
Selection of our books indexed in the Book Citation Index

in Web of Science™ Core Collection (BKCI)

Interested in publishing with us?
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected.

For more information visit www.intechopen.com

Open access books available

Countries delivered to Contributors from top 500 universities

International authors and editors

Our authors are among the

most cited scientists

Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

12.2%

185,000 200M

TOP 1%154

6,900

Chapter

Solving Partial Differential
Equation Using FPGA Technology
Vu Duc Thai and Bui Van Tung

Abstract

This chapter introduces the method of using CNN technology on FPGA chips to
solve differential equation with large space, with lager computing space, while
limitation of resource chip on FPGA is needed, we have to find solution to separate
differential space into several subspaces. Our solution will do: firstly, division of the
computing space into smaller areas and combination of sequential and parallel
computing; secondly, division and combination of boundary areas that are required
to be continuous to avoid losing temporary data while processing (using buffer
memory to store); and thirdly, real-time data exchange. The control unit controls
the activities of the whole system set by the algorithm. We have configured the
CNN chip for solving Navier-Stokes equation for the hydraulic fluid flow success-
fully on the Virtex 6 chip XCVL240T-1FFG1156 by Xilinx and giving acceptance
results as well.

Keywords: Navier-Stokes equation, cellular neural network, field programmable
gate array, boundary processing, separating computing space

1. Introduction

Solving the partial differential equation (PDE) has been investigated by many
researchers, implementing digital decoding on PCs successfully. However, with the
problem of large computing space, the resolution on the PC is difficult to meet the
requirements of speed and accuracy calculations; in some cases, the problem cannot
be solved because of the calculation. Cellular Neural Network technology (CNN)
researchers have applied cellular neural network (CNN) technology successfully to
perform analysis of the problem, design CNN chip, and solve some PDEs.

Using CNN technology for solving PDE, we have to analyze and difference the
original particular equations of problem, find templates, design CNN architecture,
and then configure FPGA to make a CNN chip. It means that there is no CNN chip
for every equation, but for each problem (consist of some equations), there is need
to design appropriate CNN chip. When solving large problems, computing
resources are needed to configure blocks of CNN chips. In order to save resources,
we have proposed a solution for dividing computing space into smaller subspaces
and composite parallel and sequential calculations, which ensures high computing
rates but saves resources of FPGA chips used.

Because the architecture of CNN chips varies depending on each problem,
making the CNN chip is very difficult and costly with traditional methods. Using

1

the FPGA technology, users can use hardware programming languages, such as
Verilog and VHDL, to configure the logic elements in the FPGA to produce the
electronic circuit of a CNN chip. The recent FPGA architectures (Virtex 7; Stratix
10) have many tools support to test, optimize, and coordinate data exchange. The
CNN designer should use FPGA for making a CNN chip.

2. CNN and FPGA technology

2.1 Cellular neural network technology

Cellular neural network (CNN) was introduced by Chua and Yang at Berkeley
University, California (USA), in 1988, which combined both analog spatial tempo-
ral dynamic and logic [1–3]. The CNN paradigm is a natural framework to describe
the behavior of locally interconnected dynamic systems, which has an arrayed
structure, so it is very useful in solving the partial differential equations [3–7].
Today, visual microprocessors based on this processing type can perform at
TeraOPs computing power and approximately 50,000 fps. The possibility of devel-
oping algorithms and programs based on CNN was quickly exploited worldwide.
Up to now, there are several CNN models for processing images, solving PDE,
recognizing pattern, gene analysis, etc. Depending on problems, the designer can
make a CNN chip having size of millions cells. The common CNN architectures are
1D, 2D, and 3D.

The standard CNN 2D is the dynamic system of autonomous cells that are
connected locally with its neighbor forming a two-dimensional array [2, 18]. Each
cell in the array C(i,j) contains one independent voltage source, one independent
current source, a linear capacitor, resistors, and linear voltage-controlled current
sources which are coupled to its neighbor cells via the controlling input voltage, and
the feedback from the output voltage of each neighbor cell C(k,l). The templates
A(i,j;kl) and B(i,j;k,l) are the parameters linking cell C(i,j) to neighbor C(k,l).
The effective range of Sr(I,j) on radius r of cell C(I,j) is identified by the set of
neighbor cells which satisfies (Figure 1).

Sr i, jð Þ ¼ C k, lð Þ jmax jk–ij, jl– jjf g≤ rf g

with 1≤ k≤ M, 1≤ l≤ N:

The state equation of cell C(i,j) is given by the following equation:

C
∂xij
∂t

¼ �
1

R
xij þ

X

C k, lð Þ∈ Sr i, jð Þ

A i, j; k, lð Þ ykl þ
X

C k, lð Þ∈ Sr i, jð Þ

B i, j; k, lð Þukl þ zij (1)

With R, C is the linear resistor and capacitor; A(i,j;kl) is the feedback operator
parameter; B(i,j;kl) is the control parameter; and zij is the bias value of the cell
C(i,j). On the CNN chip, (A, B, z) are the local connective weight values of each cell
C(i,j) to its neighbors. The output of the cell C(i,j) is presented by Yij as:

Y ij ¼ f xij
� �

¼
1

2
∣xij þ 1∣þ

1

2
∣xij–1∣ (2)

The characteristic of the CNN output function Yi,j = f(xij) is presented in
Figure 2.

On the CNN 3D, beside connection with neighbors, the cell has other connection
to upper and lower layer in the three-dimensional space [18] as shown in Figure 3.

2

Boundary Layer Flows - Theory, Applications and Numerical Methods

Thus, if radius r = 1, the cell C(i,j,k) has 26 neighbors; hence, the templates A and B
have more three coefficients A(i,j,k) and B(i,j,k).

The state equation of CNN 3D takes the form:

C
∂xijk
∂t

¼ �
1

R
xijk þ

X

C l,m, nð Þ∈ Sr i, j, kð Þ

A i, j, k; l,m, nð Þ ylmn

þ
X

C l,m, nð Þ∈ Sr i, j, kð Þ

B i, j, k; l,m, nð Þ ylmn þ zijk (3)

The output function is similar to CNN 2D:

yijk ¼ f xijk
� �

¼
1

2
jxijk þ 1j þ jxijk � 1j
� �

For the problem-solving of three-dimensional PDE, the CNN 3D must be used.
The original PDE is differentiated and from that the appropriate templates (A,B,z)
of the CNN 3D are generated.

Figure 2.
CNN circuit output function.

Figure 3.
The 3D CNN, with r = 1, (having 26 neighbors) in three dimensions coordinates x,y,z.

Figure 1.
The architecture of a CNN chip

3

Solving Partial Differential Equation Using FPGA Technology
DOI: http://dx.doi.org/10.5772/intechopen.84588

2.2 Field-programmable gate array technology

Field-programmable gate array (FPGA) is the technology in which the blank
blocks have available resources of logic gates and RAM blocks are used to imple-
ment complex digital computations. FPGAs can be used to implement any logical
function. The FPGA block is able to update the functionality after shipping, partial
reconfiguration of a portion of the design, and the low nonrecurring engineering
costs relative to an ASIC design [13–16].

A recent trend has been to take the coarse-grained architectural approach by
combining the logic blocks and interconnects of traditional FPGAs with embedded
chips and related peripherals to form a complete “system on a programmable chip”
[17–19].

Users like teachers and students could use FGGA for making prototypes for
testing application system, with VHDL or Verilog users easily design and test and
then reconfigure the system until it has desired results.

2.3 Using FPGA to make CNN chip for solving PDE

Because the CNN architecture is not the same for every application, based on
the standard model, the designer develops a particular chip for each problem.
FPGA is the most useful for configuring a blank chip to make a CNN chip using
programming language like Verilog or VHDL. For solving PDE, firstly, one needs
to analyze (differencing) the original model of partial differential equations for
finding appropriate template, then base on template found designing architecture
CNN chip, finally, using VHDL to configure FPGA following designed hardware
making CNN chip.

Some PDEs have been solved using the CNN technology:
Burger equation [3]:

∂u x, tð Þ

∂t
¼

1

R

∂
2u x, tð Þ

∂x2
� u x, tð Þ

∂u x, tð Þ

∂x
þ F x, tð Þ

Klein-Gordon equation [19]:

∂
2u x, tð Þ

∂t2
¼ ∇2u x, tð Þ � sinu x, tð Þ

Heat diffusion equation [3]:

∂u x, y, t
� �

∂t
¼ c∇2u x, y, t

� �

Black-Scholes equation [9]:

∂V x, tð Þ

∂t
¼ rV x, tð Þ �

1

2
σ2S2

∂
2V x, tð Þ

∂S2
� rS

∂V x, tð Þ

∂S

Air pollution equation [4]:

∂φ

∂t
þ divvφþ σφ� γ

∂
2φ

∂z2
� μ∇2φ ¼ f x, y, zð Þ

4

Boundary Layer Flows - Theory, Applications and Numerical Methods

Saint venant 2D equation [5]:

∂H

∂t
þ

∂u

∂x
þ

∂v

∂ y
¼ 0

∂u

∂t
þ

∂u2

∂x
þ g

∂H

∂x
þ

∂uv

∂ y
¼ �gu

u2 þ v2ð Þ
1=2

K2
xH

2

∂v

∂t
þ

∂v2

∂ y
þ g

∂H

∂ y
þ

∂uv

∂x
¼ �gv

u2 þ v2ð Þ
1=2

K2
yH

2

Saint venant 1D equation [6]:

b
∂h x, tð Þ

∂t
þ

∂Q x, tð Þ

∂x
¼ q (4)

∂Q x, tð Þ

∂t
þ

∂
Q x, tð Þ2

bh x, tð Þ

h i

∂x
þ gbh x, tð Þ

∂h x, tð Þ

∂x
� gIbh x, tð Þ þ g Jbh x, tð Þ ¼ kqq (5)

Example of making a CNN chip for solving Saint venant 1D:

• Designing the templates

First, changing the original equation (4)

b
∂h x, tð Þ

∂t
þ

∂Q x, tð Þ

∂x
¼ q

⇔

∂h x, tð Þ

∂t
¼

�∂Q x, tð Þ

b∂x
þ

q

b
(6)

and then choosing the difference space of variables x with step Δx for right part
of (6). After differencing only the right side of (6) for space variable x by Taylor
expansion, one has equation for cell at position (i):

∂h

∂t
¼ �

1

2bΔx
Q iþ1 � Q i�1

� �

þ
q

b
(7)

Note that, following the CNN algorithm, on the left, we do use symbol (∂h=∂t).
From (7), one has found templates:

AhQ ¼
1

2bΔx

1

Rh

�1

2bΔx

� �

;Bh ¼ 0 1 0½ �;zh ¼ 0;

where Rh is the linear resistance on cell circuit of h.
For Eq. (5), changing slightly with assumptions above:

5

Solving Partial Differential Equation Using FPGA Technology
DOI: http://dx.doi.org/10.5772/intechopen.84588

∂Q x, tð Þ

∂t
þ

∂
Q x, tð Þ2

bh x, tð Þ

h i

∂x
þ gbh x, tð Þ

∂h x, tð Þ

∂x
� gIbh x, tð Þ þ g Jbh x, tð Þ ¼ kqq (8)

Assume that q > 0, then kq = 0. After differencing, applying the template design
algorithm of CNN, one can has templates for (8):

AQ ¼
Q iþ1

2bΔxhiþ1

1

RQ
�

Q i�1

2bΔxhi�1
�;

AQh ¼
gbhi
2Δx

gb I � Jð Þ �
gbhi
2Δx

� �

;BQ ¼ 0;zQ ¼ 0;

From template found, we can design the CNN architecture for problem
as (1) two layered-1D CNN chip (Figure 4) and (2) the h, Q processing block
(Figure 5).

The cell is mixed both of h, Q in one block to make the physical architecture of a
CNN cell.

In general, for each calculation, we need some basic computing block like
ADDITION, SUBTRACT, MULTIPLE, DIVIDE. When designing a CNN cell using
FPGA, one has to design many separate blocks of them to perform arithmetical

Figure 4.
Logical architecture of a CNN cell.

Figure 5.
Logical architecture of a h, Q cell.

6

Boundary Layer Flows - Theory, Applications and Numerical Methods

processing for each input. In order to save computing resource in FPGA, the
method that shares basic block in one cell leading to sequential calculating can be
used (Figure 6). In this case, the processing time of each cell will be high. To reduce
the processing time of each cell, we can use a pipeline mechanism shown in
Figure 7, but it needs more computing resource for each cell. Finally, for cells in a
CNN chip, we process parallel as in Figure 8.

Figure 6.
Physical architecture of CNN cell.

Figure 7.
Solution for physical architecture CNN chip.

7

Solving Partial Differential Equation Using FPGA Technology
DOI: http://dx.doi.org/10.5772/intechopen.84588

C1, … , C4 are the coefficients as shown in Figure 7, (C1= 1
2b∆x∆t; C2=

gb
2∆x∆t; C3=

gb I � Jð Þ∆t; C4= q
b∆t).

If each cell is uses a pipeline mechanism shown in Figure 7. With the length of a
pipeline is 6, the first calculation pays 6 clock pulse (clk), and each calculation after
that only needs 1 clk.

3. Solving Navier-Stokes equations

3.1 Physico-mathematical model of Navier-Stokes equations

In hydraulics, many flow models have been researched, such as flows in chan-
nels, streams, or rivers, for controlling the flow for preventing disasters, saving
water, and exploiting energy of the flow as well. Most of mathematical models of
those phenomena are partial differential equations like Saint venant equations and
Navier-Stokes equations [8, 9]. Some types of Navier-Stokes equations have various
parameters and constraints. Using CNN technology, we could solve some of them
which have clear values of boundary conditions; it means we do not research
boundary problems deeply. The effectiveness of the CNN technology is making a
physical parallel computing chip to increase the computing speed for satisfying a
real-time system.

Navier-Stokes equations here consist of three partial differential equations, with
functional variables representing water height, and flow velocity in x- and
y-directions. The empirical model is a flow through a small port, which diffuses in
two directions Ox and Oy.

Solving Navier-Stokes equations by using CNN requires the discretion of
continuity model by difference method, the smaller difference intervals the higher
accuracy. However, if difference intervals are too small, then it leads to increasing
the calculation complexity and time. The CNN chip with parallel physically
processing abilities, the above difficulties will be overcome.

Figure 8.
A core architecture for CNN chip.

8

Boundary Layer Flows - Theory, Applications and Numerical Methods

3.2 Description equations in Navier-Stokes equations

• Equations describing the water level

∂ρzw
∂t

þ
∂ρqx
∂x

þ
∂ρq y

∂ y
¼ ρqA (9)

Assume that the height of water is taken from the bottom of the flow, which is
regarded as the origin of the coordinate system, so zw has no negative values.

• Momentum equations in x-direction:

∂ρqx
∂t

þ
∂

∂x
ρβ

q2x
d

� �

þ
∂

∂ y
ρβ

qxq y

d

� �

þ ρgd
∂zw
∂x

þ ρgdS fx � τwx �
∂

∂x
ρKL

∂qx
∂x

� �

�
∂

∂ y
ρKT

∂qx
∂ y

� �

¼ 0 (10)

• Momentum equations in y-direction:

∂ρq y

∂t
þ

∂

∂ y
ρβ

q2y
d

 !

þ
∂

∂x
ρβ

q yqx
d

� �

þ ρgd
∂zw
∂ y

þ ρgdSfy � τwy �
∂

∂ y
ρKL

∂q y

∂ y

� �

�
∂

∂x
ρKT

∂q y

∂x

� �

¼ 0 (11)

Explain the meanings of quantities in the equations:

•
∂ρqx
∂t and

∂ρq y

∂t : quantities characterizing the momentum variation over time in
x-axis and y-axis, respectively.

• ∂

∂x ρβ
q2x
d

� 	

and ∂

∂ y ρβ
q2y
d

� 	

: kinetic energy variations of flow in x- and

y-directions.

• ρgd ∂zw
∂x and ρgd ∂zw

∂ y : potential energy variations of flow in x- and y-directions.

• ρgdS fx and ρgdSfy: influence of friction by bottom and walls of channel on flow

in x- and y-directions. Values of Sfx and Sfy are determined based on physical

properties of bottom and walls of hydraulic channels according to the
following formulas:

S fx ¼ qx

n2 q2x þ q2y

� 	1=2

d1=3
;Sfy ¼ q y

n2 q2y þ q2x

� 	1=2

d1=3
n is Manning coefficientð Þ

• τwx and τwy: wind pressure on free surface of hydraulic flow in x-and
y-directions are calculated as follows:

τwx ¼ csρaW
2cos Ψð Þ;τwy ¼ csρaW

2sin Ψð Þ,

where:

cx ¼
10�3;khiW≤ Wmin

cs1 þ cs2 W‐Wminð Þ½ �:10�3;khiW>Wmin

()

;

9

Solving Partial Differential Equation Using FPGA Technology
DOI: http://dx.doi.org/10.5772/intechopen.84588

With cs1; cs2; Wmin are values get from practical, for example: Wmin = 4 m/s;
wind speed is 10 m/s, then cs1 = 1.0; cs2 = 0.067;

• ρa is the air density at free surface (kgm�3); W is wind speed at free surface;
and Ψ is the angle between wind direction and x-axis.

• Expressions, ∂

∂x ρKL
∂qx
∂x

� 	

� ∂

∂ y ρKT
∂qx
∂ y

� 	

and ∂

∂ y ρKL
∂q y

∂ y

� 	

� ∂

∂x ρKT
∂q y

∂x

� 	

, are the

impact of turbulence in hydraulic flow caused between x- and y-directions,

where: KL ¼
qxl
pe

with Pe as the Peclet coefficient with the value of 15–40; l as

the length of flow; KL as coefficient varying according to locations along flow;
and KT = 0.3–0.7 KL.

3.3 Analyzing and designing CNN to solve the equations

To simplify, change parameters as: the water level zw = h; and the velocity in x-
axis qx = u, in y-axis qy = v. Assume that qA = 0; the kinetic influence of turbulent
values between velocity in the direction from 0y to 0x (or 0x to 0y) is trivial since
horizontal velocity is small enough to be considered as zero; then (9)–(11) are
rewritten:

∂h

∂t
þ

∂u

∂x
þ

∂v

∂ y
¼ 0 ⇔

∂h

∂t
¼ �

∂u

∂x
�

∂v

∂ y
(12)

∂v

∂t
þ

∂

∂ y
β
v2

d

� �

þ
∂

∂x
β
vu

d

� 	

þ gd
∂h

∂ y
þ gdSfy �

τwy

ρ
�

∂

∂ y
KL

∂v

∂ y

� �

¼ 0

⇔

∂v

∂t
¼

∂

∂ y
KL

∂v

∂ y

� �

�
∂

∂ y
β
v2

d

� �

�
∂

∂x
β
vu

d

� 	

� gd
∂h

∂ y
þ

τwy

ρ
� gdSfy

� �

(13)

∂u

∂t
¼

∂

∂x
β
u2

d

� �

þ
∂

∂ y
β
uv

d

� 	

þ gd
∂h

∂x
þ gdS fx �

τwx

ρ
�

∂

∂x
KL

∂u

∂x

� �

⇔

∂u

∂t
¼

∂

∂x
KL

∂u

∂x

� �

�
∂

∂x
β
u2

d

� �

�
∂

∂ y
β
uv

d

� 	

� gd
∂h

∂x
þ

τwx

ρ
� gdS fx

� �

(14)

Step 1: Differencing equations following Taylor formula
Using finite difference grid with difference interval in x-axis as Δx and in y-axis

as Δ y and apply Taylor difference formulas for Eqs. (12)–(14); we have difference
equations corresponding to the equations:

∂hij
∂t

¼
uiþ1, j � ui�1, j

2Δx
�
vi, jþ1 � vi, j�1

2Δy
(15)

∂ui, j
∂t

¼ �
β

d

uiþ1, j

2Δx
uiþ1, j �

ui�1, j

2Δx
ui�1, j

h i

�
β

d

vi, jþ1

2Δ y
uiþ1, j �

vi, j�1

2Δ y
ui�1, j

� �

�gd
hiþ1, j � hi�1, j

2Δx
gdSfx þ

1

ρ
τwxKL

uiþ1, j � 2ui, j þ ui�1, j

Δx2
�

(16)

10

Boundary Layer Flows - Theory, Applications and Numerical Methods

∂vi, j
∂t

¼ �
β

d

vi, jþ1

2Δy
vi, jþ1 �

vi, j‐1
2Δy

vi, j�1

� �

�
β

d

uiþ1, j

2Δx
vi, jþ1 �

ui‐1, j
2Δx

vi, j�1

h i

�gd
hi, jþ1 � hi, j�1

2Δx
� gdSfy þ

1

ρ
τwyKL

vi, jþ1 � 2vi, j þ vi, j�1

Δ y2
�

(17)

Step 2: Designing a sample of CNN
Based on CNN state equations and difference equations (15)–(17), we can have

CNN templates for layers h, u, v:

• Layer h:

Ahu ¼

0 0 0

1

2Δx
0

�1

2Δx

0 0 0

2

6

6

6

4

3

7

7

7

5

Ahv ¼

0
1

2Δ y
0

0 0 0

0
�1

2Δ y
0

2

6

6

6

6

6

6

4

3

7

7

7

7

7

7

5

(18)

• Layer u:

Auv ¼

0
βui, j�1

2dΔ y
0

0 0 0

0
�βui, jþ1

2dΔ y
0

2

6

6

6

6

6

6

4

3

7

7

7

7

7

7

5

; Auh ¼

0 0 0

gd

2Δx
0

�gd

2Δx

0 0 0

2

6

6

6

4

3

7

7

7

5

; Bu ¼
1

ρ
τwx

0 0 0

0 1 0

0 0 0

2

6

6

4

3

7

7

5

Au ¼

0 0 0

βui�1, j

2dΔx
þ

KL

Δx2
gd

n2 u2ij þ v2ij

� 	1=2

d1=3
þ

1

Ru
þ
4KL

Δx2
�βuiþ1, j

2dΔx
þ
�KL

Δx2

0 0 0

2

6

6

6

6

6

4

3

7

7

7

7

7

5

;

zu ¼ 0

(19)
• Layer v:

Avh ¼

0
gd

2Δ y
0

0 0 0

0
�gd

2Δ y
0

2

6

6

6

6

6

6

4

3

7

7

7

7

7

7

5

; Avu ¼

0 0 0

βui�1, j

2dΔx
0

�βui�1, j

2dΔx

0 0 0

2

6

6

6

4

3

7

7

7

5

; Bv ¼
1

ρ
τwy

0 0 0

0 1 0

0 0 0

2

6

6

4

3

7

7

5

; zv ¼ 0

Av ¼

0
βvi, jþ1

2dΔ y
þ

KL

Δ y2
0

KL

Δ y2
gd

n2 u2i, j þ v2i, j

� 	2

d1=3
þ

1

Rv þ
KL

Δ y2
�KL

Δ y2

0
�βvi, jþ1

2dΔ y
�

KL

Δ y2
0

2

6

6

6

6

6

6

6

6

6

6

4

3

7

7

7

7

7

7

7

7

7

7

5

(20)

Step 3: Designing hardware architecture of CNN to solve Navier-Stokes
equations

11

Solving Partial Differential Equation Using FPGA Technology
DOI: http://dx.doi.org/10.5772/intechopen.84588

Based on templates found in (18)–(20), we can design an architecture for circuit
for CNN chip. It is a three-layered CNN 2D. Then, the arithmetic unit for each layer
and links to perform parallel calculation on chip can be made. Figure 9 shows the
architecture of layer h and layer u (the layer v is similar to u).

3.4 Proposed system architecture for MxN CNN

The empirical problems that need a solution is that: firstly, identifying boundary
points of whole difference grid (space); secondly, dividing the entire computing
space into smaller subspaces. Division and combination of boundary areas need to
perform appropriately avoiding incorrect results because of tep time computing
time; thirdly, controlling real-time data exchange and combining sequential and
parallel computing in a CNN chip. The CNN chip proposed in this chapter has
solved similarity in the previous problems [4, 5]. The new issues here are dividing
computing space processing dynamic sub-boundary and combining sequential and
parallel.

3.4.1 General MxN CNN

Each CNN cell has its own data element and a core that performs the computing
function. The CNN has MxN CNN cells in which only (M-2)x(N-2) CNN cells have
computing functions, so that the CNN has MxN data elements and (M-2)x(N-2)
cores (Figure 10).

The Buffer supplies MxN data elements for CNN. Each MxN data element is
called as one block of data (Figure 11).

The white area is the data element for CNN boundary cells; and the gray part is
the data area which requires to be processed by CNN. The CNN arithmetic unit has
size of (M-2)x(N-2) cells processing data for the gray area which is inside the input
buffer unit.

The Input memory has PxQ blocks of data. It is a true dual port memory.
The Temp memory also has PxQ blocks of data. It is a simple dual port memory.

It is used to temporarily store data computed from CNN core and supply data for
Boundary updating unit.

Figure 9.
Logic architecture of cell of h, u.

12

Boundary Layer Flows - Theory, Applications and Numerical Methods

Data that need processing sent from PC have the size of mxn (Figure 12).
Assume that m = 5, n = 6, M = 3, and N = 4; the white part is boundary and the

gray part is the area requiring to be processed. Before the processing data, tempo-
rary vertical and horizontal boundaries be need to be added, as in Figure 13, column
(0,3) and row (3,0).

Temporary vertical and horizontal boundaries are added to the data structure
similar to CNN buffer. The data after being added from temporary vertical and
horizontal boundaries will be sent to Input memory. The blocks of data in the Input
memory unit (in case that mxn = 5x6,MxN = 3x4) are detailed as follows (Figure 14).

Figure 11.
Buffer (MxN) for CNN core.

Figure 10.
General architecture of a CNN chip.

Figure 12.
Computing space with main boundary.

13

Solving Partial Differential Equation Using FPGA Technology
DOI: http://dx.doi.org/10.5772/intechopen.84588

0, 1, 2,.., 6 are the addresses of blocks. In case that mxn = 5x6 and MxN = 3x4,
we have P = 3 and Q = 2.

PxQ ¼
m� 2

M� 2
x
n� 2

N � 2

The Boundary updating unit is in detail structure as follows (in case MxN = 3x4)
(Figure 15).

The control unit controls the activities of the whole system set by the algorithm
which is as follows:
(1) At every posedge of clk do
(2) {
(3) if (has IO event)
(4) do the IO task;
(5) else
(6) buffer = read(Input memory)
(7) if (finish computing the first block)
(8) if (BoundaryUpdating())
(9) write(Input memory)
(10) }

3.4.2 Proposed CNN architecture when M = 3 (3xN CNN)

The 3xN CNN architecture is similar to the general MxN CNN architecture
(M = 3). In order to reduce the memory consumption and simplify the Boundary
updating unit, there are some differences (Figure 16).

Each block of data in the memory (Input memory or Temp memory) is 1xN
data elements. Assume that the data which need processing sent from PC has
the size of mxn, m = 5, n = 6, and assume that N = 4. As mention above, the
data will be processed after temporary vertical boundaries are added; so that,
the Input Memory unit will has 5x2 blocks of data (m = 5, Q = 2) as follow
(Figure 17).

Each block has size of 1x4 data elements.
The Buffer unit is a Shift up register that has size of 3xN. The input and output

have sizes of 1xN and 3xN, respectively. The input is at the bottom.
The Input memory has m rows and Q columns of blocks of data. The control unit

reads the blocks in the Input memory by vertical and puts the block of data to the

Figure 13.
Divide computing space into subspace with subboundary.

14

Boundary Layer Flows - Theory, Applications and Numerical Methods

Figure 16.
The architecture of 3xN CNN chip.

Figure 15.
The Boundary updating structure (MxN = 3x4).

Figure 14.
The blocks of data in the Input memory in case that mxn = 5x6, MxN = 3x4.

15

Solving Partial Differential Equation Using FPGA Technology
DOI: http://dx.doi.org/10.5772/intechopen.84588

input of buffer. The buffer shifts up 1 step. After step 3, the Buffer has 3xN blocks
of data to supply to CNN core. After each step, the Buffer has 3xN blocks of data
that need to supply to CNN core (Figure 18).

The output of CNN core has the size of 1xN.
The Boundary updating unit is shown in Figure 19.
The control algorithm for control unit (Figure 20).

(1) At every posedge of clk do
(2) {
(3) if (has IO event)
(4) do the IO task;
(5) else
(6) buffer = read(Input memory);//read by vertical
(7) if (finish computing the first block of column q)
(8) if (column_of_current_block==0)

write(Temp memory);
else

BoundaryUpdating(CNNoutput,read(Temp
memory));

(9) write(Input memory);
(10) }

3.5 Implementation

In this part, we implement the 3xN CNN. Q, m, and N are the parameters that
we can configure before compiling and programming to the FPGA chip. For
defaulting, we assigned Q = 2, m = 8, and N = 4.

3.5.1 Development environment

For experiencing, the ISE Design Suite software version 14.7 and ML605 evalu-
ation board including chip XCVL240T-1FFG1156 (Virtex 6) are used to implement
the schematic of CNN.

First, we use Verilog HDL language to describe the CNN architecture. Then, we
use ISim simulator to verify our system. Finally, we program the system to the
FPGA chip on ML605 board.

The image of experience system as in Figure 20 is as follows.

3.5.2 Input data for h, u, v values

The input of CNN to solve the Navier-Stokes Equation has h, u, v values. We
use three Input memory units, three Buffer units, and three Temporary memory
units to store h, u, v values. The data element is represented in 32-bit floating point

Figure 17.
The memory with 5x2 blocks (m==5, n = 6, N = 4).

16

Boundary Layer Flows - Theory, Applications and Numerical Methods

Figure 18.
The Buffer’s state after each step (m==5, n = 6, N = 4).

Figure 19.
The output size of CNN core (N = 4).

Figure 20.
The Boundary updating structure (N = 4).

Figure 21.
The chip Virtex 6 (XCVL240T-1FFG1156) connected to PC for configuring to make CNN chip and
performing calculation.

17

Solving Partial Differential Equation Using FPGA Technology
DOI: http://dx.doi.org/10.5772/intechopen.84588

real numbers. Data into h, u, v are added with temporary boundaries, detailed as
follow (presented in Decimal and Hex of Single-type Floating-point) (Figure 22).

The interface of each Input memory, Temporary memory for h, u, v is
configurated as same in Figure 23. The initial data for the Input memory h, u, v is
initialed by COE files. A COE file stores initial values for a memory (Figure 24).

3.5.3 Shift up register

Figure 22.
Initial data for the Input memory h, u, v.

18

Boundary Layer Flows - Theory, Applications and Numerical Methods

3.5.4 CNN core

3.5.5 Boundary updating

19

Solving Partial Differential Equation Using FPGA Technology
DOI: http://dx.doi.org/10.5772/intechopen.84588

3.5.6 Control unit

The interface of Control unit is described as follows.

3.5.7 System scheme

To verify the system, the interface of the top module of the system should
include all the signals that we want to verify.

The top module is described as follows.

Control CU(
.CountCLK(CountCLK),
.wraddressHUVTemp(wraddrTemp),
.rdaddressHUVTemp(rdaddrTemp),

20

Boundary Layer Flows - Theory, Applications and Numerical Methods

.wrenTemp(wrenTemp),

.clk(clk),

.wraddressHUV(wraddr),

.rdaddressHUV(rdaddr),

.wren(wren),

.start(start),

.EnableBoundaryUpdating(EnableBoundaryUpdating),

.finish(finish));
InputMemoryHUV #(N) InputMemory(

clk,rdaddr,doutH,doutU,doutV,
wraddr,wren,HNew,UNew,VNew);

InputBuffer #(M,N) Buffer(
clk,doutH,doutU,doutV,
matrixhin,matrixuin,matrixvin);

CNNCore #(M,N) uut(
.clk(clk),
.matrixhin(matrixhin),
.matrixuin(matrixuin),
.matrixvin(matrixvin),
.matrixhout(matrixhout),
.matrixuout(matrixuout),
.matrixvout(matrixvout));

BoundaryUpdatingHUV #(N) Boundary(
matrixhout,matrixuout,matrixvout,
doutHNewTemp,doutUNewTemp,doutVNewTemp,
EnableBoundaryUpdating,
HNewTemp,UNewTemp,VNewTemp,
HNew,UNew,VNew);

TempMemoryHUV #(N) TempMemory(
clk,wraddrTemp,wrenTemp,HNewTemp,UNewTemp,
VNewTemp,
rdaddrTemp,doutHNewTemp,doutUNewTemp,doutVNewTemp);
endmodule

Figure 23.
Interface for Input and Temp memory h, u, v.

21

Solving Partial Differential Equation Using FPGA Technology
DOI: http://dx.doi.org/10.5772/intechopen.84588

3.6 Simulation results

The ISE design software shows the device utilization summary as in Table 1.
Figures 25–27 show the schematics synthesized by the ISE design software.
Comparing the new values of h in Figure 28i, k (doutH) with Figure 29, we can

see that the 3x4 CNN system worked well.
The simulation results show the properness and effectiveness of installation

methods. The cost for calculating the first three blocks of 1xN taken from memory
units h, u, v is 10 clock pulses, of which 1 clock pulse is for initial reading Input
memory, 3 clock pulse is for initial updating buffer to CNN, and 6 clock pulses for
initial calculation. Each successive 1xN unit takes only 1 clock pulse to calculate, due
to the use of the pipeline mechanism to update buffer to CNN and calculate at CNN
arithmetic unit. After finishing reading each column of blocks of data in the Input
memory, it needs 2 more clocks for initiating the buffer again. It also takes 1 clk for
initial writing Temp memory, 1 clk for initial reading Temp memory, and 1 clk for
initial writing result back to Input memory.

Devices used summary (estimated values)

Logic utilization Used Available Utilization

Number of slice registers 3952 301,440 1%

Number of slice LUTs 16,365 150,720 10%

Number of fully used LUT-FF pairs 1770 18,547 9%

Number of bonded IOBs 3112 600 518%

Number of Block RAM/FIFO 12 416 2%

Number of BUFG/BUFGCTRLs 1 32 3%

Number of DSP48E1s 132 768 17%

Table 1.
Device utilization summary.

Figure 24.
An example of h.core file to initial data for the Input memory h.

22

Boundary Layer Flows - Theory, Applications and Numerical Methods

As a result, the time for one computing cycle is:

T ¼ 8þm Q þ 1ð Þ clkð Þ

As the above implementation, m = 8, Q = 2, and T = 32 (clk).

4. Conclusion

This chapter gives the solution for configuring CNN chip to solve Navier-Stokes
equations, especially concerning to solution in the temporary boundary problem

Figure 25.
The architecture of CNN chip.

23

Solving Partial Differential Equation Using FPGA Technology
DOI: http://dx.doi.org/10.5772/intechopen.84588

when it is required. The purpose is to divide the big data space into many subspaces.
The processing of the big data space is based on the calculation of each subdata.
With the input data of 32-bit floating point real number and FPGA chip Virtex 6
XCVL240T-1FFG1156, the CNN of 1x12 cells has successfully installed. The instal-
lation results show that the effectiveness of this solution mainly lies on the

Figure 26.
The architecture of one CNN cell.

24

Boundary Layer Flows - Theory, Applications and Numerical Methods

Figure 27.
Inside electronic circuit for h.

25

Solving Partial Differential Equation Using FPGA Technology
DOI: http://dx.doi.org/10.5772/intechopen.84588

Figure 28.
Signals operating inside the 3x4 CNN system, m = 8, Q = 2. (a) Starting a computing cycle by setting start = 1.
(b) The output of Input memory (doutH). (c) The data outputting from Buffer after 4 clks. (d) The results
from CNN core after 10 clks; and start writing the results to Temp memory. (e) The CNN core finish computing
the first column of blocks of data at 16 clks; and pause writing the results to Temp memory at 16 clks. (f) The
results from CNN core after 18 clks; read Temp memory, start updating boundaries, and write the results to
Input memory. (g) Pause updating boundaries from 24 clks. (h) The CNN core finishes computing; read the
last column of blocks of data from Temp memory and write to Input memory. (h) Finish writing all results of
the first computing cycle to Input memory. (i) The controller sets finish = 1 at 33 clks. (k) The output of Input
memory shows the results computed at previous computing cycle. (l) The overview of signals.

26

Boundary Layer Flows - Theory, Applications and Numerical Methods

expansion of calculation space and resource saving and the accuracy of the calcula-
tion acceptable as well. This model can be further developed to feasibly solve similar
problems in larger computing space and could be developed for some types of
complicated (mixed) boundaries as well.

Acknowledgements

We would like to deeply acknowledge Professor Roska Tamas, the head of the
Analogic and Neural Computing Research Laboratory and Chairman of the Scien-
tific Council—Institute of the Hungarian Academy of Sciences; and Associate Pro-
fessor Pham Thuong Cat, the Head of Automation Laboratory—Institute of
Information Technology—Vietnam Academy of Science and Technology, for giving
us many important instructions.

Author details

Vu Duc Thai* and Bui Van Tung
Thai Nguyen University, Thai Nguyen, Vietnam

*Address all correspondence to: vdthai@ictu.edu.vn

©2019 TheAuthor(s). Licensee IntechOpen. This chapter is distributed under the terms
of theCreativeCommonsAttribution License (http://creativecommons.org/licenses/
by/3.0),which permits unrestricted use, distribution, and reproduction in anymedium,
provided the original work is properly cited.

Figure 29.
The new values of h computed by excel for the first computing cycle.

27

Solving Partial Differential Equation Using FPGA Technology
DOI: http://dx.doi.org/10.5772/intechopen.84588

References

[1] Chua LO, Yang L. Cellular neural
networks: Theory. IEEE Transactions on
Circuits and Systems. 1988;35(10):
1257-1272

[2] Chua LO, Yang L. Cellular neural
networks: Application. IEEE
Transactions on Circuits and Systems.
1988;35:1273-1290

[3] Roska T, Chua LO, Wolf D, Kozek T,
Tetzlaff R, Puffer F. Simulating
nonlinear waves and partial differential
equations via CNN—Part I: Basic
techniques. IEEE Transactions on
Circuits and Systems. 1995;42(10):
807-815

[4] Thai VD, Cat PT. Modeling air
pollution problem by cellular neural
network. In: Proceeding (ISI) of 10th
International Conference on Control,
Automation, Robotics and Vision;
Hanoi, Vietnam; 2008. pp. 1115-1118

[5] Thai VD, Cat PT. Solving two-
dimensional Saint venant equation by
using cellular neural network. In:
Proceeding of the 7th Asian Control
Conference—ASCC2009; Hong Kong;
2009. pp. 1258-1263

[6] Thai VD, Cat PT. Equivalence and
stability of two-layer cellular neural
network solving Saint venant 1D
equation. In: Proceeding (ISI) of 11th
International Conference on Control,
Automation, Robotics and Vision
(ICARCV2010); Singapore; 2010.
pp. 704-709

[7] Thai VD, Anh BT, Duong VT.
Develop some application of Cyclone—
DE2C35 chip. Journal of Science and
Technology - Thai Nguyen University.
2015;10(140):103-108

[8] Thai VD, Linh LH, Linh NM. Solving
Navier-Stokes equation using FPGA
cellular neural network chip. In:
Proceeding of International Conference

on Advances in Information and
Communication Technology
(ICTA2016). Springer Publishing; 2016.
pp. 562-571

[9] Rusin WM. On solution to Navier-
Stokes equation in critical spaces [Thesis
of Doctor Philosophy]. 2010. Available
from: http://conservancy.umn.edu/.../
Rusin_umn_0130E_11277.pdf

[10]Hruska J. Intel launches Stratix 10:
Altera FPGA combined with ARM CPU,
14nm manufacturing. Extremetech.
2016. Available from: https://www.extre
metech.com/computing/237338-intel-
launches-stratix-10-altera-fpga-
combined-with-arm-cpu-14nm-
manufacturing

[11] la Pedus M. Intel-Altera deal to
shake up foundry landscape. Chip
Design Magazine. 2013. Available from:
http://chipdesignmag.com/display.php?
articleId=5215

[12] Clive M. The DesignWarrior’s Guide
to FPGAs: Devices, Tools and Flows.
Elsevier; 2004. Available from: https://
www.eu.elsevierhealth.com/about-us

[13] Clive M. Programmable Logic
DesignLine. Xilinx Unveil
Revolutionary 65nm FPGA
Architecture: The Virtex-5 Family.
2006. Available from: https://www.
eetimes.com/document.asp?doc_id=
13001899

[14]David WP. Google patent search.
Dynamic Data Reprogrammable PLA.
2009

[15]David WP, Peterson LR. Google
patent search. Dynamic Data
Reprogrammable PLA. 2009

[16]Wisniewski R. Synthesis of
Compositional Microprogram Control
Units for Programmable Devices.

28

Boundary Layer Flows - Theory, Applications and Numerical Methods

University of Zielona Góra Press; 2009,
(ul. Podgórna 50, 65-246 Zielona Góra.
Dane kontaktowe)

[17] Black F, Scholes MS. The pricing of
options and corporate liabilities. Journal
of Political Economy. 1973;81(3):59-637

[18] Chua LO, Roska T. Cellular Neural
Networks and Visual Computing.
Cambridge University Press; 2000. ISBN:
0-521-65247-2. Available from: https://
en.wikipedia.org/wiki/Cambridge_
University_Press

[19] FPGA Architecture for the
Challenge. Available from: http://www.
eecg.toronto.edu/�vaughn/challenge/
fpga_arch.html

[20] Intel® FPGAs offer a wide variety
of configurable embedded SRAM, high-
speed transceivers, high-speed I/Os,
logic blocks, and routing. Built-in
intellectual property (IP) combined
with outstanding software tools lower
FPGA development time, power, and
cost. Available from: https://www.intel.
com/content/www/us/en/products/
programmable/fpga.html

29

Solving Partial Differential Equation Using FPGA Technology
DOI: http://dx.doi.org/10.5772/intechopen.84588

