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Abstract

The spread of multidrug-resistant pathogens together with the development of 
fatal cases of infectious microorganisms is on the rise. Therefore, there must be new 
approaches for combating pathogenic microorganisms, either by overcoming anti-
biotic resistance or via inhibiting their virulence factors. Several virulence factors 
extremely increase the antimicrobial resistance of various species of pathogens; as 
a result, the screening of antivirulence agents has gained more and more attention 
recently. In this aspect, non-traditional strategies that are considered promising 
in overcoming virulence and pathogenicity of microorganisms will be discussed 
including; quorum sensing inhibition, antibiofilm, control of the global regulators, 
bacteriocins and bacteriophages. Applying these methods could provide innovative 
approaches for competing microbial resistance and virulence.

Keywords: bacterial virulence, resistance, quorum sensing inhibition,  
global regulators, phage therapy, inhibition of biofilm formation, bacteriocins

1. Introduction

The high incidence of microbial resistance and the spread of multidrug-resistant 
and pan drug-resistant pathogens have been developed to threaten human mankind. 
Fortunately, there are upcoming alternative therapeutic approach for eliminating bacte-
rial virulence and host-pathogen interaction [1, 2]. Quorum sensing signals [3, 4] and 
global regulators represent the main players to control virulence circuits and coordinate 
host-pathogen interaction [5]. Thus, targeting these regulators provide a promising trend 
to overcome microbial pathogenicity. Bacterial cells have the ability to grow in matrices 
of polysaccharides, proteins and DNA forming biofilm [6]. The cell communities inside 
the biofilm matrices are highly resistant to antibiotics [7]. In this chapter, we will focus on 
the agents that are known to exhibit antibiofilm assembly including bacteriocins.

Moreover, bacteriophages have specific ability to infect and lyse bacteria [8]. 
Hence, phage therapy has many potential applications in the treatment of infec-
tious diseases, with high therapeutic index and diminished adverse effects [9, 
10]. Inhibitors of quorum sensing signaling, control of the global regulators, and 
the development of antibiofilm agents will be discussed in detail in this chapter. 
Additionally, the use of bacteriophages either for eradication of bacterial infections or 
as an efficient delivery system for antimicrobial agents will be described in this part.
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2. Control of microbial virulence and resistance

2.1 Quorum sensing inhibition

Quorum sensing (QS) is a cellular signaling system, which is developed in 
response to population cell density [3, 4]. QS cascade relays on the release of signal-
ing molecules called QS autoinducers/signals. The QS signals are produced at low 
levels with the start of microbial growth and accumulate upon increase in the cell 
density. Quorum sensing signals coordinate the microbial virulence behaviors such 
as secretion of toxins, secretion of exoenzymes, microbial motility, adhesion and 
biofilm assembly [11]. Furthermore, microbial communication systems have been 
assigned in fungi [12] and viruses [13]. Studies of QS provide significant insights into 
different mechanisms that control the interactions in microbial communities and 
how these interactions affect microbial pathogenesis. Several QS systems are well 
understood including Gram-negative bacteria that produce acyl-homoserine lactone 
(AHL) signals, including Pseudomonas aeruginosa, Vibrio sp., Acinetobacter bauman-
nii and Serratia marcescens [5, 14, 15]. Alternatively, Gram-positive species such as 
Staphylococcus aureus utilize autoinducer peptide (AIP)-based QS systems [16].

Various strategies for quorum sensing inhibition have been explored. The 
quorum sensing inhibition approaches could be accomplished via interference with 
the synthesis of QS signals, elimination of the signal accumulation and disruption 
of signal-receptor interaction [17–19].

2.1.1 Interference with the synthesis of the autoinducing signals

One of the main quorum sensing inhibiting approaches is the interference with 
the synthesis of the autoinducing signals [20]. AI-2 compounds are considered as 
“universal” signal molecules of Gram-negative and Gram-positive bacteria [14, 21]. 
Moreover, they are encountered in species communications. The biosynthesis of 
AI-2 requires two main enzymes: methylthioadenosine/S-adenosylhomocysteine 
nucleosidase (MTA/SAH nucleosidase) and LuxS. AI-2 molecules contribute in 
various virulence behaviors, biofilm formation and host-pathogen interaction. 
Therefore, targeting AI-2 elaborates broad spectrum quorum sensing inhibition 
[22, 23]. In this instance, Gutierrez group have identified the transition analogs, 
5′-methylthio- (MT-), 5′-ethylthio-(EtT-) and 5′-butylthio- (BuT) DADMe-
immucillin, which specifically bind and inhibit MTA enzymes in Escherichia coli 
O157:H7. Also, 4,5-dihydroxy-2,3-pentanedioneS-ribosyl-homocysteine analogs 
have been developed as competitive inhibitor of LuxS [24–26].

On other instance, inhibiting AHL-synthesis has been extensively studied, for 
instance, triclosan inhibited both N-3-oxo-dodecanoyl-l-homoserine lactone and 
N-butyryl-l-homoserine lactone [27, 28], anthranilate derivatives are a Pseudomonas 
quinolone signal inhibitors [28], and proanthocyanidins have been approved as 
inhibitor of LasI/RhlI AHL synthases expression [29]. Furthermore, precursors of 
Pseudomonas quinolone signals (PQS) such anthranilatic acid derivatives reduced 
the pathogenicity of P. aeruginosa in lung-infected mice [15].

2.1.2 Elimination of the QS signals accumulation

Other common strategy is eliminating the accumulation of the QS signals, which 
have been attained by degrading the QS signal using enzymes or through seques-
tering the signal by synthetic polymers [30, 31] or utilizing antibodies that bind 
with the signals. Synthesized monoclonal antibodies (AP4-24H11) by Park group 
provoke high binding affinity for sequestering AIP-IV and decrease α-hemolysin 
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production in S. aureus with relief of abscess formation in the infected murine 
model [32]. Kaufmann and coauthors inhibited the P. aeruginosa QS cascade via 
development of AHL-specific monoclonal antibodies. Synthetic polymers such as 
itaconic acid sequester the signaling molecules AHL and attenuate QS in V. fischeri 
[31, 33].

Moreover, disturbing enzymes responsible for biosynthesis of QS signals is a 
chief method, which affects both production and accumulation of different signals 
and perturb quorum sensing circuit [30]. Acylases, lactonases and oxidoreductases 
are the widely identified enzymes that target AHLs. AHL lactonases are broad AHL 
degrading enzymes, which produce its effect via hydrolyzing the ester bond of 
the AHL ring [34]. Lactonases have been isolated from various Bacillus sp., which 
harbor aiiA (autoinducer inactivation gene) [35, 36]. Ulrich study showed that, 
the heterologous expression of aiiA in Burkholderia thailandensis and P. aeruginosa 
lowered the levels of AHL and QS-related virulence factors [37]. Other important 
AHL lactonases are AttM and AiiB, which have been isolated from Agrobacterium 
sp. [38], AhlD from Arthrobacterium, AhlK from Klebsiella [39] and AidC from 
Chryseobacterium [40], QsdA from Rhodococcus erythropolis strain W2 [41], AiiM 
of Microbacterium testaceum [42], AidH of Ochrobactrum sp. T63 [43] and QsdH of 
Pseudoalteromonas yunnanensis [44]. Furthermore, paraoxonases 1, 2 and 3 (PON1 
to −3) are mammalian lactonases were identified in the airway epithelia and mam-
malian sera [45].

AHL acylases enzymes (aiiD) and homologs were found in Ralstonia [46], 
Actinoplanes utahensis and Pseudomonas sp. The purified AiiD protein has the ability 
to degrade 3OC10HSL into HSL and 3-oxodecanoic acid. In addition, PvdQ , QuiP 
and HacB are specific AHL acylases of P. aeruginosa, in addition, HacA and HacB 
acylases of Pseudomonas syringae [47, 48]. Furthermore, the broader substrate 
specificity of AHL acylase (AhlM) was detected in Streptomyces sp. strain M664 
with activity towards medium- and long-chain AHLs [49].

Oxidoreductases from Rhodococcus erythropolis inactivates AHLs (oxidation or 
reduction) with subsequent elimination of bacterial virulence in vivo. Rhizobium 
strain NGR234 possess diverse AHL-inactivation loci: dhlR, qsdR1 and qsdR2, with 
lactonases activity, aldR, and hydR-hitR [50]. Enzymatic degradation of other QS 
autoinducers have been described: carA and carB from Bacillus, E. coli DH10B, 
Staphylococcus and Pseudomonas as the genes responsible for inhibition of DSF sig-
naling [51]. Hod (3-hydroxy-2-methyl-4(1H)-quinolone 2,4-dioxygenase) stimu-
lates the cleavage of PQS and attenuates PQS-regulated virulence factors. Roy and 
coauthors elicit the AI-2 activation activity of endogenous LsrK in E. coli, however, 
exogenously phosphorylation of AI-2 by LsrK eliminates its intracellular transport 
and hinders subsequent activation of AI-2 [52].

2.1.3 Elimination of the QS signal-receptor interaction

Interference with signal detection through eliminating the QS signal-receptor 
binding represents a successful approach [53, 54]. Various synthetic and natural 
AHL analogs have been reported to block the binding of the signal with specific 
receptors in P. aeruginosa and Vibrio sp. The prototype signal inhibitors, haloge-
nated furanones, which are produced from Delisea pulchra represent a good example 
[55, 56]. Natural analogs have been also isolated with signal-receptor interference 
including ajoene [57], eugenol [58], flavonoids [59], iberin [60], furocoumarins 
[61], ellagic acid, penicillanic acid and patulin [62], phenethyl amide [63] and 
1H-pyrrole-2-carboxylic acid [64].

The synthetic furanone derivative C-30 interferes and hinders the interaction 
of AHLs with the receptors [65]. Other furanone analogs have been developed 
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including S-phenyl-l-cysteine sulfoxide and diphenyl disulfide [66] and tetrazole 
derivatives [67]. Furthermore, synthetic LasR derivatives have been developed 
such as indole derivatives, non-AHL-like antagonists [68], the synthesized 
azines derivatives, 4-(alkyloxy)-6-methyl-2H-pyran-2-one [69] and aspirin [70]. 
Triphenyl hybridγ-butyrolactones and cyclopentanones derivatives are potent 
inhibitors of LuxR [71]. Putative LasI inhibitors have been identified using molec-
ular docking methods including the trans-cinnamaldehyde [72], (z)-5-octylide-
nethiazolidine-2, 4-dione [73] and fatty acyl purified from marine Streptomyces 
sp. [74]. Additionally, meta-bromo-thiolactone is a potent inhibitor of RhiI and 
subsequent PQS cascade [11].

In S. aureus, the interference with agr system has been accomplished using 
solonamide A and B that are cyclodepsipeptides derivatives, which purified from 
marine Photobacterium and reduced the expression of hla and RNAIII. Solonamide 
can act through competitive inhibition of agr system such as S. aureus agr system 
via structure similarity to the AIPs [75]. Other S. aureus quorum-sensing inhibitors 
have been identified including linear peptidomimetics as competitive inhibitors to 
AgrC [76], savirin as potent inhibitor of AgrA [77] and the polyhydroxy anthraqui-
none ω-hydroxyemodin as inhibitor of AgrA [78].

2.2 Control of the global regulators

Beside the QS regulons, other global regulators exhibit crucial functions in 
dominating the expression of various genes in assortment style as a response to 
environmental stimuli and changes, most notably the temperature change [5]. 
These so-called global regulators enable the bacterial communities to survive 
different environmental stresses including starvations, pH changes and tempera-
ture fluctuations, through the quick conformation of bacterial physiology and 
 structure [79].

Among many regulators that coordinate gene expression in bacteria, in Gram-
negative bacteria, the global regulator termed histone-like nucleoid-structuring 
(H-NS) protein is relatively significant and of paramount importance [80]. H-NS 
has been considered as the main model of studying how global regulators can 
affect bacterial structure and physiology. The H-NS protein is incorporated in the 
regulation of many genes responsible for controlling the physiological functions of 
Gram-negative bacterial cells involving cellular functions, survival under different 
environmental conditions and production of various virulence factors [81, 82]. 
Moreover, in Gram-positive bacteria, there are several global regulatory loci [83]. 
Among them in the S. aureus, SarA, a regulatory DNA binding protein involved in 
controlling the virulence genes expression, is well documented [84]. During regula-
tion of the expression of various genes, these regulators have been demonstrated to 
act either as a positive regulators through enhancing the stability of the mRNA of 
expressed genes, resulting in excessive translation, or as a silencer protein that alter 
and decrease the gene expression by hindering binding of RNA polymerases to the 
promoters of target genes [85, 86].

This would open up novel approaches for the treatment and eradication of 
pathogenic bacteria utilizing inhibitors or modulators of these global loci to 
vanquish the global concerns of antimicrobial resistance and immune evasion of 
microbial pathogens. Among these approaches, the interesting inhibitor of SarA 
(SarABI), 4-[(2,4-diflurobenzyl)amino] cyclohexanol, was confirmed as SarA-
based new curative medicament against S. aureus-related infections [87]. This might 
encourage research groups for screening other compounds that might affect global 
regulators in bacteria to give a new therapy for multi-drug resistant (MDR) bacte-
rial strains.
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2.3 Biofilm inhibition and eradication

Biofilm is a sessile community of microbial cells that is found to be attached to 
animate or inanimate surface, and usually surrounded by a matrix of polysaccharides, 
proteins and DNA [6]. The cells in these sessile communities differs phenotypically 
form those present in planktonic communities [88]. Bacterial cells in planktonic 
forms are almost one thousand times more sensitive to antibiotics than their biofilm 
counterparts [7]. Additionally, biofilms act as a defense mechanism against different 
stress conditions or immune cells attack [89].

In this part, we will focus on the agents that are known to exhibit antibiofilm 
activity.

2.3.1 Antimicrobial peptides

Antimicrobial peptides (AMPs) that are crucial players of innate immunity are 
reported to prevent biofilm formation in different pathogens. AMPs with anti-
biofilm activity are either natural or synthetic. The human cathelicidin peptide, 
LL-37, has been demonstrated to have antibiofilm activity in case of P. aeruginosa 
(at a concentration of 0.5 μg/mL), while the minimum inhibitory concentration 
for planktonic cells was 64 μg/mL [90]. In this study, it was reported that LL-37 
was able to interfere with the adherence of microbial cells, enhancing twitching 
motility and downregulation of genes required for biofilm formation via affecting 
quorum sensing systems (Las and Rhl) [90]. Furthermore, such peptide was shown 
to prevent biofilm formation in E. coli and S. aureus [91]. The mouse cathelicidin-
derived peptide AS10 was reported to exhibit antibiofilm activity in Candida 
albicans [92]. The synthetic cathelicidin-derived peptides; peptide 1018, DJK5 and 
DJK6, were reported to prevent biofilm formation in addition to enhancement of 
biofilm dispersion via prompting the hydrolysis of nucleotide signaling systems, 
and therefore, leads to its depletion in bacteria [93].

Another synthetic peptide, S4(1–16) M4Ka, has been found to inhibit biofilm 
formation and detach bacterial cells in P. aeruginosa [94]. The human β-defensin 
3 (hBD-3) was found to inhibit the expression of icaA, icaD and icaR genes of 
Staphylococcus epidermidis, thus interfering with biofilm formation, where biofilm 
formation in Staphylococci is dependent on the synthesis of the polysaccharide inter-
cellular adhesin PIA encoded by icaADBC locus [95]. Another example of human 
AMP with antibiofilm activity in S. epidermidis, is the liver-derived hepcidin 20. This 
peptide can inhibit extracellular matrix formation of biofilms via targeting PIA [95].

The natural AMP piscidin-3, obtained from fish, exhibits nucleosidase activ-
ity and can degrade extracellular DNA of P. aeruginosa [96]. Another example of 
natural AMP, that possesses antibiofilm activity, is esculentin, which is obtained 
from frog’s skin. It acts by permeabilization of the cellular membrane of P. aeru-
ginosa PAO1 cells in the biofilm [97]. A synthetic peptide P1, derived from a tick 
antifreeze protein, significantly inhibited biofilm formation in Streptococcus mutans. 
Such peptide reduced biofilm biomass by about 75% in microtiter plates and in vitro 
tooth models [98].

2.3.2 Surfactants

The anionic surfactant, sodium dodecyl sulfate, has been reported to destruct 
biofilm via enhancing the formation of central cavity within biofilm [99]. 
Cetyltrimethylammonium bromide (Catanionic surfactant), together with appli-
cation of high shear stress, increased the detachment of Pseudomonas fluorescens 
biofilms [100]. The non-ionic surfactants, polyoxy ethylene sorbitan monolaurate 
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(Tween-20) and ethoxylated p-tert-octyl phenol (Triton X-100), were demon-
strated to cause biofilm detachment [100]. Certain biosurfactants, which are 
surface active molecules formed by microorganisms, were reported to have antib-
iofilm activity. For example, surfactin, obtained from Bacillus subtilis, was found 
to have antibiofilm activity in case of Salmonella enterica in polyvinyl chloride 
microtiter wells and urethral catheters [101]. Another example is Rhamnolipids, 
that are produced principally, by P. aeruginosa, were found to promote the dispersal 
of bacterial biofilm [99]. Additionally, biosurfactants from P. fluorescens prevent the 
attachment of Listeria monocytogenes to stainless steel surfaces [102].

2.3.3 Free fatty acids

Free fatty acids obtained via hydrolysis of lipids by enzymes [103]. Certain 
members of free fatty acids are reported to exhibit antibiofilm activity [104]. For 
example, cis-2-decenoic acid from P. aeruginosa enhanced the dispersal of biofilms 
and inhibited its formation in different pathogens, such as Klebsiella pneumoniae, 
E. coli, Proteus mirabilis, Streptococcus pyogenes, B. subtilis and S. aureus, in addition 
to C. albicans [105]. Another example is cis-9-octadecenoic acid (oleic acid) that 
was reported to repress biofilm formation in S. aureus by interference with the ini-
tial attachment of bacterial cells [106]. The diffusible signal factor; cis-11-methyl-
2-dodecenoic acid, from Xanthomonas campestris inhibits biofilm formation in 
case of Bacillus cereus [107]. This study showed also that diffusible signal factor or 
its structural analogs increased the antibiotic susceptibility of numerous bacterial 
pathogens, by inhibition of biofilm formation [107].

2.3.4 Metal chelators

Removal of metals from the microbial environment via metal chelators renders 
bacteria more susceptible to antimicrobial agents, as metals are essential for different 
cellular processes [108]. Ethylenediaminetetraacetic acid (EDTA), the most-known 
metal chelator, has been reported to exhibit antibiofilm activity against S. aureus, 
and to eradicate the in vivo biofilm models on catheters [109]. Combination of EDTA 
with minocycline has effectively reduced the colonization of S. epidermidis, S. aureus 
and C. albicans on catheters [110]. Similarly, the combination of EDTA and flucon-
azole remarkably inhibited biofilm assembly in C. albicans [111].

2.3.5 Enzymes

Based on their target, the antibiofilm enzymes are classified into three types: 
polysaccharide-degrading enzymes, nucleases and proteases.

2.3.5.1 Polysaccharide-degrading enzymes

Alpha amylase enzyme was found to inhibit biofilm formation by S. aureus 
through the detachment of biofilm and interfering with aggregation of cells [112]. 
Dispersion B, a bacterial glycoside hydrolase, degrades poly-N-acetylglucosamine 
(PNAG), a main matrix exopolysaccharide of S. aureus and E. coli [113]. Such 
polysaccharide is produced by many bacteria and fungi and plays an important role 
in surface adhesion, and biofilm formation. Furthermore, PNAG was reported to 
successfully disrupt the biofilm matrix of S. epidermidis [114]. Moreover, the com-
bination of dispersion B and triclosan was reported to significantly reduce biofilm 
formation of E. coli, S. aureus and S. epidermidis [115].
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2.3.5.2 Nucleases enzymes

Deoxyribonuclease I (DNase I) degrades DNA in biofilm matrix [104]. 
Moreover, it was shown to have antibiofilm activity and to detach the biofilms 
produced by different bacterial species [116]. Such nuclease can prevent the initial 
adherence of microbial cells to surfaces via the degradation of cell surface-associ-
ated nucleic acids that act as surface adhesins [117]. Furthermore, DNase I has been 
found to increase the sensitivity of bacterial cells in biofilm matrix to antibiotics, 
resulting in reduction of biofilm mass [118].

2.3.5.3 Proteases

Proteases act as antibiofilm agents because they are able to inhibit cell-cell 
communication, in biofilms, via hydrolysis of extracellular protein fibers and 
surface adhesins [104]. Subtilisins, a class of serine proteases produced by Bacillus 
species, were reported to prevent the adherence of microorganisms to surfaces 
[119]. The coating of silicone surfaces with multiple layers of amylase or acylase has 
been found to inhibit biofilm formation in case of P. aeruginosa and S. aureus [120]. 
Another example is lysostaphin, a metalloprotease produced by Staphylococcus 
simulans, was shown to prevent the adherence of S. aureus to lysostaphin-coated 
catheters [121].

2.3.6 Amino acids

d-Amino acids have been shown to inhibit biofilm formation in B. subtilis, via 
activating the release of amyloid fibers [122]. Such inhibitory effect was reversed by 
their cognate l-amino acids [123]. Furthermore, d-amino acids were shown to have 
antibiofilm activity in case of P. aeruginosa and S. aureus [122].

2.3.7 Nitric oxide generators

Exogenous generation of nitric oxide (NO) by agents, for example, sodium 
nitroprusside has been shown to trigger the bacterial growth from the biofilm 
form to the planktonic form via the reduction of the level of cyclic di-GMP inside 
the bacterial cells [104]. Further NO-generators, for example, S-nitroso-N-acetyl 
penicillamine and S-nitroso-l-glutathione were found also to induce the disper-
sion of P. aeruginosa biofilm [124]. The dispersion of biofilm by NO-generators was 
also demonstrated in B. subtilis [125]. Recently, it has been reported that catheters 
charged with NO prevented the adherence and the colonization of P. aeruginosa, E. 
coli and C. albicans on their surfaces [126].

2.3.8 Natural agents

Alkaloids are a group of natural organic compounds that contain a nitrogen 
atom and are present in different species of plants. The alkaloid berberine has 
been reported to inhibit biofilm formation in S. epidermidis biofilm at a concen-
tration of 30 μg/mL, possibly via binding to the amyloid proteins in the biofilm 
matrix [127]. Reserpine has been shown to effectively prevent biofilm formation 
in K. pneumoniae at a concentration of 0.0156 mg/mL, which was 64-fold lower 
than its minimum inhibitory concentration [128]. Tetrandrine inhibited biofilm 
formation of C. albicans at a concentration of 32 mg/L, which is the MIC50 of that 
alkaloid against C. albicans SC5314 [129].
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Guaijaverin, a flavonoid obtained from the leaves of Psidium guajava, has been 
shown to prevent the attachment of S. mutans to smooth surfaces by 83.7% at a 
concentration of 500 μg/mL. Eembelin, which is isolated from Embelia ribes, has 
been shown to inhibit biofilm formation in S. mutans [130]. Macelignan, isolated 
from the nutmegs of Myristica fragrans, was shown to reduce more than 50% of S. 
mutans biofilm at a concentration of 10 μg/mL [131].

Terpenes are a large class of natural hydrocarbons that are synthesized in 
microorganisms, plants and animals. Bakuchiol, isolated from the seeds of 
Psoralea corylifolia, has been shown to inhibit the adherence of S. mutans [132]. 
Other examples for terpenes that inhibit biofilm formation in S. mutans, are 
Xanthorrhizol (in combination with chlorhexidine gluconate) and casbane 
diterpene [133, 134].

2.4 Bacteriocins

Bacteriocins are proteins or peptides that are produced by bacteria or archaea, 
and are usually active against strains of bacteria that are related or unrelated to 
the producer strain [135]. Several bacteriocins are reported to exhibit antibiofilm 
activity and/or antimicrobial activity. The results of some these reports are sum-
marized in Table 1.

2.5 Phage therapy

Phage therapy, which is also termed viral phage therapy, is the utilization of 
bacteriophages as medicaments for controlling and treating diseases brought 
by pathogenic bacterial infections [145]. Bacteriophages, like other viruses, are 
obligate intracellular parasites that utilize the enzymatic machinery of their hosts 
for establishing their physiological functions and replication [131]. The hosts for 
bacteriophages are bacteria, and phages have unique ability to specifically infect 
bacterial hosts resulting in their lysis [8].

Bacteriocin Source Antimicrobial activity Antibiofilm activity

Mutacin 1140 Streptococcus mutans Oral biofilm-associated 
with Streptococcus sobrinus, 
Streptococcus oralis [136]

Nisin A Lactococcus lactis subsp. 
lactis

Enterococcus faecalis and 
Streptococcus gordonii [137]

Listeria monocytogenes [138]

Gallidermin Staphylococcus 

gallinarum

Staphylococcus aureus and 
Staphylococcus epidermidis 
[139, 140]

Sonorensin Bacillus sonorensis MT93 Listeria monocytogenes and 
Staphylococcus aureus [141]

Staphylococcus aureus [141]

Epidermicin 
NI0

Staphylococcus 

epidermidis

MRSA, Enterococci [142] Staphylococcus  

epidermidis [142]

Amylolysin Bacillus 

amyloliquefaciens GA1
Listeria monocytogenes, 
Staphylococcus aureus and 
Staphylococcus  

epidermidis [143]

Philipimycin Actinoplanes 

philippinensis MA7347
MRSA [144]

Table 1. 
Bacteriocins produced from different sources and exhibit antimicrobial and antibiofilm activity.
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There are many conceivable usages for phage therapy in the treatment of crucial 
diseases in plants, animals as well as human [8, 145]. An outstanding advantage of 
utilizing bacteriophages over commonly used antibiotics, during treating infectious 
diseases, is their selectivity and specificity to infect and lyse infectious bacteria 
only without harming the host [9]. Besides, bacteriophages cause no harm to other 
organisms that live in a commensalism within hosts, such as the normal flora in 
human, which decreases significantly the incidence of superinfections or other 
opportunistic infections [10]. Moreover, due to their mode of action that phages 
replicate in vivo within their bacterial hosts, they can be used in modicum concen-
trations, which results in decreasing any side effects may rise during therapy and 
giving them a high therapeutic index [9, 10]. In addition, the capability of bacte-
riophages to penetrate bacterial biofilms that act as shields during the conventional 
antibiotic therapy, gives phages a superiority in controlling and treating diseases 
brought by pathogenic bacterial infections [146]. As living organisms, the capability 
of bacteriophages of continuous evolution, gives them the ability to overcome any 
resistance that can be developed by the evolution of pathogenic bacteria [146, 147]. 
All these tremendous advantages put the bacteriophage treatment as a superior 
alternative for treating diseases brought about multidrug resistant MDR bacterial 
pathogens [132]. On the other hand, the high bacterial host specificity of bacte-
riophages is encountered as a disadvantage during therapy, where, a phage can kill 
only its specific bacterial strain. However, this drawback can be solved by utilizing 
mixtures of bacteriophages, which is termed phage cocktails that have different 
pathogenic specific bacterial hosts as targets, to enhance the opportunities of 
unguis complete treatment [148]. Attention must be given, during the preparation 
of these cocktails, to the fact of continuous evolution of new MDR strains, so the 
cocktails must be updated periodically to be sufficient enough to treat infections 
brought by these strains [148, 149].

Historically, the first trials for the utilization of bacteriophages as medicaments 
for treating bacterial pathogens was reported in the Eastern world before the 
discovery of marvelous medicaments so-called antibiotics; however, there was any 
report of their usage in the Western world [150, 151]. The ability of bacteriophages 
to infect and lyse pathogenic bacteria was discovered by the scientists Frederick 
Twort and Felix D’Hérelle, who worked on Shigella dysenteriae [152]. They found 
that the cultures of stool specimens recovered from convalescent patients who were 
suffering from Shigella dysentery always depicting a high titer of phages [153]. 
Subsequently, they recorded that phages are the most abundant organisms in the 
environment and there are many sources where they can be found combined with 
their bacterial hosts; including gut and feces of convalescent patients as well as sew-
ages [153]. Thereafter, due to their ubiquity especially in sewages, bacteriophages 
were widely utilized as medicaments for controlling and eradication of diseases 
brought by pathogenic bacteria [8].

It has been estimated that there are more than 100 different phage species and at 
least 10 phages for each bacterium. The International Committee for the Taxonomy 
of Viruses (ICTV) was affirmed at 1971 with the objective to always bring to 
date the taxonomic guidelines of viruses. The ICTV classified tailed bacterio-
phages (bacterial infecting phages) under the order of viruses which is termed 
Caudovirales. In this respect, three main families are involved within this order 
named Siphoviridae, Myoviridae and Podoviridae. The main difference between 
bacteriophages belonging to each of these families is the characteristics of the tail. 
Phages under the Siphoviridae family have long and non-contractile tails, and those 
belong to Myoviridae family have long and contractile tails, while those belong to 
the Podoviridae family have short, stubbed tails and a striking lack of features. Each 
of these three families can also be divided into different genera [8].
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Compared with antibiotics and other therapeutic regimens, the steps and cost 
of production of bacteriophages are much easier and cheaper, respectively [10]. The 
easiest process for capturing of bacteriophages is done through collecting samples 
that seem to involve high titers of phages like sewage water samples. The collected 
samples are inoculated with the host bacterium, which seems to be infected by 
phages, on suitable growth medium. The successful isolation of certain lytic phage 
is depicted by the presence of clear inhibition zones in which bacteria cannot grow 
termed plaques; which indicates the lytic power of the isolated phage. Thereafter, the 
titer of isolated phage is increased by passing the phage in its specific bacterial strain 
several times to increase its concentration. Then, the pure supernatants containing 
phages are gained by centrifugation of bacterial/phage mixture, filtered through 
bacterial filters to remove any bacterial debris and pure phages are participated using 
special solutions containing NaCl and polyethylene glycol 8000 (PEG8000) [154].

Caution must be given during isolation of phages as a type called lysogenic bac-
teriophage may be isolated rather than the required bacterial pathogen killing type, 
which is called lytic bacteriophage. Lysogenic bacteriophages do not lyse bacterial cells, 
but they perform as tools for transfer of genetic elements of the nucleic acid between 
bacteria; including the genes responsible for antibiotic resistance. Fortunately, the 
most abundant phages are of the lytic type not the lysogenic [8, 145, 150].

Practically, bacteriophages can be dispensed and used through many routes 
including; less commonly oral or systemic route and most commonly topical 
route as sprays, liquid solutions or their application on surgical dressings for the 
treatment of wound infections [154]. The possibility of their clearance during 
the presence in blood stream by immune system or presence of any trace hazards 
of chemicals or parts of the bacterial host used during their production, made 
bacteriophage usage as intravenous injections uncommon and very rare [148, 149]. 
Lyophilization of bacteriophages and their production as solid dosage forms as pills 
or tablets do not decrease their potency and increase their shelf life as oral dosage 
forms [155, 156]. The supplementation of oral forms of phages, either solid or 
liquid, with antacid increases its stability, as it protect them from the high acidity 
during their bypassing in the stomach [155, 156].

The application of bacteriophages as therapeutic medicaments has been exten-
sively reported. For example, in the field of human health promotion and food 
protection, different bacteriophages have been employed to eradicate common 
bacterial pathogens that may cause food spoilage as Listeria sp. and Campylobacter 
sp. [157, 158]. In the fields of veterinary medicine and agriculture different 
bacteriophages were employed to control and eradicate bacterial pathogens like 
Xanthomonas, Escherichia, Campylobacter and Salmonella [159]. Moreover, in the 
field of fish production and aquacultures, different bacteriophages were employed 
to control and eradicate bacterial pathogens like Vibrio sp. [160]. In the field of 
human medicine, different bacteriophages were employed to control and eradicate 
bacterial pathogens including P. aeruginosa, Staphylococci, Streptococci, E. coli, Vibrio 
and Shigella and Mycobacterium sp. [161, 162]. Most recent application of bacterio-
phages in human medicine is their utilization as drug delivery system, which is very 
interesting as they can be used for the delivery of common antibiotics [163, 164] or 
antitumor agents [165].

A more recent policy, termed enzybiotic, for using phages as therapeutic 
agents is the utilization of their enzymes only, which are produced by recombinant 
technology, combined with other antibacterial agents or as a separate antibacterial 
agents [166].

As other therapeutic regimens for controlling bacterial pathogens, the patients 
may develop extensive fever and shock, when the bacteria are lysed due to the 
release of what is called pyrogens or endotoxins within the patient [167]. This 
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problem can be coped during phage therapy through the utilization of genetically 
modified phages that harbor enzymes having the ability to lyse these endotoxins 
and the other bacterial structures into harmless products [168].

Examples of therapeutic approaches of bacteriophages and their enzymes are 
illustrated in Table 2.

Infection/

disease

Model Causative agent Route of administration 

of phages/enzymes

Treatment 

outcomes

Reference

Chronic otitis Human Pseudomonas 

aeruginosa

Oral administration of 
phages

Successful 
treatment

[169]

Typhoid Human Salmonella typhi Oral administration of 
phages

Successful 
treatment

[170]

Diabetic foot 
ulcer

Human Staphylococcus 

aureus

Topical application of 
phages

Successful 
treatment

[171]

Sepsis Murine Vibrio 

parahaemolyticus

Intraperitoneal and oral 
administration of phages

Successful 
treatment

[172]

Pneumonia Murine Pseudomonas 

aeruginosa

Intranasal administration 
of phages

Successful 
treatment

[154]

Ulcers and 
wounds

Human Proteus vulgaris Topical application of 
phages

Successful 
treatment

[173]

Meningitis Murine Escherichia coli Intraperitoneal 
or subcutaneous 

administration of phages.

Successful 
treatment

[174]

Sepsis Murine Acinetobacter 

baumannii

Intraperitoneal 
administration of phages

Successful 
treatment

[175]

Bacteremia Murine Enterococcus 

faecium

Intraperitoneal 
administration of phages

Successful 
treatment

[176]

Ileocecitis Hamster Clostridium difficile Oral administration of 
phages

Successful 
treatment

[177]

Dysentery Human Shigella dysenteriae Oral administration of 
phages

Successful 
treatment

[178]

Cholera Human Vibrio cholerae Oral administration of 
phages

Successful 
treatment

[178]

Pneumonia Murine Streptococcus 

pneumoniae

Intraperitoneal 
administration of Cpl-1 

lysin enzyme

Successful 
treatment

[179]

Bacteremia Murine Streptococcus 

pyogenes

Intraperitoneal 
administration of PlySs2 

lysin enzyme

Successful 
treatment

[179]

In vitro In vitro Bacillus anthracis Application of PlyG lysin 
enzyme

Significant 
reduction 

in bacterial 
density

[180]

Endophthalmitis Murine Staphylococcus 

aureus

Application of Ply187 
lysin as eye drops

Successful 
treatment

[181]

Bacteremia Murine Acinetobacter 

baumannii

Administration of 
PlyF307 lysin enzyme

Successful 
treatment

[182]

In vitro In vitro Pseudomonas 

aeruginosa and 
Salmonella 

typhimurium

Application of ABgp46 
lysin enzyme

Significant 
reduction 

in bacterial 
density

[183]

Table 2. 
Therapeutic approaches of bacteriophages and their enzymes.
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3. Conclusion

Various approaches have been developed for competing microbial virulence and 
resistance. Quorum sensing signals and global regulators play an essential role in 
controlling the gene expression of virulence factors, and the expression of proteins 
required for adaptation to environmental and stress condition. Therefore, control of 
these regulators will stop the microbial pathogenicity. In addition, biofilms act as a 
defense mechanism against host immunity and antimicrobial therapy. Natural and 
synthetic compounds have approved activities in eradication of biofilm formation. 
Besides, phage therapy, which is currently successful in destruction of bacterial 
pathogens that do not respond to conventional antimicrobials. These methods 
would open up new perspectives for management the up growing problem of 
microbial resistance. Further, in vivo studies are required for real applications of 
these trends in eradication of microbial infections.
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