is preferred by cotton 
crop during the formation of boll. At ≥36°C [2], the major reduction in carbon 
fixation was found in cotton crop, and for optimum photosynthesis, the optimum 
temperature is ~33°C. Poor yield and growth of the plant are caused by the major 
impact of salinity and alkalinity. The water stress in cotton is caused by salt acting 
as an osmoticum.

Specific ion toxicity is also a major cause of low yield in this crop. Inequity 
of nutrients is also a major cause. Plant metabolism is affected by impairing the 
photosynthetic process and membrane thermostability due to high temperature 
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management. At the higher temperatures, the protein may be denatured and the 
activity of enzyme is more sensitive. Due to the effect of drought stress, the cell 
growth is influenced by the decrease in turgor pressure in cotton crop. The carbo-
hydrate metabolism as well as photosynthesis is influenced by the drought stress 
directly or indirectly. Any change in carbon uptake also changes the process of 
photosynthesis resulting in the decrease of boll maintenance of the cotton plant and 
also the area of leaf that is a response to the stress due to drought [3]. The fiber qual-
ity, yield, and growth of this crop are affected by different abiotic stresses. In this 
chapter, we have discussed the impacts of different abiotic stresses on cotton perfor-
mance and have enlisted possible improvement in its performance through applica-
tion of plant hormones (auxin, cytokinins, abscisic acid, brassinosteroids, ethylene, 
and gibberellins) and plant nutrients (macronutrients and micronutrients).

2. Salinity stress

Throughout the biosphere, the salinity stress has been the most important 
restrictions for the productivity of agriculture [4]. The cultivated area affected by 
the stress of salinity all over the world is 20% [5]. Because of decline in water uptake 
by emerging seeds, plant roots, photosynthesis, respiration, and protein synthesis, 
germination is reduced due to impact of salt stress. It also affects productivity and 
growth of the cotton crop [6]. In mitochondria and chloroplast, the undue accumu-
lation and generation of reactive oxygen species [ROS; like superoxide anion (O−2), 
the hydroxyl radicals (OH), and hydrogen peroxide (H2O2)] are a result of the effect 
of soil salinity stress [7, 8]. Excessive salts in soil affect negatively the productivity 
and growth of cotton [9]; however, cotton is one of the most salt-tolerant crops. 
Plants own a number of antioxidant enzymes such ascorbate peroxidase (APX), 
glutathione reductase (GR), and superoxide dismutase (SOD) for fortification 
against the damaging effect of ROS (e.g., superoxide anion (O2−)) [10]. Under the 
unfavorable condition, the osmolytes metabolize the function in cotton to produce 
sugar alcohol [11]. Glycinebetaine and Proline serve as scavengers of ROS and also 
well-suited protectants, osmolytes for the macromolecules under the condition of 
salt stress. With specific references to stress and photosynthesis metabolism for 
controlling the survival and productivity, little information is present on biochemi-
cal and physiological features of cotton under the salt stress conditions. At the 
persistent salinity of 17 dS m−1, the yield reduction is 50%, and when the salinity is 
at threshold level, which is 7.7 dS m−1, a notable decline in seed cotton yield occurs. 
In conclusion, soil salinity negatively impacts the cotton growth and yield by affect-
ing the plant physiological and biochemical traits.

3. Drought stress

For all the agricultural commodities, the availability of water is a determin-
ing factor for the yield and growth of the cotton plants under stress situations. 
Increasing human demand for water availability and demands for water for agri-
culture purpose in increasing and changing climate condition are the main factors 
restraining accessibility to water for agriculture. The shorter plants with small 
number of nodes resulted due to the drought stress in the cotton plants during the 
squaring period. With the help of drought stress treatments, there would be high-
est yields of the cotton plants. Except the full application of irrigation, the fiber 
quality parameters were significantly improved. The poor fiber quality, lowest fruit 
retention, and lowest yield production at the flowering stages are more sensitive to 
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drought stress. There is poor fiber quality and yield losses at the squaring as a result 
of stress due to drought [12]. The severity and timing of the drought determine what 
will be the effect of water stress on yield. Photosynthesis process is slowed down 
because of a decrease in the number and size of cotton leaves. Krieg [13] showed that 
water stress reduced crop growth rate.

The variability in genotype responses to drought stress in cotton has been 
reported [14]. Compared to drought tolerance, many morpho-physiological 
characters have been recommended as significant selection criteria for cotton 
crops. The distance from the first main lateral root to transition zone is increased 
due to drought stress in cotton, and also the increase in taproot weight, seedling 
vigor, the amount of lateral roots, and also the development of root system is rapid 
[15]. The temperature of canopy, the discrimination of carbon isotope, leaf water 
content, conductance of stomata, and rate of photosynthesis also reduce the rate 
of transpiration due to the effect of drought [16]. Cotton crop has taproot system. 
In cotton seedlings, a number of lateral roots are produced, which depends on the 
xylem poles for water absorption [17]. The amount of vascular bundles increases 
due to the increase of branching intensities of lateral roots in the cotton crop [18]. In 
cotton, decreasing leaf transpiration by stomatal transpiration (TRst) and cuticular 
transpiration (TRcu) is the important physiological indicator of water stress [19].

Stomatal conductance controls stomatal transpiration (TRst) under water stress 
conditions. Leaf surface characters like morphological structure and the thickness 
of the wax layer affect the cuticular transpiration (TRcu) [20]. Lewitt showed that 
stomatal closing can avoid drought in plants. Stomatal closing and opening are 
regulated by the help of guard cells. Overproduction of reactive oxygen species (e.g., 
superoxide and peroxide) is followed by drought stress. Inhibition of photosynthesis 
and cellular damage are a result of this. This process is known as oxidative stress and 
is a major cause of plant damage due to stresses of environment [21] in many crops. 
According to McMichael et al. [17], in the present cotton cultivars, genetic variability 
is low for many drought-tolerant characters. So, under high rainfall and humid situ-
ations, much of the current cultivars are opted. Potential sources of traits associated 
with drought tolerance are considered as primitive race stocks of upland cotton [22].

4. Heat stress

By virtue of its geographical position, the cotton belt of Pakistan is present in the 
area of high level of temperature. In the Kharif season, the temperature approaches 
50°C. The water stress and high temperature increase the impact that reduces the 
yield or quality of fiber, and fewer plants per unit area are a result of the heat stress 
with the other environmental stresses [23]. It is estimated that the harmful effect of 
heat stress causes the cotton crop to achieve only about 25% of yield potential [24]. 
The effect of these stresses is location-specific, exhibiting variation in frequency, 
intensity, and duration. The environmental stresses are site-specific, exhibit-
ing frequency variation, light intensity, and duration of light. It is the practical 
approach to estimate the responses of heat responses by field evaluation of cotton 
under high temperatures with appropriate irrigations [10]. The ability to screen for 
heat tolerance might be affected by the timing of heat stress. It has been suggested 
that the identification of relative cell injury level from leaf disks at high temperature 
is the screening technique for heat tolerance in plants [25]. Plant development rate 
is much increased at high temperature, which reduces the life period besides other 
detrimental effects like denaturing of membranous structures [26]. Lint yields and 
quality are negatively correlated with the high temperature [27, 28]. The first and 
foremost requirement is to identify the suitable stock(s) to be used in breeding in 
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any crop improvement program [29]. It was reported that in most dry land cotton 
production areas seedling heat tolerance is essential. Under heat conditions, emerg-
ing cotton seedlings poorly develop root system and show burning effects on the 
leaves; particularly, the younger leaves are adversely affected [11]. When plants 
grown in pots are exposed to high air temperatures, the shoots and the roots are 
challenged with hot condition, and it was observed that optimum temperature for 
leaf area development was 26°C for cotton [30].

5. Waterlogging stress

In areas with poor drainage or level, due to the excess of drainage and rainfall, the 
soil surface becomes saturated with water and this state of land is called waterlog-
ging. Every year, the land area of the world experienced by waterlogging is about 
10% [31]. The following are the two conditions: one is anoxic (oxygen absent: energy 
gain by fermentation is the only condition) and the other is hypoxic (low oxygen 
concentration: mitochondrial respiration is reduced and the process of fermentation 
takes place) because the microbial activity and plant activity use maximum amount 
of oxygen. During the conditions when the soil is waterlogged, the physicochemical 
properties such as the redox potential and pH are strongly changed due to the lack 
of oxygen concentration [32]. The effect of waterlogging on the salt-containing soil 
is more than 50% and these soils are mostly used for high-value crops such as cotton 
[33]. There are many drawbacks of the consequences of waterlogging for the plants 
of cotton, which may include terminated growth and the death of root apices, and 
also, increasing nutrient patterns may also be changed. For the growth of cotton, a 
waterlogged environment is lethal because it stops exchanging of gas and also results 
in energy problems [34]. Through the process of waterlogging, yield formation and 
the growth of cotton are strongly affected. But also these processes are complicated 
and remain unclear. It is reported that the adoption of cotton to the waterlogged stress 
is very poor [35]. But the cotton crop is that type of species that has indeterminate 
growth habit and has the large ability to compensate after the effect of abiotic stress. 

6. Improving abiotic stress tolerance in cotton

6.1 Plant hormones

6.1.1 Auxins

For the development of the body and for the life cycle of plants, auxins are essen-
tial. These hormones play a critical role in the coordination of behavioral process and 
also in the growth of the plant. These hormones are present in all parts of plants. For 
the different process, the amount of these hormones is also different; for example, the 
most dominating and effective auxin is indole acetic acid (IAA). For the growth of 
cotton plants in abiotic stress, the dynamic and environment-responsive pattern of this 
hormone distribution within the plants of cotton is a key factor for their growth. These 
are also very important for the development of plant organs such as leaves or flowers 
and for the environmental reaction under the abiotic stress. Through the plant body, 
the process of polar auxin transport is achieved by the complex and well-coordinated 
active movement of these hormones from cell to cell in the plant body. Indole-3-
propionic acid, indole-3-butyric acid, phenylacetic acid, indole-3-acetic acid, and 
4-chloroindole-3-acetic acid are the five naturally occurring auxins, which are endog-
enous in nature [36]. For the proper development of plant growth, these hormones are 
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very essential and contribute to giving the shape to the organ. Plants would be merely 
successful heaps of similar cells without hormonal regulation and organization of 
auxin hormone. The development of primary growth poles and future buds are formed 
by the auxin application. The employment of auxin begins in the embryo of the plant, 
and for subsequent growth, the distribution of the hormone is directional under the 
abiotic stresses [37]. This hormone is very important for proper growth and develop-
ment. Also, with the help of this hormone, fruit senescence is delayed. In cotton, auxin 
plays a small role in initiation of the flowering and for reproductive organ develop-
ment. Under the abiotic stress condition, when there is low concentration of auxin 
hormone, the senescence of the flower is delayed. In cotton, the lower concentration of 
this hormone can inhibit the formation of ethylene and also higher concentration can 
disturb the synthesis of ethylene. In cotton plants under abiotic stress, the auxin hor-
mone influences a different kind of process such as the developmental and physiologi-
cal. Through the auxin hormone application under stress conditions, rapid alteration in 
the roots of cotton occurs. Under abiotic stresses, in the cotton plants, various signaling 
auxin components appear that mediate diverse physiological and developmental 
processes. The target of various auxin-signaling components might be the strategy of 
potential to enhance the tolerance in cotton plants under abiotic stresses.

6.1.2 Cytokinins

Cytokinins are naturally occurring type of plant hormones. Under the drought 
condition, with the help of that hormone, the production of cotton is increased under 
stress. This increases the cell division and growth. The growth of the plant’s main stem 
and branches is motivated in cotton by these hormones. For the growth and yield of 
cotton, there are many commercially produced hormones available, which are applied 
under the stress condition. In the area where there is absence of water or no irrigation, 
through the application of these hormones, the growth is also improved under stress 
conditions. Half of the production of cotton from Asia is in arid high water-shortage 
areas. The 60–65% of the acreage in the area is dry and depends on the rainfall for the 
moisture of the soil in short growing season. There is more difficulty for the cotton 
plants to absorb the soil water because the young cotton plant seedlings have small 
root systems under stress conditions. In the young plant, the defense for the water is 
promoted by that hormone. Also for the absorption of the soil moisture, it helps to 
promote the plants to build a strong and deep root system. To prevent the loss of water 
under stress conditions, it stimulates the growth of protective wax on the surface of 
the plants. Under water-stressed conditions, it has been reported that the application 
of cytokinins increases the yield by 5–10%. The cytokinins can be applied in the early 
season when conducting normal weed management practices, and no extra work 
is involved for the grower. It should be applied at a relatively low concentration to 
cotton seeds or to cotton plants at an early stage of development. The developmental 
and various physiological processes in the cotton plants are done by cytokinins. The 
division of the cell in plants also increases under the abiotic stress [38].

Cytokinins have a vital function in seed and root development. This hormone also 
retarded fiber elongation at elevated concentration in ovule culture. Cotton fiber and 
seed yield were improved by slightly raising the level of endogenous cytokinins. This 
also decreases the expression of cytokinin dehydrogenase [39]. Plant hormones play 
a significant role during interaction with physiological and developmental ‘switches’ 
involved in fiber growth. Cytokines also help in cell elongation by loosening the cell 
wall and supplying structural materials under stress conditions. During this process, 
secondary cell wall deposition and increased cellulose formation are key roles of that 
hormone. The opposed effect of some hormones may act as a restraining factor for 
fiber cell development under the abiotic stress conditions. The exogenous application 
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of plant growth regulators at a particular time may be helpful for the appropriate 
cell development. Little is known about how some of the cells are differentiated into 
lint (long fibers) and others into fuzz (short fibers) from the same ovule epidermis. 
Selective utilization of nutrients for elongation of long fibers is the main reason under 
the stress. When a number of cells differentiate into fiber, some substances from 
ovule epidermal cells are transferred into fuzz, which affects other cells to develop 
into full-length fibers, which is another important reason under the stress condition.

6.1.3 Abscisic acid

The role of the abscisic acid (ABA) in the fiber development is an inhibitor. The 
growth of the fiber is also decreased when using the ABA to unfertilized cultured 
ovules [40]. The inhibitory function of ABA is somewhat balanced in the presence 
of cytokinins, which inhibits fiber development in the absence of ABA. At the time 
of boll formation, the concentration of ABA is low and also decreases during the 
next 2 days [41].

It was found that the ABA level was higher in mature cotton fruits as compared 
to young healthy fruits [42]. It was concluded that the internal ABA level exhibited 
a reverse correlation with the rate of fiber elongation. Among the different cotton 
cultivars, it is shown that high internal ABA contents result in shorter fiber and 
the reverse relationship exists between ABA contents and fiber length. Dasani and 
Thaker [43] tested the fiber of different cultivars of cotton under stress condition. 
The function of the ABA is revealed in both in vitro and in vivo situations for the 
improvement of fiber. The inhibitory effect of ABA on fiber length was reduced due 
to the addition of growth promoters like naphthaleneacetic acid (NAA) and gib-
berellic acid (GA) along with ABA. From the results of in vivo and in vitro experi-
ments, it can be concluded that ABA may be playing an inhibitory role in fiber 
elongation and is a positive indicator of the onset of cell wall thickening.

6.1.4 Brassinosteroids

Brassinosteroids are naturally occurring hormones with steroid chemistry 
and are found throughout the kingdom Plantae. They elicit growth stimulation at 
nanomolar concentrations. Brassinosteroids enhance cell elongation and affect 
cytoskeleton and cell wall structure.

It is stated that adding a minute concentration of brassinosteroid (brassinolide 
(BL)) to cultured cotton ovules increased cotton fiber elongation, while the use of 
brassinazole 2001 (BRZ) and also the inhibitor of BR biosynthesis retarded fiber 
length and ovule size [44]. The application of BR biosynthesis inhibitor (brassinaz-
ole 2001) hindered fiber initiation probably due to alteration in the differentiation 
of ovule epidermal cells into fibers. The exogenous application of BL increases the 
formation of fiber, while the application of BRZ reverses the effect [45]. BR signal 
transduction plays a role in determining cotton fiber length. Transgenic plants with 
altered brassinosteroid insensitive 1 (BRI1) expression produce fibers similar in 
length to wild-type plants. The thicker secondary wall with fiber is produced by the 
plants that overexpress BRI1. These are the changes in fiber cell growth correlated 
with changing in expression of cellulose formation gene in fiber development.

6.1.5 Ethylene

Ethylene biosynthesis is the most important pathway that is upregulated during 
cotton fiber cell elongation in accordance with recent physiology and gene expres-
sion analysis [46] under optimal and suboptimal conditions. During the 10–15 DPA 
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(days post anthesis), the involvement of 1-aminocyclopropane-1-carboxylic acid 
oxidase 1–3 (ACO1–3) was predicted very effective for fiber growth elongation under 
the abiotic stress condition. The exogenous application of the ethylene inhibitor, 
2-aminoethoxyvinyl glycine (AVG), inhibits the growth of fiber, and ethylene 
increased fiber cell expansion under the stress condition [45]. According to the 
results, under the stress condition, this hormone has a significant role in support-
ing cotton fiber growth and elongation. Additionally, ethylene might enhance cell 
elongation by escalating the expression of tubulin, sucrose synthase, and expansion 
genes [46]. Detection of ethylene in fibers proved that it affects fiber elongation.

Ethylene biosynthesis genes (ACO1–3) are expressed at fiber elongation stage. 
According to that, it may interact with BR and ROS signaling pathway. Experiments 
on cultured ovules have shown that exogenous application of ethylene ameliorate 
the problem of fiber elongation caused due to BR biosynthesis inhibition. The 
exogenous application of both ethylene and BR on cultured ovules triggered the 
expression of genes for biosynthesis of other phytohormones. This cross-talk 
between hormones and genes may regulate fiber development in both negative and 
positive perspectives [47].

6.1.6 Gibberellins

The combination of auxin and gibberellins has been found to increase the fiber 
growth in in vitro cultured ovules [48]. Under abiotic stress, the application of auxin 
and gibberellins from exogenous source is vital for fiber growth in unfertilized 
ovules [49]. Studies on gene expression also explored the role of gibberellins and 
auxin in fiber growth. In DNA microarray, a cupin super family protein was found 
to be upregulated in 10 DPA ovules [50]. Because the plants have tissue sensitivity 
to improve the crop yield and quality, the transgenic approach has increased the 
manipulation of the hormones’ concentration [51]. At a molecular level, to improve 
the fiber length and micronaire value, much effort has been made by scientists. 
Also the increased fiber for lint percentage and elongation was observed in cotton 
crop [52]. The targeted expression of an IAA biosynthetic gene under floral bind-
ing protein promoter (FBP7) was also shown in several studies and amplified the 
endogenous IAA levels at the fiber initiation stage under the abiotic stress [53]. The 
main aim of cotton-producing countries is to improve the yield of crop. By develop-
ing the seed that gives more yield of fiber under abiotic stress conditions, this aim of 
high yield can be fulfilled. The development of plant hormones plays an important 
role for the maximum growth and development of the crop [54]. The exogenous 
application of GA3 not only promotes the fiber length but also enhances the thickness 
of cell wall significantly. During abiotic stress, long length cotton fibers with thicker 
cell wall and increased dry weight per unit cell length were obtained.

6.2 Plant nutrients

6.2.1 Macronutrients

6.2.1.1 Nitrogen

Nitrogen is a significant constituent of nucleic acids and amino acids and is 
required in high concentrations to plants. Maximum yields are not obtained from 
optimum nitrogen supply in the absence of adequate water, and optimum water 
supply will also not give maximum yield in the absence of adequate nitrogen supply 
[55]. Cotton that grows in different moisture stress levels in sandy soil shows similar 
special interactive effects of nitrogen supply and drought stress. Nitrogen shows 
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genetic variation, selection, and breeding of lineages that are more effective in their 
N uptake. It is the more efficient strategy in arid land than in temperate zone [56]. 
When salinity is not severe, the addition of nitrogen enhances the growth and yield 
of crops [57].

Nitrogen also plays a key role in the synthesis of chlorophyll and proteins as well 
as in cell division. But cotton production can also be improved by foliar application 
in salinity stress [58]. Root development, germination, senescence, respiration, cell 
death, disease resistance, and hormone responses in crops are also influenced by 
nitrogen application. During abiotic stress in cotton, nitrogen plays an important 
role to activate the antioxidant defense in cotton [59]. Therefore, when the supply 
of nitrogen is adequate, root restriction increases the root activity. It also increases 
the availability of photoassimilates to above-ground plant parts. Hence, with the 
application of nitrogen to cotton, shoot growth and the ratio of shoot and root are 
enhanced.

6.2.1.2 Phosphorus

Phosphorus (P) is an essential component of nucleic acids, phosphor-lipids, 
and adenosine triphosphate. It also plays an important role in the storage, energy 
transfer, and also transport of carbohydrate. The pH is high and soils are calcare-
ous in arid areas. Under the drought stress condition, phosphorous application 
can improve the growth of cotton crop [13]. The foliar application of urea and 
diammonium phosphate is the main source of phosphorous for the improvement of 
growth and development of cotton crop [60–62]. Improvement of fiber in cotton 
crop under the stress conditions can be obtained by the foliar spray of phosphorous 
at the boll formation stage [63]. In addition, boll weight and seed cotton yield are 
increased under stress [64].

Phosphorous is constituent of cell nuclei, and it is essential for cell division and 
development of meristematic tissues [65]. Phosphorous also influences the forma-
tion of nucleic acid, protein, and lipids as well as photosynthesis. In biotic stress 
conditions, the application of phosphorous improves the quality parameters of 
cotton. Cotton shows positive and economical response to phosphorous application 
[66]. Hence, plant height, shoots, and roots in cotton plants in abiotic stress condi-
tions are enhanced by the application of phosphorous.

Phosphorous is efficiently applied to soil by fertigation as compared to 
broadcast application. However, in abiotic stress conditions, cotton yield can be 
improved with adequate amount of phosphorous fertilizer application at appro-
priate time. The reduced canopy is the result of the unbalanced nutrients in soil 
from the improper input of nutrients. Therefore, under abiotic stress conditions, 
photosynthesis rate and the yield of the cotton are reduced [67].

In abiotic stress conditions, the rate of leaf expansion and photosynthesis per 
unit leaf area of cotton crop are reduced due to phosphorous deficiency [68]. Crop 
growth, nitrogen and potassium uptake, total chlorophyll content, and dry matter 
yield of cotton plant are significantly enhanced by phosphorous [69]. The applica-
tion of phosphorous leads to increased phosphorous uptake and content in leaf, 
stem, and reproductive parts such as seeds [70]. Phosphorous has a stimulating 
effect on number of flower buds and bolls per plant as well as is essential for cell 
division. Plant height, number of sympodial branches, seed index, boll weight, and 
seed cotton yield vary in all cotton cultivars due to genotypic variation [71, 72].

Cotton is facing decline in yield and quality because of abiotic stresses. Several 
genes for genetic engineering have been made from the cloning technology such as 
those related to fiber development (cytokinin dehydrogenase), disease resistance 
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(PR-3 and PR-10), and stress responses (GbRLI)3. These genes play an important 
role in successfully generating transgenic cotton lines with greater abiotic stress 
tolerance [73].

6.2.1.3 Calcium

Calcium plays a vital role in maintaining the many physiological processes that 
impact both the growth of cotton plants and also the responses to environmental 
stress. All the biotic and abiotic stresses and damages are repaired and act as defense 
for the cotton plants by the processes of translocation and respiratory metabolism. 
Concentration of water and the movement of the solutes influence these processes. 
These processes are also influenced by the Ca2+ on the structure of membrane 
and on the function of stomata. The uptake of calcium is minimized under stress 
conditions as compared to other elements. Hence, the accumulation of calcium 
is decreased to small extent as compared to phosphorous and potassium and this 
accumulation was in the range of 40, 71, and 91% for phosphorous, potassium, 
and calcium, respectively, in dry conditions in the mature cotton crops. The direct 
application of calcium is an efficient method for increasing the fiber yield of cotton. 
The incidence of fungal pathogens is reduced leading to increase in yield, and 
several physiological disorders are minimized by the application of calcium salt.

6.2.1.4 Potassium

The optimal supply and the good source of potassium (K) are very critical for 
increasing the growth and yield of the cotton crop. With the help of stomatal cell, 
the turgor pressure and osmotic pressure are increased with the help of K under the 
drought stress condition [74]. Soil salinity problem widely affects all the agronomic 
and physiological parameters of the cotton crop. These effects were lowered by the 
optimal application of potassium fertilizers [75]. Potassium increases the uptake 
of other essential nutrients, so the productivity of cotton is badly affected through 
the low application of potassium [76]. With no application of potassium, the 
cotton yield and also yield-contributing factors and fiber quality will reduce [77]. 
It was suggested in a study that under drought stress, the application of potassium 
influences the physiological functions of cotton [78]. The two cultivars of cotton 
were planted in drought stress and well-watered conditions with three potassium 
rates (0, 150, and 300 K2O kg/ha) and these plants were showing higher leaf water 
potential, stomatal conductance, photosynthesis rate, and the maximum and actual 
quantum yield of PSII. With the application of potassium, the cotton plants were 
showing lower lipid peroxidation, higher antioxidant enzyme activity, as well as 
increased proline accumulation as compared to nonapplication of potassium, and a 
significant relationship was observed between photosynthetic recovery and potas-
sium application.

Maintaining surplus water pressure within the boll also decreases the incidence 
of disease and improves the water use efficiency and fiber quality with the applica-
tion of potassium [79]. Potassium application in cotton is also believed to extend 
the absorption of nitrogen, which causes vigorous vegetative growth and seed 
cotton yield. Also, the use of potassium in cotton enhanced the metabolic activity 
and improved the staple length, tensile strength, and fiber length and decreased 
the amount of damaged fiber [14]. Several other studies have reported an improve-
ment in yield of cotton seed and quality of fiber due to potassium input in cotton 
under optimal and suboptimal conditions [80–82]. Combined foliar application of 
magnesium in combination with potassium and nitrogen improved the seed cotton 
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yield, fiber quality, leaf nitrogen, potassium and magnesium concentration, and 
water use efficiency of cotton. The improvement in fiber quality was also visible 
through improvement in fiber strength, staple length, and fiber uniformity index 
owing to combined foliar application of magnesium in combination with potassium 
and nitrogen in abiotic stress in cotton crops [83].

Potassium plays a role in maintaining nitrogen metabolism and osmotic 
adjustment to sustain growth in soil under drought conditions [78]. Cotton plants 
under drought stress with potassium application not only showed higher osmotic 
adjustment with accumulation of osmolytes as well as maintaining higher enzyme 
activity, soluble proteins, and chlorophyll content but also regulate the nitrogen 
metabolism as compared to the plants without K application [84].

6.2.1.5 Micronutrients

As the cropping intensity increases, magnesium (Mg) deficiency occurs more 
frequently. Deficiency symptoms of sulfur are associated with the decrease in 
atmospheric sulfur. The uptake of magnesium and sulfur nutrients is reduced in 
cotton crop under drought stress. It has severe consequences for S nutrition and 
crop production. The plants uptake micronutrients through the process of dif-
fusion decline because there is low soil moisture [85]. Cotton crop needs smaller 
quantities of micronutrients. Therefore, the effect of drought stress on micronu-
trients (Mg and S) is not the same as for macronutrients (P and N). Due to drought 
stress, deficiency of boron occurs in cotton crop. Due to the accumulation of 
silicon under drought conditions, the growth of cotton is improved and silicon is 
accumulated due to the reduction in transpiration rate [86, 87]. The main factors 
of saline and sodic soil on which they depend for availability of micronutrients 
are solubility of the micronutrients, pH, and the nature of the binding sites on the 
organic- and inorganic-particle surfaces. Salinity stress also affects the concentra-
tion of micronutrients in cotton plants, and soil salinity levels are also influenced 
by the salinity stress [88]. Inorganic nutrients play a significant role in determining 
plants’ resistance to drought or salinity. Hence, both growth and development of 
cotton plants are similarly influenced by drought and salinity.

7. Use of osmoprotectants

The accumulation of organic osmolytes has been reported in many plants under 
abiotic stresses. These include polyhydroxylic compounds and zwitterionic alkyl 
amines. The accumulation of osmolytes is widely discussed nowadays especially in 
cotton crops [89, 90].

Osmotically active solute is completed by the entry of water into the cell. This 
water provides sufficient concentrations for turgor pressure, which is necessary for 
the expansion of cells.

Cotton plants remain fit under stressful environmental conditions due to 
osmotic adjustment [91]. Therefore, high concentrations of several but not all com-
patible solutes protect the crop from oxidative damage. Their damage is reduced by 
scavenging free radicals in addition to their rules in preservation of osmotic equilib-
rium without disturbing macromolecule solvent relations.

The resistance against the oxidative stress of cotton has recently increased 
with the action of chloroplast accumulation of mannitol as well as consistent 
with high diffusion rate limited reactivity of hydroxyl radicals toward the most 
metabolic intermediates [92]. A significant role is played by the compatible solutes 
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in terminating free radical chain reaction. The stress tolerance appears due to the 
critical element glycinebetaine in the cotton plants.

The growth of cotton plants is strongly influenced by the drought and saline 
environments with the osmoprotectants. Osmoprotectants are enormously pro-
ficient compatible solutes. The accumulation of glycinebetaine is induced and 
improves the tolerance to abiotic stress conditions [93]. The treatment of cotton 
seeds with the external application of glycinebetaine at increased the cotton seed 
yield by 18 and 22%, respectively. The growth and survival of extensive variet-
ies of plants such as cotton crops are improved by the exogenous application of 
glycinebetaine.

© 2020 The Author(s). Licensee IntechOpen. This chapter is distributed under the terms 
of the Creative Commons Attribution License (http://creativecommons.org/licenses/
by/3.0), which permits unrestricted use, distribution, and reproduction in any medium, 
provided the original work is properly cited. 
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