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Abstract

Knowing excitonic and biexcitonic properties of low-dimensional semiconduc-
tors systems is extremely important for the discovery of new physical effects and for 
the development of novel optoelectronics applications. This review work furnishes 
an interdisciplinary analysis of the fundamental features of excitons and biexcitons 
in two-dimensional semiconductor structures, one-dimensional semiconductor 
structures, and zero-dimensional (0D) semiconductor structures. There is a focus 
on spectral and dynamical properties of excitons and biexcitons in quantum dots 
(QDs). A study of the recent advances in the field is given, emphasizing the latest 
theoretical results and latest experimental methods for probing exciton and biexci-
ton dynamics. This review presents an outlook on future applications of engineered 
multiexcitonic states including the photovoltaics, lasing, and the utilization of QDs 
in quantum technologies.

Keywords: excitonic states, biexcitonic states, multiexcitonic states,  
reduced dimensionality semiconductors, quantum wells, quantum wires,  
quantum dots, applications

1. Introduction

The scientific significance in the field of the physics of excitons comprises both 
basic research and applied research, this area of physics being one of the most 
actively studied subjects. The interest in the physics of excitons has raised actively 
over the past two decades, this interest being provoked by the unique properties of 
excitons that provide the development’s context of optoelectronic and photovol-
taic of various device applications such as electrically driven light emitters [1–3], 
photovoltaic solar cells [4–6], photodetectors [7, 8], and lasers [9–12].

An important concern for the researchers of this field is to obtain a decrease of 
the dimension of the macroscopic semiconductor systems to nanoscale, this thing 
leading not only to manufacturing and observing low-dimensional semiconductor 
structures (LDSs) but also to the emergence and development of new electronic 
and optical properties that are significantly different from bulk semiconductors 
properties. Because the essential distinction between low-dimensional semicon-
ductor structures and bulk semiconductor structures can be explained using the 
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terminology of improved excitonic effects that are determined by exciton localiza-
tion result, it is crucial that, in these quantum-confined materials, the excitonic 
properties to be better understood and mastered to be able to use them in the 
development of the innovative and proficient optoelectronic devices utilizing these 
types of the materials.

Numerous researches have already shown that exploring the excitons’ behavior 
in low-dimensional semiconductor systems can find new ways of controlling 
the fundamental exciton properties for light generation and light harvesting and 
finding novel materials for the next-generation high-efficiency excitonic light-
harvesting tools at low cost [13–15].

Excitons in low-dimensional semiconductor structures have been widely 
investigated latterly. A low-dimensional semiconductor structure is a system which 
presents quantum confinement effects, the movement of electrons or other par-
ticles (holes, excitons, etc.) being limited in one or more dimensions.

The promising area of excitonics represents the science and manufacturing 
of the excitons in disordered and low dimensionality semiconductors (organic 
semiconductors, hybrid perovskites, colloidal semiconductor nanoparticles) 
[16–23] and guarantees much quicker efficiency of harmonizing with fiber 
optics, realizing some novel stages to perform exciton-based computation at 
room temperatures [24].

It is known that the absorption by a semiconductor of a photon with energy 
equal to or greater than its bandgap stimulates an electron from the valence band 
into the conduction band, the vacancy left behind in the valence band being 
characterized as a hole which is a quasiparticle carrying positive charge. The 
Coulomb attraction type between these particles with electrical charges of opposite 
sign provides a quantum structure of electron–hole pair type which is electrical 
neutral, called exciton. Excitons have numerous characteristics similar to those of 
atomic hydrogen [25, 26]. Using this type of hydrogen atom model, in crystalline 
materials, two types of excitons can be discussed in the two limiting cases of a small 
dielectric constant when the exciton is tightly bound Frenkel-like (the electron and 
the hole are tightly bound; the Coulomb interaction is poorly screened) in contrast 
with large dielectric constant when the exciton is weakly bound Wannier-like (the 
Coulomb interaction is strongly screened by the valence electrons, the electron, and 
the hole being weakly bound) [27–32]. For a semiconductor exciton named Wannier 
exciton which has a radius greater than lattice spacing, the effective-mass approxi-
mation can be used [33–40].

The entire gamut of low-dimensional semiconductor systems comprises quan-
tum dots (QDs) or zero-dimensional (0D) systems if the excitons are dimensionally 
confined in all directions, quantum wires (QWRs) or one-dimensional systems 
(1D) if they are semiconductor nanocrystals in which the excitons are confined only 
in the diameter direction and quantum wells (QWs), or two-dimensional systems 
(2D) if the quantum confinement occurs in the thickness direction, while the 
particle motion is free in the other two directions [41–43].

It has been shown that in the quantum confinement conditions, the size and 
shape of semiconductor nanocrystals show an influence on the exciton fine struc-
ture, this being presented like the mode in which the energetic states of the exciton 
are divided by crystal field asymmetry consequences and low-dimensional semi-
conductor structures shape anisotropy [41–50].

Besides the hydrogen characteristics of the exciton, it is known that in QWs, 
QWRs, and QDs, there are hydrogen atom-like exciton pair-state populations or 
larger bound systems called biexcitons [25–27, 51–56].

Various researchers have shown that with the rise of the exciton binding energy 
value in low-dimensional semiconductor systems, the biexciton binding energy 
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value with growth confinement is also raised [25, 57–67]. All of the papers in this 
field have shown that by improving the biexciton creation in reduced dimensional 
semiconductor structures, the quantum yield (QY) of photovoltaic cells has been 
enhanced [57, 68–71]. Also, biexcitons are important for quantum-information 
and computation areas due to their stunning benefit for the creation of coherent 
combination of quantum states, in this sense being used to find new platforms for 
the obtaining of future and scalable quantum-information applications such as 
some greater efficiency non-blinking single-photon sources of biexciton, entangled 
light sources, and laser based on biexciton states [72–75].

Multiple exciton generation (MEG) in low-dimensional semiconductors is the 
procedure by which multiple electron–hole pairs, or excitons, are created after 
the absorption of a single high-energy photon (larger than two times the bandgap 
energy) and is an encouraging research direction to maximize the solar energy 
conversion efficiencies in semiconductor solar cells at a possibly much diminished 
price [76–78]. Numerous studies have shown that the photo-physical properties of 
MEG are due to the character of inherent multiexciton interaction [79, 80].

This present chapter reviews the recent advancement in the understanding of 
the excitons’ and biexcitons’ behavior in LDSs, this fact being important for new 
experiments and optoelectronic devices.

The second section of this paper comprises three important parts that analyze 
the way in which the properties of excitons and biexcitons in two-dimensional 
structures, one-dimensional semiconductor structures, and zero-dimensional 
semiconductor structures are influenced by the nanometric dimensions case.

The final section recapitulates the fundamental and special issues that have been 
debated.

2.  Excitonic and biexcitonic properties in low-dimensional 
semiconductors

This part of the chapter contains some crucial and novel concepts of excitonic 
and biexcitonic properties of semiconductor structures of low dimensionality (e.g., 
QWs, QWRs, QDs) which are relevant for the characterization of the active con-
stituents in advanced tools.

2.1 Excitons and biexcitons in two-dimensional semiconductor structures

This section presents a subject of an enormous significance for the excitons 
and biexcitons effects in two-dimensional semiconductor structures. In 2005, 
Klingshirn [25] reported some essence results which emphasize the optical proper-
ties of excitons in QWs, in coupled quantum wells (CQWs), and superlattices.

In the last years, in the area of excitons in LDSs, there has been much study 
which integrates experimental, theoretical, and technical features about the 
effective-mass theory of excitons and explains numerical procedures to compute 
the optical absorption comprising Coulomb interaction cases [81–84].

Xiao and coworkers [85, 86] emphasized the case of the excitons functioning 
in some layered two-dimensional (2D) semiconductors, presenting new different 
methods of the obtaining of some propitious materials structure (like molybdenum 
disulfide MoS2) with perfect properties for the evolving of the operable optoelec-
tronics and photonics such as light-emitting diodes (LEDs), lasers, optical modula-
tors, and solar cells based on 2D materials. In Ref. [87] the study of the enhanced 
Coulomb interactions in WSe2-MoSe2-WSe2 trilayer van der Waals (vdW) hetero-
structures via neutral and charged interlayer excitons dynamics is mentioned.  



Advances in Condensed-Matter and Materials Physics - Rudimentary Research to Topical…

4

In the situation of cryogenic temperatures, an increasing photoluminescence quan-
tum yield in the conditions of the inclusion of a WSe2 layer in the trilayer composi-
tion in contrast with the example of the bilayer heterostructures has been reported.

Owing to the fact that the class of 2D materials presents some distinctive 
features, which are highly dissimilar in comparison with those of their three-
dimensional (3D) correspondents, it is used for the next-generation ultra-thin 
electronics [88]. In this context some researchers explained the role of the expan-
sion of indirect excitons (an indirect exciton—IX—is a bound pair of an electron 
and hole in separated QW layers [89]), which is observed in vdW transition metal 
dichalcogenide (TMD) heterostructures at room temperature, this study helping 
for the progress of excitonic devices with energy-productive computation and ideal 
connection quality for optical communication cases [90, 91]. Various theoretical 
and experimental analyses have been developed for the improvement of the exci-
tonic devices that use IXs propagation in different types of single QWs and coupled 
QWs [92, 93]. Fedichkin and his colleagues [94] studied a novel exciton transport 
model in a polar (Al, Ga)N/GaN QWs calculating the propagation lengths up to 
12 μm at room temperature and up to 20 μm at 10 K.

In Ref. [95] a theoretical portrayal of the ground and excited states of the exci-
tons for GaAs/AlGaAs and InGaAs/GaAs finite square QWs of different widths is 
presented which eases the elucidation of the experimental reflectance and photolu-
minescence spectra of excitons in QWs.

Some works examined new different excitonic properties of the 2D organic–
inorganic halide perovskite materials showing that this type of perovskite is very 
qualified to be used for the construction of the photonics devices [96–98] contain-
ing LEDs [99, 100], photodetectors [101], transistors, and lasing applications [102]. 
Wang et al. [103] provided a valuable research about the special characteristics 
of the long-lived exciton, trion, and biexciton cases in CdSe/CdTe colloidal QWs, 
proposing a novel model of light harvester with minimal energy losses.

2.2 Excitons and biexcitons in one-dimensional semiconductor structures

One-dimensional semiconductor structures have obtained a remarkable consid-
eration within the last decade. 1D semiconductor nanostructures including wires, 
rods, belts, and tubes possess two dimensions smaller than 100 nm [104]. Among 
these types of 1D nanostructures, semiconductor QWRs have been investigated 
thoroughly for a broad range of materials. This type of 1D nanostructures is used 
for an essential study due to their exclusive constitutional and physical properties 
comparative with their bulk correspondents. Crottini et al. [105] communicated the 
1D biexcitons behavior in high-quality disorder-free semiconductor QWRs, evalu-
ating the biexciton binding energy value at 1.2 meV.

Sitt and his coworkers [106] reviewed the excitonic comportment of a diversity 
of heterostructured nanorods (NRs) which are used for a series of applications 
comprising solid-state lighting, lasers, multicolor emission, bio-labeling, photon-
detecting devices, and solar cells. In the same work [106], some multiexciton effects 
are shown, and the dynamics of charge carriers is presented in core/shell NRs with 
potential applications in the optical gain field and in the light-harvesting section.

For the case of the single crystalline silicon nanowires (SiNWs), which is a key 
structure for nanoscale tools including field-effect transistors, logic circuits, sen-
sors, lasers, Yang [107] described some excitonic effects and the case of the optical 
absorption spectra using the Bethe-Salpeter equation.

In Ref. [108] the physical properties of elongated inorganic particles are reported 
in the case of the nanoparticle shape modification from spherical to rod-like with 
the help of the exciton storage process.
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2.3 Excitons and biexcitons in zero-dimensional semiconductor structures

Zero-dimensional semiconductor structures have captivated a notable interest 
owing to the fact that the motion is confined in all three directions, the size of a 
QDs being smaller than or comparable to the bulk exciton Bohr radius [109–112]. 
In this part of the chapter, some recent progresses in the topic which deals with the 
excitonic and biexcitonic effects for QDs applications case are emphasized, includ-
ing computing and communication field, light-emitting devices, solar cells area, 
and biological domain [113, 114].

Pokutnyi [115–120] realized the foremost theoretical analyses that accurately 
describe different absorption mechanisms in such nanosystems, discussing many 
issues related to the complicated interrelationship between the morphology of the 
zero-dimensional semiconductor structures and their electronics and their optical 
properties and which help to the progress of novel proficient optoelectronic devices.

Plumhof and his colleagues [121] proved that QDs with an adequately small 
excitonic fine structure splitting (FSS) can be utilized as some valuable determin-
istic sources of polarization-entangled photon pairs to improve the building blocks’ 
quality for quantum communication technology.

Golasa et al. [122] presented some new statistical properties of neutral excitons, 
biexcitons, and trions for the case of QDs which are created in the InAs/GaAs 
wetting layer (WL), confirming that the WLQDs structure is a useful model to be 
applied in the area of quantum-information processing applications.

Singh and his team of researchers [123] found a new multipulse time-resolved 
fluorescence experiment for the CdSe/CdS core/shell QDs case, this work being a 
crucial spectroscopic procedure which can separate and measure the recombination 
times of multiexcited state for the proposed sample.

In Ref. [124] a comprehensive review is furnished about the appropriately 
engineered core/graded-shell QDs revealing advantageous optical properties and 
unique photoluminescence assets of QDs for liquid crystal displays backlighting 
technologies and organic light-emitting diode tools. In different papers which 
have to do with the quantum dot-based-light-emitting diodes (QD-LEDs) results 
[124–127], it is mentioned that for the improvement of the QD-LED performance, 
two processes must be diminished: trapping of carriers at surface defects and Auger 
recombination of excitons.

Important studies reveal many novel and interesting experimental and theoreti-
cal results on LDSs exhibiting high quantum yield as a result of MEG occurrence 
with the aim of the improvement of the solar devices field. Considering that 
Shockley and Queisser determined a basic threshold value for the efficiency of a 
traditional p-n solar cell of 30%, these essential results prove that there is a pos-
sibility to exceed the Shockley-Quiesser threshold employing quantum effects for a 
recently developed low-cost third-generation solar cell [77, 128–130].

3. Conclusions

In recent decades, low-dimensional semiconductor structures have become one 
of the most dynamic research areas in nanoscience, the excitons showing some 
notably novel attributes due to confinement consequence case. In this chapter a 
review of some modern experimental and theoretical discoveries on excitonic and 
biexcitonic effects in low-dimensional semiconductors is presented. The paper 
furnishes an outstandingly multipurpose excitonic aspect of the optoelectronic 
applications field, including photodetectors and opto-valleytronic tools, computing 
and communication domain, and light-emitting devices.
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