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Abstract

In 1949, first intraocular lens (IOL) insertion after cataract surgery was per-
formed by Sir Harold Ridley, in London. Only in the 1970s, the IOL insertion after 
cataract surgery began to be a standard procedure. The material the first IOL-s were 
composed of was polymethyl methacrylate (PMMA). The PMMA is a rigid material 
and the corneal incision had to be at least as big as the IOLs optic and it became 
its biggest disadvantage in the cataract surgery. The main goal of modern cataract 
surgery is as smallest incision possible, so the IOL-s had to be flexible and therefore 
foldable. This goal was achieved by improvements in the IOL design and materials 
that made them foldable. First foldable IOL-s were made of hydrogel but they were 
unstable and the development of the first silicone IOL-s overcame that problem. 
Foldable silicone IOL-s were first implanted in 1978 by Kai-yi Zhou. Foldable 
IOL’s benefits are its compatibility with a small incision surgery that is self-sealing 
procedure and the possibility of insertion by a single-use applicators that made 
the surgery safer. In the future, we can expect some new, different and innovative 
approaches in the IOL design and materials.

1. Introduction

Intraocular lenses (IOL) are implanted in the eye in order to treat refractive 
errors produced by extraction of the lens as a standard procedure in cataract 
surgery.

IOL is designed and composed of optic—central part, and the haptics—side 
structures that keep the lens inside the capsular bag.

The first intraocular lens was inserted in 1949 after cataract surgery by Sir 
Harold Ridley in St Thomas Hospital in London [1]. The material the first IOLs were 
composed of was polymethyl methacrylate (PMMA). It was a rigid nonfoldable 
material making the placement of the IOL challenging [2]. In the 1970s, the new 
lighter posterior chamber IOLs were designed and had propylene haptics for better 
stabilization and ciliary sulcus fixation and the IOL insertion after cataract surgery 
began to be a standard procedure.

In the early 1980s, Epstein began to use lenses made of silicone with the inten-
tion to make them foldable. That way they could be inserted into the eye through 
the small incisions of 3 mm and less compared to 5–7 mm incisions needed for 
nonfoldable IOLs insertion [3, 4]. The practice of IOL implantation was revolution-
ized in 1984 when Thomas Mazzocco began folding and implanting the plate haptic 
silicone IOLs [5].
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Current materials used for IOL optics are of two types—acrylic and silicone. 
Acrylic materials can be rigid (PMMA) and foldable made of hydrophobic acrylic 
materials (AcrySof - Alcon Laboratories, Sensar – Advanced Medical Optics –
AMO) and hydrophilic acrylics (Centerflex, Akreos).

Each foldable acrylic lens design is made from a different copolymer acrylic with 
a different refractive index, glass transition temperature, water content, mechanical 
properties and other attributes.

Hydrophobic acrylic lenses and silicone lenses have very low water content (less 
than 1%). But there are hydrophobic acrylic materials with higher water content 
about 4% also available. Hydrophilic acrylic lenses are made from copolymers with 
higher water content ranging from 18 to 38%.

The first silicone material that was used in the industry of IOLs was polydimeth-
ylsiloxane, with refractive index of 1.41 while the new silicone materials have higher 
refractive indexes.

Refractive index in foldable acrylics is 1.47 or greater, and for silicone lenses is 
lower—1.41 and higher. Therefore acrylic lenses are thinner than silicone ones with 
the same refractive power.

2. Materials

2.1 Biocompatibility

The biocompatibility of a material is dependent of a biological response to a 
foreign body material and it depends on the design and the material of the implant. 
The material should be chemically inert, physically stable, noncarcinogenic, non-
allergenic, capable of fabrication in the required form, and have no foreign body 
reaction [6]. Materials used in ophthalmology should also be optically transparent 
for long period of time, have a high resolving power or refractive index, and should 
block ultraviolet rays.

The reaction of lens epithelial cells and the capsule to IOL material and design is 
capsular biocompatibility. The uvea’s reaction to the IOL is uveal biocompatibility 
[7]. During cataract surgery the blood-aqueous barrier is disrupted and proteins 
and cells are released in the aqueous humor. Proteins then adsorb on the IOL surface 
and this will influence subsequent cellular reactions on the IOL [8].

3. Glistenings

Glistenings are a phenomenon caused by penetration of aqueous humor into the 
IOL material causing vacuole formation in the IOLs optic [9].

Glistenings are fluid-filled microvacuoles that form within the IOL optic when 
the lens is in an aqueous environment. They can be observed with any type of IOL 
more often in association with hydrophobic acrylic lenses.

Factors that may influence the formation of glistenings include IOL material, 
manufacturing technique and packaging and also the associated conditions of the 
eye-glaucoma, conditions leading to breakdown of the blood-aqueous barrier and 
use of ocular medications.

Some theories refer glistenings as a cavitation within the IOL from slow moving 
hydrophilic impurities within the IOL. An osmotic pressure difference between 
the aqueous solution within a cavity and the external media in which the lens is 
immersed leads to growth of the cavity [10].
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Glistening develop over time and indicate a dynamic process within the lens/eye 
system. Causes and long-term outcomes are not entirely clear [11].

Hydrophobic acrylic IOL have the highest degree of lens glistening in com-
parison to the silicone and the HSM-PMMA IOL 11.3–13.4 years after surgery. The 
HSM-PMMA IOL had almost no lens glistenings. Lens glistening do not interfere 
with the dioptric power of the hydrophobic acrylic lens IOL [12].

4. Hydrophobicity and hygroscopy

Hydrophobicity is a measure of material’s tendency to separate itself from water. 
Every material has its measurable hydrophobicity that is graded using contact-angle 
measurements and it is a surface property [13–15]. It ranges from only a few degrees 
for almost perfectly hydrophilic surfaces, such as bare silica glass prepared with 
dangling hydroxyl groups [16] to almost 180° for super-hydrophobic surfaces [14].

Hydrophobicity is highly dependent of the material’s chemistry since the oxygen–
hydrogen bonds in water are highly polar. Partial electric charges on the atoms tend 
to be attracted to opposite charges. That way water dissolves salts and is attracted 
to materials that also have partially charged bonds. Polymers consist primarily of 
nonpolar carbon–carbon and carbon–hydrogen bonds, which is why they are not 
generally hydrophilic and is attracted to materials with partially charged bonds.

Hygroscopy explains a material’s tendency to absorb and hold water. A highly 
hygroscopic material draws water into itself. In ophthalmology the hydrophobicity 
has been used to describe both the surface and interior of IOLs. The interaction of 
an IOL’s surface with water is a measure of hydrophobicity and the ability of IOLs to 
draw water into their interior a hygroscopy.

5. Polymethyl methacrylate

The first IOL, implanted in 1949, was made of PMMA. There have been reports 
of original lenses implanted by Ridley remaining perfectly clear and centered for 
more than 28 years [3]. There were also reports of some spontaneous dislocations 
into the vitreous [5].

It is a rigid, nonfoldable material with less than 1% water content and therefore 
hydrophobic. PMMA IOLs are usually single pieced, large and therefore nowadays 
rarely used. They have a refractive index of 1.49 and usual optic diameter 5–7 mm. 
They are s too rigid to fold and therefore the lens cannot pass through the small inci-
sions used phacoemulsification.

6. Silicone

Silicon IOLs were designed to allow implanting through the incision smaller than 
the optics diameter. Implantation of silicone IOLs was introduced in 1984 [17]. Silicone 
is a hydrophobic material of refractive index 1.41–1.46 and the optic diameter of 
5.5–6.5 mm. Models are three-piece design with PMMA, polyvinyl difluoride (PVDF) 
and polyamide haptics. The problem with silicone is an abrupt opening in the anterior 
chamber following implantation which may cause rupture of the posterior capsule.

Silicone IOL-s suspected to favor bacterial adhesion and therefore having the 
higher risk of postoperative infections [18]. Silicone oil droplets adhere well to 
silicone IOL in patients with silicone oil tamponade used in retinal detachment or 
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diabetic retinopathy surgery [19]. Therefore silicon IOL should not be implanted in 
highly myopic eyes in risk of retinal detachment.

Nowadays the silicone IOLs are less frequently used because they are not suitable 
for microincision cataract surgery (MICS).

There are also a light adjustable lens-two component silicone IOL where power is 
adjusted after implantation with UV-exposure in use [20, 21].

Glistenings can happen with silicone optics while the aqueous humor can 
penetrate the silicon material [12].

7. Hydrophobic foldable acrylic

Acrylic hydrophobic IOLs are modern foldable IOLs most widely used nowadays. 
They are designed of copolymers of acrylate and methacrylate derived from PMMA. The 
intention of the new design is to make the IOL foldable. They can be manipulated during 
the surgery and always turning back to its original shape [22] in a short period of time. 
First implanted IOL was in year 1993. Hydrophobic Foldable Acrylic can be of three 
piece and one piece design, with optic diameter 5.5–7 mm, and overall length 12–13 mm, 
transparent or colored—yellow. Refractive index can be 1.44–1.55.

Single and multi-piece hydrophobic IOLs can be implanted through small inci-
sion, not lover than 2.2 mm and have to be positioned properly since they have low 
self-centering ability. PCO is significantly lower than in PMMA IOLs but generally a 
bit higher for hydrophobic acrylic lenses compared with silicone [23].

They have higher incidence of photopsias than other acrylic IOLs because of 
high refractive index and low anterior curvatures and some of them develop glisten-
ings since some are easily penetrated by aqueous humor but are not always clini-
cally relevant unless when are dense or multifocal [24]. New materials of IOLs are 
prehydrated to equilibrium and will not accept further water, they are hydrophobic 
with the contact angle with water that of hydrophobic acrylic and are packaged in 
BSS to absorb the eventual water content before implantation [25].

8. Hydrophilic foldable acrylic

Hydrophilic foldable acrylic is a combination of hydroxyethylmethacrylate 
(polyHEMA) and hydrophilic acrylic monomer [26] material and it was introduced 
in 1980 with several modifications since. The IOLs made of this materials are usu-
ally single pieced and designed for capsular bag implantation. Refractive index of 
the material is 1.43, with water content ranging from 18 to 34% [27, 28].

They are soft, compressible with excellent biocompatibility for its hydrophilic 
surface. They can be implanted through a small incisions, lower than 2 mm and 
therefore ideal for MICS [29]. The folding of poly-HEMA chains depends on the 
level of hydration, and so the physical and optical properties of the polymer change 
as a function of water content. As the lenses hydrate, they absorb water and become 
soft and transparent.

The main disadvantage is the higher rate of optic opacification than in other 
materials and lower resistance for capsular bag contraction [30, 31].

9. The future of IOL s materials and designs

Considering the new knowledge and technological improvements and achieve-
ments, we can expect the new materials and designs of IOLs. In order to improve 
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biocompatibility and refractive quality we expect some changes in shape of the IOLs 
(discoid, plate-lamellar, ball shaped) and therefore some novelties in implantation 
possibilities. The new neuro-ophthalmological knowledge and knowledge about 
adaptation and perception, industries based on robotic approach and innovations 
give us the right to expect some new and completely different IOLs in their shape, 
materials and functioning principle [32, 33]. In conclusion, in the future, we can 
expect some new, different and innovative approaches in the IOLs design and 
materials and refractive ophthalmology.
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