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Chapter

Kinematics: On Direction Cosine
Matrices
Brendon Smeresky and Alex Rizzo

Abstract

Motion mechanics (dynamics) comprises kinetics to describe the implications of
applied forces and torques; and also kinematics (phoronomics). Developed in the
1700s, kinematics describes mathematical translations from one basis of measure-
ment to another using common kinematic measurement variables like quaternions,
Euler angles, and direction cosine matrices. Two ubiquitous rotation sequences are
unquestionably adopted for developing modern direction cosine matrices from
among the 12 potential options, stemming from applicability to aerospace systems,
accuracy, and computation burden. This chapter provides a comprehensive
reevaluation of all 12 options yielding a menu of options for accuracy and compu-
tational burdens, with the results illustrated compared to the ubiquitous two mod-
ernly adopted choices, broken into two rotational groups: symmetric rotations and
nonsymmetric rotations. Validation will be provided by critical analysis of integra-
tion using step size to illustrate correlated minimal accuracy. No single rotational
sequence is universally superior with respect to all figures of merit, enabling trade-
space analysis between rotational sequences. One interesting revelation of one of
the two ubiquitous sequences (the 3-1-3 symmetric sequence) is illustrated to have
relatively less accuracy but lower computational burden than the other (the 3-2-1
nonsymmetric sequence). Meanwhile, a relatively unknown “2-3-1” rotational
sequence is shown to have similar computational burden and accuracy.

Keywords: phoronomics, mechanics, kinetics, kinematics, direction cosines,
Euler angles, space dynamics, digital computation, control systems,
control engineering

1. Introduction

In 1775, Leonhard Euler developed motion phoronomics [1] which immediately
blossomed in the next two centuries [2–29]. The space race between the now-
defunct Soviet Union and the United State of the last century gave substantial
impetus to development and adoption of motion kinematics together with survival
imperatives driven by the nuclear cold war. The resultant lineage of literature
contains seemingly countless technical and non-technical [30–62]. With this heri-
tage the two most common rotational sequences used to calculate direction cosine
matrices are referred to as “aerospace” sequences for nonsymmetric sequences
(where the resulting angles are referred to as Tait-Bryan angles), while the sym-
metric sequences are oft referred to as “orbital” sequences (where the resulting
angles are called proper “Euler Angles”) [63].
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In light of continued improvement in computational capabilities, the focus of this
research is to evaluate all 12 rotation sequences comparing by mean and standard
deviation of accuracy reflecting roll, pitch, and yaw angles; and also comparing by
computational burden embodies by time required to perform the calculations. The
chapter questions whether the 3-2-1 rotational sequence truly the best with respect to
either of these figures of merit (statistical accuracy and computational burden). The
results illustrate the two standard sequences are indeed good (with relative weak-
nesses). In particular the standard asymmetric sequence is more accurate, but slower
than the standard symmetric sequence. On average, despite fewer mathematical
steps, the symmetric rotations are on average slower to calculate. The 3-2-1 sequence
is quickest to calculate amongst the asymmetric rotations, meanwhile the 2-3-2 and
1-2-1 are the quickest amongst the symmetric rotations.

Artificial intelligence and machine learning has evidenced the need for rapid
calculations, so as motion mechanics incorporate adopt these new learning algo-
rithms, the impact of this chapter become increasingly relevant in that options
revealed in here illustrate simultaneous accuracy and favorable rapidity of calcula-
tion [62]. This chapter also complements other algorithmic advances [37–45] like
system identification [55–59] including nonlinear adaptive forms and also control
[46–54] for space guidance, navigation, and control (GNC) missions [35, 36, 60–65]
in a time when the United States is developing and relying upon more advanced
Machine Learning and AI products than ever before.

2. Materials and methods

One application of motion mechanics is the control of the attitude of spacecraft
rotational maneuvers or even maintenance of a specified attitude. The key reminder
is that Euler’s moment equations governing rotational movement apply in a non-
moving reference frame referred to as “inertial,”which is a reference frame that has
no meaning as a basis for measurement (i.e., it is not possible to identify a truly
non-moving reference frame that can be used for measurement of angular posi-
tion). This section of the chapter illustrates the method to numerically evaluate the
options for kinematic expressions of rotations between chosen frames of reference
(e.g., the body frame) and the inertial frame. MATLAB/SIMULINK depicted in
Figure 1 is used to create a simulation of rotation of spacecraft and necessary
components of the simulation to make it relatively high-fidelity include aerody-
namic and gravity gradient disturbances; kinematic expressions including quater-
nions, direction cosine matrices, and Euler angles; and even incorporation of the

Figure 1.
MATLAB/SIMULINK simulation where controllers (not articulated) are fed a full-state trajectory
autonomously generated, while the resulting motion is expressed in various forms of kinematics establishing
the attitude that results in a specific calculations of disturbance torques.
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motion of an object in a specified orbit. The simulation is elaborated in Section 2,
while Section 3 will describe the experiments, with concluding results in Section 4.

2.1 Theory of dynamics

Mechanics and dynamics are synonyms. Interestingly, kinematics (which is also
currently called phoronomics [13]) was referred to as “statics” in the era of Newton
[2] indicating the lack of motion which is included in kinetics. This will be elabo-
rated further in Section 2.1.2. Michael Chasle’s theorems permit us to simply
“invoke” Euler’s moment equation to describe three-degrees of rotation and New-
ton’s law to describe three-degrees of translation; together comprising a full math-
ematical description of so-called 6DOF motion, or motion in six-degrees. Euler
describes rotational motion expressed in a moving body frame as T ¼ J _ωþ ω� Jω
[6], where [J] is a matrix of mass moments of inertia explained by Kane [23].
Measurements of rotational maneuvers are expressed in inertial coordinates by
establishing an arbitrarily placed inertial reference frame [XI, YI, ZI], while kine-
matics relate the inertial coordinates to those expressed in the body reference frame
[XB, YB, ZB]. References in the literature use the nomenclature “direction cosine
matrix” [18], since the matrix is composed of projection components, where the
dot-product projection operation is defined by the cosine of the angle between the
two reference frames [17, 25, 26]. Individual vector components elaborate the
orientation angle between reference frames [28].

2.1.1 Kinetics

Kinetics, or Dynamics, is the process of describing the motion of objects with
focus on the forces involved. In the inertial frame, Newton’s F = ma is applied but
becomes Euler’s T ¼ J _ω when rotation is added, where T ¼ J _ω is expressed in the
inertial reference frame’s coordinates, while T ¼ J _ωþ ω� Jω from above is still
measured in the inertial frame, but expressed in body coordinates.

Combining the Euler and Newton equations, we can account for all six degrees of
freedom. In application, when an input angle [φd, θd, ψd] is commanded, the
feedforward control uses Eq. (1) as the ideal controller with Eq. (2) as the sinusoidal
trajectory to calculate the required torque [Tx, Ty, Tz] necessary to achieve the
desired input angle. The Dynamics calculator then uses Eq. (3) to convert the torques
into ωB values, where ωB is defined as the angular velocity of the body. In order to
calculate this, the non-diagonal terms in Eq. (4) are neglected, removing coupled
motion and leaving only the principle moments of inertia. Then, the inertia matrix J is
removed from _ω, and the remaining _ω is integrated into [ωx, ωy, ωz], which is fed into
the Kinematics block of the model to finally determine the outputted Euler Angles.

Td ¼ J _ωd þ ωd � Jωd (1)

θ ¼
1

2
Aþ Asin ωf tþ φ

� �� �

(2)

T ¼ _Hi ¼ J _ωi þ ωi � Jωi (3)

2.1.2 Kinematics, phoronomics, or “The Laws of Going”

Formulation of spacecraft attitude dynamics and control problems involves con-
siderations of kinematics, especially as it pertains to the orientation of a rigid body
that is in rotational motion. The subject of kinematics is mathematical in nature,
because it does not involve any forces associated with motion. The kinematic
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representation of the orientation of one reference frame relative to another reference
can also be expressed by introducing the time-dependence of Euler Angles. The so-
called body-axis rotations involve successive rotations three times about the axes of
the rotated body-fixed reference frame resulting in 12 possible sets of Euler angles.
The so-called space-axis rotations instead involve three successive rotations using
axes fixed in the inertial frame of reference, again producing 12 possible sets of Euler
angles. Because the body-axis and space-axis rotations are intimately related, only 12
Euler angle possibilities need be investigated; and the 12 sets from the body-axis
sequence are typically used [26]. Consider a rigid body fixed at a stationary point
whose inertia ellipsoid at the origin is an ellipsoid of revolution whose center of
gravity lies on the axis of symmetry. Rotation around the axis of symmetry does not
change the Lagrangian function, so there must-exist a first integral which is a projec-
tion of an angular momentum vector onto the axis of symmetry. Three coordinates in
the configuration space special orthogonal group (3) may be used to form a local
coordinate system, and these coordinates are called the Euler angles.

Key tools of kinematics from which the Euler angles may be derived include
direction cosines which describe orientation of the body set of axes relative to an
external set of axes. Euler’s angles may be defined by the following set of rotations:
“rotation about x axis by angle and θ, rotation about z0 axis by an angle ψ, then
rotation about the original z-axis by angle φ”. Eulerian angles have several “con-
ventions: Goldstein uses [22] the “x-convention”: z-rotation followed by x0 rotation,
followed by z0 rotation (essentially a 3-1-3 sequence). Quantum mechanics, nuclear
physics, and particle physics the “y-convention” is used: essentially a 3-2-3 rotation.
Both of these have drawbacks, that the primed coordinate system is only slightly
different than the unprimed system, such that, φ and ψ become indistinguishable,
since their respective axes of rotation (z and z0) are nearly coincident. The so-called
Tait-Bryan convention in Figure 2 therefore gets around this problem by making
each of the three rotations about different axes: (essentially a 3-2-1 sequence) [22].

Kinematics is the process of describing the motion of objects without focus on the
forces involved. The [ωx, ωy, ωz] values from the Dynamics are fed into the Quater-
nion Calculator where Eqs. (5) and (6) yield q, the Quaternion vector. The Quater-
nions define the Euler axis in three dimensional space using [q1, q2, q3]. About this
axis, a single angle of rotation [q4] can resolve an object aligned in reference frame A
into reference frame B. The Direction Cosine Matrix (DCM) then relates the input ω
values to the Euler Angles using one of 12 permutations of possible rotation
sequences, where multiple rotations can be made in sequence. Therefore, the rows of

Figure 2.
Execution of a 3-2-1 rotation from CA to CB (left to right); blue-dotted arrows denote angle rotations. A
direct rotation fromCA toCB can bemade about the Euler Axis, q4 in red. The set of three rotations may be depicted
as four rectangular parallelepipeds, where each contains the unit vectors of the corresponding reference frame [29].
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the DCM show the axes of Frame A represented in Frame B, the columns show the
axes of Frame B represented in Frame A, and φ, θ, and ψ are the angles of rotation
that must occur in each axis sequentially to rotate from orientation A to orientation B,
turning CA to CB. Figure 2 depicts a 3-2-1 sequence to rotate from CA to CB, where
the Euler Axis is annotated by the thickest line.

Jxx _ωx þ Jxy _ωy þ Jxz _ωz � Jxyωxωz � Jyyωyωz � Jyzω
2
z þ Jxzωxωy þ Jzzωzωy þ Jyzω

2
y

Jyx _ωx þ Jyy _ωy þ Jyz _ωz � Jyzωxωy � Jzzωxωz � Jxzω
2
x þ Jxxωxωz þ Jxyωzωy þ Jxzω

2
z

Jzx _ωx þ Jzy _ωy þ Jzz _ωz � Jxxωxωy � Jxzωyωz � Jxyω
2
y þ Jyyωxωy þ Jyzωzωx þ Jxyω

2
x

2

6

6

6

4

3

7

7

7

5

¼

Tx

Ty

Tz

2

6

6

4

3

7

7

5

(4)

_q1

_q2
_q3

_q4

2

6

6

6

6

4

3

7

7

7

7

5

¼
1

2

0 ω3

�ω3 0

�ω2 ω1

ω1 ω2

ω2 �ω1

�ω1 �ω2

0 ω3

�ω3 0

2

6

6

6

6

4

3

7

7

7

7

5

q1

q2
q3

q4

2

6

6

6

6

4

3

7

7

7

7

5

¼
1

2

q4 �q3

q3 q4

q2 q1

�q1 q2
�q2 q1

�q1 �q2

q4 q3

�q3 q4

2

6

6

6

6

4

3

7

7

7

7

5

ω1

ω2

ω3

0

2

6

6

6

6

4

3

7

7

7

7

5

(5)

1� 2 q22 þ q23
� �

2 q1q2 þ q3q4
� �

2 q1q3 � q2q4
� �

2 q2q1 � q3q4
� �

1� 2 q21 þ q23
� �

2 q2q3 þ q1q4
� �

2 q3q1 þ q2q4
� �

2 q3q2 � q1q4
� �

1� 2 q21 þ q22
� �

2

6

6

6

4

3

7

7

7

5

¼

C2C3 C2S3 �S2

S1S2C3 � C1S3 S1S2S3 þ C1C3 S1C2

C1S2C3 � S1S3 C1S2S3 � S1C3 C1C2

2

6

6

4

3

7

7

5

(6)

2.1.3 The orbital frame

In order to more completely represent a maneuvering spacecraft, orbital motion
must be included with the Kinematics. This relationship is represented in Figure 1,
where the output of the DCM is fed into the Orbital Frame Calculator, and the
second column of the DCM is multiplied against the orbital velocity of the space-
craft. The second column of the DCM represents the Y axis of Frame B projected in
the X, Y, and Z axes of Frame A. This yields ωNO, the orbital velocity relative to the
Inertial Frame. Using Eq. (7), this velocity is removed from the velocity of the body
relative to the Inertial Frame, leaving only the velocity of the body relative to the
Orbital Frame for further calculations.

ωOB
¼ ωNB

� ωNO (7)

2.1.4 Disturbances

Multiple disturbance torques exist that effect the motion of a spacecraft in orbit,
two of which are addressed in this paper. The first is the disturbance due to gravity
acting upon an object in orbit, where the force due to gravity decreases as the
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distance between objects increases. The force is applied as a scaling factor to the
mass distribution around the Z axis of a spacecraft. This force applied to a mass
offset from the center of gravity is calculated through the cross product found in
Eq. (8) and yields an output torque about the Z axis.

The second disturbance is an aerodynamic torque due to the force of the atmo-
sphere acting upon a spacecraft, which also decreases as the altitude increases. In
Eq. (9), the force due to air resistance is calculated by scaling the direction of orbital
velocity by the atmospheric density, drag coefficient, and magnitude of orbital veloc-
ity. This force then acts upon the center of pressure, which is offset from the center of
gravity, and yields a torque about the Z axis, due to the cross product in Eq. (9).

The disturbances are additive and act upon the dynamics in Figure 1. Because
the ideal feedforward controller is the dynamics, an offsetting component equal to
the negative anticipated disturbances can be used to negate the disturbance torque.
This results in nullifying the disturbances when the two are summed to produce
ωOB, the velocity of the body relative to the Inertial Frame.

Tg ¼ 3
μ

R3 ẑ� Jẑ (8)

Ta ¼ Cp � f a ¼ Cp � ρaVR
2Ap

� �

V̂R

� �

(9)

2.2 Experimental setup

Amodel of the 12 DCM to Euler Angle rotations was implemented in Matlab and
Simulink for this experiment. A [30, 0, 0] maneuver was commanded in the [φ, θ, ψ]
channels, respectively. The expected runtime of each scenario was 15 s, comprised
of a 5 s quiescent period, a 5 s maneuver time, and a 5 s post maneuver period for
observations. The maneuver was initiated using a sinusoidal trajectory, calculated
with ωf ¼ π=2 and φ ¼ π=2.

The simulated spacecraft had an inertia matrix of J = [2, 0.1, 0.1; 0.1, 2, 0.1; 0.1,
0.1, 2], the torque was initialized as T = [0, 0, 0], and the quaternion was initialized
as q = [0, 0, 0, 1]. The spacecraft was simulated to fly at an altitude of 150 km, and
received a drag coefficient of 2.5. For this experiment, both orbital motion and
torque disturbances were turned off in order to simply the simulation.

The Matlab and Simulink models utilized the Runge-Kutta solver, with an ode4
back-end. Multiple step sizes were tested to determine accuracy variations for each
of the rotations: 0.1, 0.001, and 0.0001 s. The trigonometric function used to
mathematically solve for the Euler Angles was the atan2 function in Matlab.

Three figures of Merit were used to assess performance. The first two were the
mean and standard deviation between the Euler Angles and Body Angles. The third
was the calculation time for each rotation as a measure of complexity.

3. Experimental results and analysis

3.1 Euler angle calculations and post-processing

A relationship like Eq. (6) was created mathematically to relate the DCM and
rotation matrices for each of the 12 rotation sequences. Then, φ, θ, and ψ were solved
for, resulting in a mathematical process to determine the Euler Angles. This process
was then coded in Matlab and Simulink, but the process was not perfect. Trigono-
metric quadrant errors caused the appearance of discontinuities from a commanded
[30, 0, 0] maneuver. This artifact was resolved using post processing and further
refinement of the DCM to rotation matrix derivations that correlated the 12 rotations

6
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found in Figure 3 into two groups of six rotations: symmetric and non-symmetric
rotations. To further define the groups, symmetric rotations would be 1-2-1 or 2-3-2,
while non-symmetric rotations would include 1-3-2 or 3-1-2 rotations.

3.2 Euler angle to body angle accuracy

Accuracy was measured in the experiment by measuring the difference between
the Body Angles and output Euler Angles. The expectation was that a perfectly
accurate system would have a difference of zero. Figure 4 depicts the deviation
over time and Table 1 provides the associated mean values and standard deviations
for each of the rotations.

The six non-symmetric rotations show consistent error in φ, and only begin to
deviate beyond the fifth decimal place in both mean error and standard deviation.

Figure 3.
Corrected Euler angles vs. time for all 12 DCM rotations.

Figure 4.
Euler and body angle deviation, using a 0.1 step size.
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While φ is commanded to change to 30°, θ, and ψ are expected to remain at zero,
but show non-zero values due to error incurred by step size.

The six symmetric rotations are substantially harder to draw conclusions from
because of the uncorrelated rotations. The mean error and standard deviation values
are drastically different from each other in Table 1 and visibly deviate in Figure 4.
Therefore, further correlation is required to analyze accuracy. Table 1 values were
calculated over the 15 s simulation time, noting that some sequences had not
reached steady-state values making their error values even larger compared to
others in Table 1 if the simulations had been run until steady state was reached.

3.3 Step size versus accuracy

This experiment implemented a variable step size to determine the accuracy delta
resultant from the different step sizes. Figure 5 depicts analysis using a step sizes of
0.001 s, which can be compared against Figure 4, which used a 0.1 s step size. The
primary difference between Figures 4 and 5 is the 2-order of magnitude increase of
accuracy accompanying the two order of magnitude reduction in step size. A further
reduction to a time step of 0.0001 s was made, with an additional order of magnitude
increase in accuracy. Further reductions below this required more time than was
feasible, but the trend holds that decreasing the step size increases accuracy. Fur-
thermore, the relative accuracies between rotations held when the step sizes
decreases, meaning the 1-3-2 and 3-1-2 rotations remained the most accurate.

3.4 DCM to Euler angle timing

All 12 rotation scenarios executed a maneuver within 5 s, with a standard pre and
post maneuver observation period. However, actual runtimes sometimes exceeded
this 15 s period; this is attributed to the complexity of the calculations and additional
processes that were running at the time of the simulation. The results of each of the
12 rotations for each of three time steps are shown in Table 2. The simulation
timing is effected by step size; therefore, the results can only be compared between

Mean Standard deviation

DCM φ θ ψ φ θ ψ

1-2-3 0.413 0.011 0.011 0.462 0.015 0.014

1-3-2 0.413 0.010 0.013 0.462 0.013 0.016

2-1-3 0.413 0.011 0.005 0.462 0.015 0.006

2-3-1 0.413 0.014 0.005 0.462 0.018 0.005

3-1-2 0.413 0.016 0.013 0.462 0.021 0.016

3-2-1 0.413 0.014 0.005 0.462 0.018 0.005

1-2-1 27.544 0.015 2.869 25.804 0.019 2.823

1-3-1 2.456 0.015 2.869 2.680 0.019 2.823

2-1-2 14.977 15.413 0.010 13.725 14.150 0.010

2-3-2 15.010 15.413 0.010 13.757 14.150 0.010

3-1-3 14.980 15.413 0.028 13.728 14.150 0.034

3-2-3 14.977 15.413 0.010 13.725 14.150 0.010

Table 1.
Mean and standard deviation for all 12 rotations, using a 0.1 step size.
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different rotations (vertically in the Table 2) and not between step sizes (horizon-
tally in Table 2); however, relative comparisons between step sizes are valid.

Three observations can be made from the results in Table 2. The first is that the
slowest rotation is the 1-2-3 rotation, by a significant amount depending upon the
step size. The second is that on average, non-symmetric rotations were faster than
symmetric rotations. This result is unique because the same algorithm with the
same number of mathematical steps yielded different execution times. Lastly, the
fastest overall rotation was the 2-3-2 rotation, with 3-2-1 as the fastest non-
symmetric rotation.

Figure 5.
Euler and body angle deviation, using a 0.001 step size.

Execution time (s)

DCM 0.1 step size 0.001 step size 0.0001 step size

1-2-3 8.408 11.836 28.433

1-3-2 1.533 6.789 22.187

2-1-3 1.419 6.978 22.102

2-3-1 1.188 4.436 23.259

3-1-2 1.549 4.302 20.971

3-2-1 1.018 3.475 21.420

1-2-1 0.952 3.715 20.505

1-3-1 1.190 4.082 23.331

2-1-2 1.015 3.860 21.005

2-3-2 0.931 3.710 21.410

3-1-3 0.939 3.789 20.908

3-2-3 1.091 3.955 22.044

Table 2.
Simulation run times for all 12 direction cosine matrices (DCM) rotations for a 30° roll maneuver, using 0.1,
0.001, and 0.0001 step sizes.
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4. Conclusions

This chapter on modern kinematics or motion phoronomics elaborated all 12
possible instantiations of direction cosine matrices with comparisons of numerical
accuracy representing how accurately the chosen Euler angle represents the roll,
pitch, and yaw expressions of rotations about x, y, z axes respectively. Additionally,
comparison is made by using the figure of merit of computation burden expressed
in time-necessary to perform calculations using each respective kinematic instanti-
ation. The results were listed in a large table of options available for trade-offs,
where symmetric sequences proved more difficult to compare and correlate, mean-
while the non-symmetric rotational sequences proved easier to correlate to roll,
pitch, and yaw due to the ease of allocating independent angles.

The “trade-space” of options is a key elaboration, since none of the options were
unanimously best using more than one figure of merit. If accuracy measured by
mean error is most relatively important, 1-2-3, 1-3-2, 2-1-3, 2-3-1, 3-1-2, or 3-2-1
rotational sequences best represent roll, while the ubiquitous 3-2-1 sequence cannot
best to represent pitch, where the 1-2-3 sequence is superior; while 2-1-3, 2-3-1, and
3-2-1 rotational sequences can most accurately reflect yaw. Instead if accuracy
measured by standard deviation of errors was most important, the results were not
identical. The most computationally efficient rotational sequence was the 2-3-2
rotation, while the 3-1-3 and 1-2-1 performed next in the list of best options. Oddly,
the ubiquitous 3-2-1 sequence was merely the fifth fastest option.

The demonstration of relative inferiority of the standard ubiquitous options is a
key novel development in the chapter, and the novelties were validated using a
relatively high fidelity simulation of spacecraft attitude dynamics, but the novel
development are valid for other forms of rotational motion mechanics like naval
vessels, airplanes, and even robotics.

Future works will validate these results on laboratory spacecraft hardware sim-
ulators at the Naval Postgraduate School, and if successful flight in space is available
on the international space station making the technology available to enhance the
aforementioned applications of the technology [35–45].
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