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Chapter

The Possibilities of Modeling Petri
Nets and Their Extensions
Goharik Petrosyan

Abstract

This chapter is dedicated to several structure features of Petri nets. There is
detailed description of appropriate access in Petri nets and reachable tree mecha-
nism construction. There is an algorithm that describes the minimum sequence of
possible transitions. The algorithm developed by us finds the shortest possible
sequence for the network promotion state, which transfers the mentioned network
state to the coverage state. The corresponding theorem is proven, which states that
due to the describing algorithm, the number of transitions in the covering state is
minimal. This chapter studies the interrelation of languages of colored Petri nets
and traditional formal languages. The Venn diagram, modified by the author, is
presented, which shows the relationship between the languages of the colored Petri
nets and some traditional languages. As a result, it is shown that the language class
of colored Petri nets includes an entire class of context-free languages and some
other classes. The results obtained show that it is not possible to model the Patil
problem using the well-known semaphores P and V or classical Petri nets, so the
mentioned systems have limited properties.

Keywords: petri nets, colored petri nets, traditional languages, transition, position

1. Introduction

Modeling and designing systems cannot be imagined without the use of com-
puter technology. When creating automated systems and designing them, the
problem of choosing a formal model for representing systems first arises. From the
model through the algorithmic to the software—this is the way of modern modeling
and system design. When considering lumped physical systems, a convenient
model is a linear graph, each vertex of which corresponds to a functional or con-
structive component, and an arc to a causal relationship.

Petri nets are a mathematical apparatus for modeling dynamic discrete systems.
Their feature is the ability to display parallelism, asynchrony, and hierarchy. They
were first described by Karl Petri in 1962.

The Petri net is a bipartite oriented graph consisting of two types of vertices—
positions and transitions—connected by arcs between each other; vertices of the
same type cannot be directly connected. Positions can be placed tags (markers) that
can move around the network [1].

Petri net—a tool for modeling dynamic systems. The theory of Petri nets makes
it possible to model a system with a mathematical representation of it in the form of
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a Petri net, the analysis of which helps to obtain important information about the
structure and dynamic behavior of the simulated system.

There are several ways of practical application of Petri nets in the design and
analysis of systems. In one of the approaches, the Petri nets are considered as an
auxiliary analysis tool. Here, to build the system, generally accepted design methods
are used, then the constructed system is modeled by the Petri net, and the
constructed model is analyzed.

In another approach, the entire process of design and characterization is carried
out in terms of Petri nets. In this case, the task is to transform the representation of
the Petri net into a real information system [2].

The undoubted advantage of Petri nets is a mathematically rigorous description
of the model. This allows their analysis with the help of modern computing tech-
niques (including those with a massively parallel architecture) [1].

In modern society, reliable transmission and protection of information are of
wide use and are topical tasks. The main task of Petri nets is the modeling of
realistic systems from the point of view of optimization. Systematic study of the
properties of Petri nets and the possibility of using them for solving applied
problems, mainly problems related to models and means of parallel processing of
information.

The following issues can serve as examples of those problems that often arise in
the design and study of discrete systems:

• Does the system perform the functions for which it is intended?

• Does it function effectively?

• Can mistakes and emergencies occur in it?

• Does it have potential bottlenecks?

• Is it possible to simplify the system or replace its individual components and
subsystems with more perfect ones, without disturbing its overall functioning?

• Is it possible to design more complex systems that meet the specified
requirements from these systems, etc.?

These tasks are basically “qualitative” not quantitative.
The goal of in-depth study of various extensions of Petri nets (from the point of

view of optimization) for modeling real-time systems brings to the design of such
technical equipment where one has to minimize resource costs and time and max-
imize speed.

Colored petri net (CPN) modeling mechanisms are a convenient graphic lan-
guage for designing, modeling, and testing systems [3–7]. They are well suited for
systems that discuss interaction issues and synchronize. The colored Petri nets are
well suited for modeling distributed systems, automated production systems, and
for the design of VLSI circuit chips [8–10].

Colored Petri nets are called if the chips are the values of some types of data,
which are usually called color sets. Expressions are assigned to arcs in such a
network. When transitions are triggered, the values of expressions on arcs are
calculated. The results of the calculations are extracted from the markup of the
input transition points and placed in the marking of the output points. Transitions
may be assigned with security expressions. If the guard expression assumes the
value “false,” the transition is prohibited [3–6, 11, 12].
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The language generated by CPN allows to represent a model that is a collection
of modules, allowing you to hierarchically represent complex networks or systems.

In classical Petri nets, the tokens do not differ from each other; they are color-
less. In colored Petri nets, a position can contain chips that are of arbitrary complex-
ity, such as lists, etc., that allow you to simulate more reliable models [8–10, 13].

2. The algorithm description of the shortest possible sequence of
transitions in petri nets

To build models of discrete systems, it needs various components of the system
with abstract operations: switching the transition from one state to another; the
action of a program operator, machine, or conveyor; interruptions in the operating
system; phase completion in the project; etc. The same system can work differently
under different conditions, generating many processes that will bring nondeter-
ministic work. In real systems, cases occur at certain periods and last a certain time.
In synchronous models of discrete systems, events are correctly associated with
certain pauses, moments during which all components simultaneously change the
state of the system, changing the state of the system.

The modeling approach has several drawbacks when dealing with large systems.
To make the model look impressive, first of all, with every change, the system

must take into account all the components of its general condition.
Secondly, with the above approach, information in systems disappears between

random links.
Thirdly, the so-called asynchronous systems can cause undefined events at time

intervals.
Petri nets and the above types of models are called asynchronous.
Causal relationships make it possible to more clearly describe the structural

features of the system.
Asynchronous models of nonformal description of the case, in particular, Petri

nets, must involve relationships of time (early, late, not at the same time, etc.),
when it is convenient or accepted, but they represent a causal relationship. Great
interplay of asynchronous systems, typically, has a complex dynamic structure.

The relationship between the two will be described more clearly if not immedi-
ate contacts are marked, or cases and situations in which the case can be realized. In
this case, the conditions of implementation of the system of global situations are
formed in the named local operations.

The term has its capacity. The term is not fulfilled (capacity is equal to 0), the
term is fulfilled (capacity is equal to 1), and the term is fulfilled in n times (capacity
is equal to n, where n- is a positive integer).

Most systems are suitable as discrete structures that consist of two elements:
type of events and terms. Cases and terms in Petri nets, sets that do not intersect
with each other, respectively, are called positions and transitions. Transitions are
vertical lines and places with circles in a graphical representation of Petri nets [1, 2].

2.1 The relationship of petri nets, reachable states, and reachable trees

Definition 1: Petri nets are M C, μð Þ, where C ¼ P,T, I,Oð Þ is the network
structure and μ is the network condition. P is positions and T is transitions, which
are finite sets. I : T ! P∞,O : T ! P∞ are input and output functions, respectively,
where P∞ are all possible multisets (repetitive elements) of P. μ : P ! N0 is the
function of condition, where N0 ¼ 0, 1,⋯f g is the set of integers and included 0.
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Now, we will define a function that determines the number of elements in their
entering numbers in the collection [8]. X element enters into collection of B, which
we will appoint as # X,Bð Þ (called: X number in B). If we limit the number of
elements in the collection so that 0≤# X,Bð Þ≤ 1, then we will reach the idea of the
set. Since # X, Bð Þ function determines the X element entering collection of B, it
follows that # X, Bð Þ≥0, the grouping of all the X and B. X element of the B
collection, if # X, Bð Þ>0, i.e. X ∈B,: Identically, if # X, Bð Þ ¼ 0, then X ∉ B:

Let us set empty collection of ∅, which has members (i.e., all X : # X,Bð Þ ¼ 0).
∣B∣ is the capacity of the entire number of elements entering B collection:

∣B∣ ¼
X

X

# X,Bð Þ:

Saying net state, we will understand the following:

μ P1ð Þ, μ P2ð Þ, … , μ Pnð Þð Þ, n ¼ ∣P∣,P ¼ P1, … ,Pnf g

Suppose we have M ¼ C, μð Þ:
We will say that in μ state tj ∈T transition is allowed to implement if for

∀Pi ∈ I tj
� �

there is

μ Pið Þ≥# Pi, I tj
� �� �

:

Suppose in μ state tj transition is allowed to implement and it is actually acted. In
this case the net will appear in its new state, μ0, which is solved in the following way:

∀Pi ∈P, μ0 Pið Þ ¼ μ Pið Þ � # Pi, I tj
� �� �

þ # Pi,O tj
� �� �

Let us name R C, μ0ð Þ as the reachable state set:

1.μ0 ∈R C, μ0ð Þ,

2. If μ0 ∈R C, μ0ð Þ and ∃tj ∈T have transition in the way that δ μ0, tj
� �

¼ μ”, then
μ00∈R C, μ0ð Þ.

3.Other states do not belong to R C, μ0ð Þ. The R C, μ0ð Þ can be infinite

μ” marking covers μ0 marking if

μ00≥ μ0:

First, build a reachability tree. Then you need to look for the peak as
follows. If there is no such peak, then the marking is not covered by any achievable
marking, if it is located inside and gives an accessible marking that covers [14–16].

We construct the reachability tree of Petri nets in Figure 1. The state of this
network is (1101), which shows the presence of tokens in the network at this
moment. Tokens shown in Figure 1, which are depicted with small dots, correspond
to the availability of resources. The network state changes due to the movement of
tokens.

Let the states correspond to the vertices and transitions to the sides. The root
corresponds to the first state of the network.

Figure 1 corresponds to Figure 2, in which the reachable tree is infinite. To
make the tree finite, we impose restrictions. If any peak is blocked, we will call it a
terminal. If there is a state in any peak and there is another peak in the tree with the
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Figure 1.
An example of petri nets. The way in the tree.

Figure 2.
The petri net reachable infinite tree.
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same state that has already been developed, then we will call the new peak repeated
and will not develop it.

If there is a path like / ** / in the tree, then the path through the second peak may
repeat, and the states grow. Let us introduce the idea of infinite much as ω:

ω≥ω, ωþ a ¼ ω, and ω� a ¼ ω, where a ¼ const: for example, instead of (5,⋯),
we will write ω,⋯ð ). In this case the tree will become as finite, and we will have loss
of information [2].

Let us give several definitions, which will be used in the entire work.
Definition 2. A peak is called a boundary if it is in a processing state.
Definition 3. The peak is called a terminal if it does not contain a subtree.
Definition 4. The peak is called internal if it has already been processed.
Definition 5. The boundary peak is repeated if there is an internal peak with the

same state.
A description of the structure of the reachability tree algorithm can be seen in an

earlier published article [8].
With the help of this algorithm, we will build (as in Figure 1) the Petri net

reachable tree (see Figure 3).

2.2 The algorithm for finding the minimum number of transitions in a coverage
state

Consider the Petri net in Figure 1 and the corresponding reachable tree TT (see
Figure 3).

We note the set of states in Petri nets with P. Let T* denote the succession of
transitions from the root TT to y, the transition sequence with G the succession of
the peaks in T*.

Consider μ x½ � ¼ 0, 1, 15, 13ð Þ state. Let us find the y peak of this reachable tree for
which the following inequality holds: μ y½ �≥ μ x½ � .

Assume that such peaks are y1, … , ym. Let us choose one peak among the peaks
on which we will use the algorithm.

For every yi peak, we profile μ yi
� �

.

Suppose in μ yi
� �

there is ω in μ yi
� �

i1
, … , μ yi

� �

ik
. For each μ yi

� �

we count

S ¼
Pik

j¼i1
zj tð Þ, where.

zj tð Þ ¼ # Pj, I tkð Þ
� �

,∀tk ∈T ∗ :
We take the yi for which the S is the minimum. If for any peak, these numbers

are equal, then we take the yi in which T ∗ height is the minimum.
For example, μ x½ �, we will cover the following peak:

• y1 μ y1
� �

¼ 1, 1,ω,ωð Þ, T ∗ ¼ t2, t3f g.

• y2 μ y2
� �

¼ 0, 2,ω,ωð Þ, T ∗ ¼ t2, t3, t1f g.

• y3 μ y3
� �

¼ 1, 1,ω,ωð Þ, T ∗ ¼ t2, t3, t2f g.

• y4 μ y4
� �

¼ 1, 1,ω,ωð Þ, T ∗ ¼ t2, t3, t3f g.

• y5 μ y5
� �

¼ 1, 1,ω,ωð Þ, T ∗ ¼ t3, t2, t3f g.

• y6 μ y6
� �

¼ 0, 2,ω,ωð Þ, T ∗ ¼ t3, t1, t2, t3f g.
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• S y1
� �

¼ 1 S y4
� �

¼ 2

• S y2
� �

¼ 2 S y5
� �

¼ 2

• S y3
� �

¼ 1 S y6
� �

¼ 3

We found out that in minimum number, S y1
� �

¼ S y3
� �

, T ∗ y1
� ��

�

�

� ¼ 2, and

T ∗ y3
� ��

�

�

� ¼ 3 ) need to take a y1 peak. Choosing the appropriate peak coverage, we

use the algorithm. Let it be a covering peak.

1.We choose the path connecting the root of the tree withy and T ∗ ; for our
example t2, t3 let us mark t0i ¼ tj,1≤ i≤ T ∗j j, and tj ∈T ∗ . We get t01 ¼ t2, and
t02 ¼ t3.

2.For each chosen transitions, t0i is corresponded with ai numbers in the
following way:

• If for t0i transition ∃1≤ j≤ Pj j in the way thatδ μ y0½ �, t0i
� �

j
¼ ω, y0 ∈G then

ai ¼ μ x½ �j in which case t0i transition corresponds with Pj position.

• If for the same t0i transition ∃1≤ k 6¼ j≤ Pj j in the way that δ μ y0½ �, t0i
� �

k
¼ ω,

then ai ¼ max μ x½ �j, μ x½ �k

n o

.

Moreover, for t0i transition we will correspond Pj and Pk positions. If instead of

t0i σ ¼ t0i1 … t0ik t0ik ¼ t0i

� �

for ∃1≤ j≤ Pj j in the way that δ μ y0½ �, σð Þj ¼ ω, y0 ∈G, then we

will correspond ai with σ and ai ¼ μ xð Þj.

In this case, we will correspond σ with Pj position. In the opposite case, if there is

no t0i transition for 1≤ j≤ Pj j in the way that δ μ y0½ �, t0i
� �

j
¼ ω, then ai ¼ 1, in which

case there is no related position for t0i.

Figure 3.
The petri net reachable tree.
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For example:

• a1 ¼ 13 a2 ¼ 15

• t01 � P4 t
0
2 � P3.

Now, we will define the following action for ai:

ai ¼

ai � n

m
, if ai � nð Þmodm ¼ 0

ai � n

m

h i

þ 1, if ai � nð Þmodm 6¼ 0

8

>

<

>

:

where n to t0i or in σ corresponding Pj position, the number of tokens are in their
first position, and m from t0i or σ to the number of the arrows in the state:

# Pj,O t0i
� �� �

.
If for t0i transition P1,⋯,Pk positions correspond, then we will take the P1

position for which μ x½ �1 ¼ ai. In this case n ¼ μ0 P1½ �, and m ¼ # Pj,O t0i
� �� �

.
If there is no corresponding position for t0i transition, then we will leave ai to

remain the same.
For example:

a1 ¼ a1 � 1ð Þ=1 ¼ 13� 1ð Þ=1 ¼ 12

a2 ¼ a2 � 0ð Þ=1 ¼ 15� 0ð Þ=1 ¼ 15:

Let us mark b1i ¼ ai. For example:

b11 ¼ a1 ¼ 12

b12 ¼ a2 ¼ 15:

2.2.1 Cumulative move

We will take T ∗ last transition or the succession of transition, fix it and mark
as tα.

tα corresponding b1i is marked as α which we also fix. The fixed b
j
i does not

change in the next moves.
We consider all T ∗ items from the right to left, starting from tα.
Suppose t0k is the considered transition or the transition succession and P1 is the

corresponding position of t0k.

If P1 ∈ I tαð Þ, then t0k corresponding b
j
i in the next move will get the following

value: b
jþ1
i ¼ b

j
i þ α � l, where l from P1 position tα is the number of arrows.

Suppose t0k corresponds with P1,⋯,Pl positions. If ∃1≤ j≤ l in the way

thatPj ∈ I tαð Þ, then b
jþ1
i ¼ b

j
i þ α � l, where l ¼ # Pj, I tαð Þ

� �

. In the opposite case,

b
jþ1
i ¼ b

j
i.

After that, we fix tα the previous transition action and denote it as tα.

We denote the new tα corresponding to b
j
i as α and go to the second step again.

It follows that for each transition or sequence of transitions, there will be a

correspondingly fixed number b
j
i, which will mark the number of implementation

of the transition or sequence of transitions. For example:

8
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t01 t02
12 15

27 15

The above shows that the t01 transition must be implemented for 27 times and t02
transition for 15 times.

Given our denote, we get that state μ x½ � ¼ 0, 1, 15, 13ð Þ covers state μ y½ � ¼
1, 1,ω,ωð Þ: To achieve the goal, we need to implement the t2 transition 27 times and
the t3 transition for 15 times.

Let us assign ts yð Þ ¼
Pl

i¼1b
j
i, l ¼ T ∗ yð Þj j. Which means ts yð Þ is y the number of

enabled transitions.
Lemma 1. Suppose there are y1 and y2 peaks in the way that

μ y1
� �

≥ μ x½ �&μ y2
� �

≥ μ x½ �. In that case ts y1
� �

≤ ts y2
� �

.
Proof: We have.

S yð Þ ¼
P

i
k

j¼i1

zj tð Þ, where zj tð Þ ¼ # Pj, I tkð Þ
� �

,∀tk ∈T ∗ .

ts yð Þ ¼
P

k

i¼1
b0i, where k ¼ T ∗ y1

� ��

�

�

�.

In this number some b0is are equal to 1. Without breaking the sense we will

suppose that the first d0 number of b0is is equal to 1. We will get

ts y1
� �

¼ d0 þ
X

k

i¼d0þ1

b0i ¼ d0 þ
X

k

i¼d0þ1

μ x½ �l þm0 � b0
� �

We have ts y2
� �

¼
Pk0

i¼1b
00
i , where k0 ¼ T ∗ y2

� ��

�

�

�.

Suppose for b00i s, number of d00 is equal to 1. Moreover d00 ≤ d0, as S y1
� �

< S y2
� �

,

ts y2
� �

¼ d00 þ
X

k0

i¼d00þ1

μ x½ �l þ n00i � b
00

� �

≥ d0 þ
X

k

i¼d0þ1

μ x½ �l þ n0i � b
0

� �

¼ ts y1
� �

) ts y1
� �

≤ ts y2
� �

The lemma is proven.

Lemma 2. Suppose y1 and y2 are covering peaks. There is S y1
� �

¼ S y2
� �

& T ∗
1

�

�

�

�

< T ∗
2

�

�

�

�

: in this case ts y1
� �

< ts y2
� �

.

Proof:

ts y1
� �

¼ d0 þ
X

k

i¼d0þ1

b0i ¼ dþ
X

k

i¼d0þ1

μ x½ �l þ n0i � b
0

� �

<

d0 < d00
d00 þ

X

k0

i¼d00þ1

μ x½ �l þ n00i � b
00

� �

¼ ts y2
� �

:

The lemma is proven.
Theorem. Through the abovementioned number of covering state, transition

algorithm is in its minimal state.
Proof: Let y be the covering peak in our algorithm and t01,⋯, t0k the succession of

transitions. It must be shown that the number of t01,⋯, t0k move is in minimal state.
For this we need to show that �∃y

0 covering peak has less number of transitions than
the number of t01,⋯, t0k.
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Let us consider two cases:

1.y 6¼ y0

Suppose the transition number of y0 is less than t01,⋯, t0k implementation number.
According to the algorithm: S yð Þ< S y0ð Þ or

S yð Þ ¼ S y0ð Þ& T ∗
1

�

�

�

�< T ∗
2

�

�

�

�:

If S yð Þ< S y0ð Þ ) according to Lemma 1: ts yð Þ≤ ts y
0ð Þ. We’ve come into

a controversy.

If S yð Þ ¼ S y0ð Þ& T ∗
1

�

�

�

�< T ∗
2

�

�

�

� ) according to Lemma 2: ts yð Þ≤ ts y
0ð Þ. We’ve come

into a controversy.

2.y ¼ y0

Suppose succession transitions of y0 is s1,⋯, sr. As the tree does not contain any
cycle, y ¼ y0 ) t01,⋯, t0k and s1,⋯, sr are the same ) ts yð Þ≤ ts y

0ð Þ. The theorem is
proven.

2.3 Conclusion

The proven theorem and research reveal some important features of Petri nets
from the point of view of optimization, that is, if the idea of Petri nets is used in
technical devices, then the idea of sequential transitions save resources and time.

3. Interrelation of languages of colored Petri nets and some traditional
languages

Definition. The mathematical definition of colored Petri net: CPN is
a nine-tuple CPN ¼ Σ,P,T,A,N,C,G,E, Ið Þ, where:

P

is a finite set of non-empty types called color sets [17].
P is a finite set of places which are depicted as ovals/circles.
T is a finite set of transitions which are depicted as rectangles.
A is a finite set of arches which are depicted as directed edges; moreover.

P∩T ¼ P∩A ¼ T ∩A ¼ ∅:

N is a node function, A ! P� T ∪T � P.
C is a color function, C : P ! Σ.
G is a guard function. It is defined from T into expressions such that

t∈T : Type G tð Þð Þ ¼ B&Type Var G tð Þð Þð Þ⊆Σ½ �:

E is an arc expression function, which is defined as follows:

∀a∈A : Type E að Þð Þ ¼ C pð ÞMS&Type Var E að Þð Þð Þ⊆Σ
� �

,

I is an initialization function [3–6, 9, 10],

∀p∈P : Type I pð Þð Þ ¼ C pð ÞMS

� �

:

10
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The distribution of tokens, called marking, determines the state of the simulated
system. The dynamic behavior of CPN is due to the triggering of a transition that
transfers the system from one state to another. A transition is enabled if the associ-
ated arc expressions of all input arches can be evaluated as a multi-set, which is
compatible with the current tokens in corresponding input places, and its guard is
satisfied. After the transition is triggered, tokens are removed from the input places,
respectively, by the specified expression of the arches of all incoming arches, and
tokens are placed in the output places, respectively, by the specified expressions of
the outgoing arches [3–6, 17].

3.1 The example of modeling consumers’ process with CPN

Let us suppose that there are two processes of producers and consumers [1, 9].
The following picture shows the process diagram (Figure 4).
There is a distribution problem in the described system. To use the channel, the

pair P1, C1ð Þ must have priority toward P2, C2ð Þ in the sense of using the channel.
This is described as follows: while the buffer is not empty, the channel cannot report
data from the buffer to the consumer. It is impossible to solve this problem with the
help of classical Petri nets, since it is permissible in nature. The proof of this fact is
described in the literature [1].

To solve that problem, it is needed to extend Petri net’s several properties in such
a manner that the proposed properties are headed toward the opportunity of
checking the zero in Petri nets [13].

3.2 Declaration

Color E = {e};
Color Control = {0;1};
Color S = product E*Control;
Var ct:Control;

The CPN (Figure 5) is the model of the solved problem of priority usage
[17, 19].

Figure 4.
The consumers’ process with the common usage and buffer is an action.
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3.3 The modeling of context-free languages with colored Petri nets:
the diagram of interrelation of colored Petri nets and traditional languages

It is known that the class of regular languages is one of themost studied simple classes
of formal languages and any regular language is the language of Petri nets [2, 18].

There are context-free languages that are not languages of Petri nets. Such
examples of the context-free languages are ωωR=ω∈Σ ∗

	 


,L ∗ ¼ L∪LL∪LLL…

(in particular, anbn=n> 1f g).
The noted fact shows the limitation of Petri nets as a mechanism that generates

languages [2].
In Petri nets one can only remember a sequence of limited length (similar to

finite automata) [2].
It is clear that Petri nets do not possess the “capacity of pushdown memory”

necessary for generating context-free languages. The relationship of the languages of
Petri nets with other classes of languages (Venn diagram) is shown in Figure 6 [2, 10].

3.4 Results

A model of the L ∗ ¼ L∪LL∪LLL… language (Klins’ star) is constructed using
colored Petri nets, in particular L ¼ anbn=n≥ 1f g.

Colored Petri net (Figure 7) generates such a language, which proves that the
colored Petri net is a more powerful tool than the classical Petri nets. The following
declaration is for the concept of data types.

Figure 5.
The modeling of consumer problem with colored petri net.
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Figure 6.
Interrelation of petri nets and traditional languages (T-0, the general type of languages; CS, context-sensitive
languages; PNL; petri net languages; CF, context-free languages; BCF, bonded context-free languages; R,
regular languages).

Figure 7.
Modeling L ∗ ¼ L∪LL∪LLL… language by colored petri net.

13

The Possibilities of Modeling Petri Nets and Their Extensions
DOI: http://dx.doi.org/10.5772/intechopen.90275



The operation of the colored Petri net shown in Figure 7 is described in more
detail in the literature [3, 10].

Тhe colored Petri net (Figure 7), which is built for L ∗ ¼ L∪LL∪LLL… lan-
guage, suggests the following relationship between the languages of the colored
Petri nets with some classes of traditional languages (see Figure 8) [10].

The Venn diagram, modified by the author (Figure 8), shows the relationship
between the languages of the colored Petri nets and some traditional languages. This
fact illustrates that the language class of colored Petri nets includes an entire class of
languages without context.

4. On a solution to the cigarette smoker’s problem with colored
Petri nets

In 1971 Patil proved that P and V actions have insufficient capacity for resolving
synchronization issues. His proposed solution to model problem is called smoking
a cigarette [9].

The actions of the smokers without the coordination are as follows.
Let X be the smoker with tobacco, Y the smoker with paper, Z the smoker with

matches, and A the agent (see Table 1).
It is proven that the problem of smokers has no solution using semaphores [9].
Patil showed that there is no sequence of P and V actions to correctly solve the

problem [1, 2]. Modeling the problem using the classical Petri net, we get an
inactive network. Since all tokens in classical Petri nets are of the same type, the
ingredients will not differ from each other.

Theauthor simulatedaproblemwith thecoloredPetrinet (seeFigure9)[3–6,9, 18, 19].
The operation of the colored Petri net shown in Figure 9 is described in more

detail in the literature [9].
If we were to represent this problem using the classical Petri net, then we need

to use three transitions instead of one T transition. It also means that minimization
of the network is ensured, which implies a reduction in costs due to the reduction of
arches in positions and transitions.

Figure 8.
Interrelation of colored petri nets and traditional languages. (CPNL, language of colored petri net).

Processes AX Processes AY Processes AZ

Pick up the paper

Pick up the match

Roll the cigarette

Light the cigarette

Smoke the cigarette

Return to AX

Pick up the tobacco

Pick up the match

Roll the cigarette

Light the cigarette

Smoke the cigarette

Return to AY

Pick up the tobacco

Pick up the paper

Roll the cigarette

Light the cigarette

Smoke the cigarette

Return to AZ

Table 1.
The actions of the smokers.
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4.1 Declaration

Color INT ¼ integer;
Color U ¼ t;
Color N ¼ P;
Color Q ¼ m;
Color E ¼ Product N ∗Q OR Product U ∗Q OR Product N ∗Uf g;
Var K, lð Þ : E;
n : INT;

4.2 Conclusion

In the problem, we identify certain advantages of colored Petri net to P and V
operations and classical Petri net with the synchronization problem. The mentioned
studies allow identification of synchronization modeling opportunities with the
help of colored Petri net.

Author details

Goharik Petrosyan
Plekhanov Russian University of Economics Yerevan Branch, Member of Armenian
Mathematical Union, ASPU, ISEC of NAS RA, Yerevan, Armenia

*Address all correspondence to: petrosyan_gohar@list.ru;
petrosyangoharik72@gmail.com

©2019 TheAuthor(s). Licensee IntechOpen. This chapter is distributed under the terms
of theCreativeCommonsAttribution License (http://creativecommons.org/licenses/
by/3.0),which permits unrestricted use, distribution, and reproduction in anymedium,
provided the original work is properly cited.

Figure 9.
The modeling of cigarette smoker’s problem with colored petri nets.

15

The Possibilities of Modeling Petri Nets and Their Extensions
DOI: http://dx.doi.org/10.5772/intechopen.90275



References

[1] Tadao M. Petri nets: Properties,
analysis and applications. Proceedings
of the IEEE. 1989;77(4)

[2] Peterson J. Petri Net Theory and the
Modelling of Systems. Prentice Hall;
1981. ISBN 0-13-661983-5

[3] Jensen K, Rozenberg G, editors.
High-Level Petri Nets. Berlin: Theory
and Application, Springer-Verlag; 1991.
pp. 44-122

[4] Jensen K. Colored Petri Nets: Basic
Concepts, Analysis Methods and
Practical Use. Berlin: Springer-Verlag;
1992

[5] Jensen K. Colored Petri Nets: Basic
Concepts, Analysis Methods
and Practical Use. Vol. 1–3. Springer;
1996

[6] Jensen K. Colored petri nets: Basic
concepts, analysis methods and
practical use. In: Basic concepts.
Monographs in Theoretical Computer
Science. Vol. 1–3. Berlin, Germany:
Springer–Verlag; 1997

[7] Raising W, Rosenberg G, editors.
Lecture notes on petri nets. Parts I and
II. In: Lecture Notes in Computer
Sciences. Vol. 1491–1492. Springer-
Verlag; 1998

[8] Petrosyan GR. Description of the
algorithm for finding the shortest
sequence of transitions in a Petri net.
Multidisciplinary Scientific Edition
International Academy Journal Web of
Scholar. 2017;5(14):20-25. Available at:
http://webofscholar.com/ ISSN
2518-167X Founder – RS Global
Media LLC, Kiev, Ukraine

[9] Petrosyan GR. The modelling of the
synchronization problem with Colored
petri nets. International Journal of
Electronic Engineering and

Computer Science. 2016;1(2):56-60
Available at: http://www.aiscience.org/
journal/ijeecs

[10] Petrosyan GR, Avetisyan AM, Ter-
Vardanyan LA. Interrelation of
languages of colored petri nets and some
traditional languages. Open Journal of
Modelling and Simulation. 2013;1:27-29.
DOI: 10.4236/ojmsi.2013.13005.
Published Online July 2013 (http://
www.scirp.org/journal/ojmsi)

[11]Westergaard M, Kristiansen L. The
access/CPN framework: A tool for
interacting with the CPN tools
simulator. In: Proc. of 30th International
Conference on Applications and Theory
of Petri Nets (Petri Nets 2009).
Lecture Notes in Computer
Science 5606. Berlin: Springer-Verlag;
2009. pp. 313-322

[12] Jensen K, Kristiansen L, Wells L.
Colored petri nets and CPN tools for
modelling and validation of concurrent
systems. International Journal on
Software Tools for Technology Transfer
(STTT). 2007;9(3–4):213-254

[13] Petrosyan GR, Ter-Vardanyan LA,
Gaboutchian AV. Modeling of biometric
identification system using the colored
petri nets. The International Archives of
the Photogrammetry, Remote Sensing
and Spatial Information Sciences. 2015;
XL-5/W6 Photogrammetric techniques
for video surveillance, biometrics and
biomedicine, 25–27 May 2015, Moscow,
Russia

[14] Knut D. The Art of Programming.
Vol. 1–3. Moscow: Mir; 1976

[15]Orlov S. Technology of Software
Development, Textbook for
Universities. Petersburg; 2002

[16] Gordeev A, Molchanov A. System
Software, Textbook. St. Petersburg;
2002

16

Numerical Modeling and Computer Simulation



[17] Jensen K, Kristiansen L. Coloured
Petri Nets—Modeling and Validation of
Concurrent Systems. Berlin: Springer-
Verlag; 2009

[18] Alfred A, Jeffrey U. Theory of
Parsing, Translation, & Compiling. Vol.
1-2. Prentice Hall; 1973

[19]Ullman J. Elements of ML
Programming. Upper Saddle River:
Prentice-Hall; 1998

17

The Possibilities of Modeling Petri Nets and Their Extensions
DOI: http://dx.doi.org/10.5772/intechopen.90275


