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Abstract

Already for thousands of years mankind is aware of inheritance and its manipulation by 
mating and breeding. The discovery of the cell nucleus by A. van Leeuwenhook in the 17th 
century marks a start to elucidate the epically discussed evolutionary transfer of information 
in detail. Now after more than 170 years of research on the 3D architecture and dynamics of 
genomes and the co-evolved interaction networks of regulatory elements creating genome 
function - i.e. the storage, replication, and expression of genetic information—a consistent 
systems statistical mechanics genomics framework emerges for the first time. Obviously the 
structure and function of genomes co-evolved as an inseparable system allowing the physi-
cal storage, expression, and replication of genetic information. The DNA double helix and 
the nucleosome had been determined structurally at the very highest level already, including 
genome sequences and epigenetic histone modifications. That chromosomes form territories 
with functional relevant positioning within the cell nucleus and that chromosomal subdo-
mains exist has been also determined to a fair degree of detail. Only recently, however, we 
were finally able to fill the much debated gap in-between by establishing that nucleosomes 
compact into a quasi-fibre folded into stable loops which form stable multi-loop aggregates/
rosettes connected by linkers and hence creating chromosome arms and entire chromo-
somes. Interestingly, this has lead immediately to a consistent and cross-proven systems 
statistical mechanics genomic framework which is balancing stability/flexibility ensuring 
genome integrity, enabling expression/regulation of genetic information, as well as genome 
replication - all this in evolutionary perspectives as the natural outcome of Darwinian natu-
ral selection and Lamarkian self-referenced manipulation. Thus, genotype and phenotype 
are multilisticly entangled and beyond are embedded in genome ecology i(!)n- and environ-
ments. This not only opens the door to a true universal sequencing of genetic information, 
but also is the key for a general understanding of genomes, their function and evolution, as 
well as for applied diagnostics and treatment of disease, for future genome manipulation 
and engineering efforts, as far as the creation of artificial or extra-terrestrial live contexts.

Keywords: chromatin structure, genome organization, systems genomics, genomic 
statistical mechanics, genotype phenotype entanglement, evolution, genome ecology
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1. Introduction to the History and State of the Art

Inheritance has always played a central part in the quest for elucidating the origin of nature, 

life and mankind. Beyond the epic mythical assumptions, it also has been obvious for millen-

nia that the evolutionary transfer of information plays a key role during the manipulation of 

inheritance by mating and breeding. Already in antique times many a "theory" was devoted 

to the apparent, as well as especially to the obvious fact that nature seemed to be composed 

of small, similar, and consistent subcomponents—so called atoms. With the description of the 

tissue of plants (including its substructures of vesicles and bubbles) by Robert Hooke or in 

the case of the cell nucleus by Anton van Leeuwenhook, in the 17th century new momentum 

entered the field. Nevertheless, it took until 1830 when Robert Brown defined the cell nucleus 
as such and until 1939 when Theodor Schwann established the cell as the fundamental unit 

of all plant and animal tissues while linking to the assumed fundamental design principle 

of life as well as nature in general. Despite fast growing microscopic resolutions there were 

huge challenges: not only staining and visualization methods were lacking, but also huge 

preparatory issues were faced especially concerning the "notorious" hard to stain cell nucleus. 

With the development of the natural sciences many a discovery was made culminating in the 

structural description of the DNA double helix [1] and the discovery of the nucleosome [2–4] 

at the atomic level, full genome sequences and finally histone modifications defining epigen-

etic landscapes. It also became obvious that the structure and function of genomes co-evolved 

as an inseparable system allowing the physical storage, replication, and expression of genetic 

information [5–7].

However, the immense size and structural complexity of genomes spanning many orders 

of magnitude has always imposed huge experimental challenges. Thus, the higher-order 

architecture has been and still is widely discussed with many interesting details yet to be 

described. Already how nucleosomes are spaced, positioned, remodelled, and whether and 

how nucleosome chains fold into fibres at physiological salt concentrations have been mat-
ters of continuing debate: e.g. Finch and Klug [8] proposed a relatively regular solenoid and 

in vivo neutron scattering experiments revealed a fibre diameter of 30 ± 5 nm as a dominant 
nuclear feature [9–12]. In contrast more recent work suggested no compaction at all (rev. [13, 

14]), and highly polymorphic, nucleosome position- [15] and dynamic function-dependent 

structures [16, 17], which are essential to explain nucleosome concentration distributions 

[18–20], or dynamic and functional properties such as the nuclear diffusion of macromol-
ecules. Moreover, the fine-structured multi-scaling long-range correlation behaviour of the 
DNA sequence also predicts a compacted chromatin fibre [21–24]. With a novel chromatin 

interaction technique—T2C—we were, however and indeed, able to show that nucleosomes 

form in general a quasi-fibre with a differential compaction of ~5 ± 1 nucleosomes/11 nm 
[25, 26], which is in agreement with a novel in vivo fluorescence correlation spectroscopy 
(FCS) approach measuring the dynamics of chromatin [27].

The higher-order chromatin architecture has been a matter of even greater debate: 
Pioneering light microscopy studies by Rabl [28] and Boveri [29] hinted towards a hierar-

chical self-similar, territorial organization. Electron microscopy suggested a more random 
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interphase organization as in the models of Comings [30, 31] or Vogel and Schroeder [32]. 

In the radial-loop-scaffold model of Paulson and Laemmli [33] ~60 kbp-sized chromatin 
loops attached to a nuclear matrix/scaffold explained the condensation degree of meta-

phase chromosomes. According to Pienta and Coffey [34], these loops persisted in inter-

phase and formed stacked rosettes in metaphase. Micro-irradiation studies by C. Cremer 
and T. Cremer [35, 36] and fluorescence in situ hybridization (FISH) by Lichter [37] as well 

as C. Cremer and T. Cremer [38] and publications thereafter [39, 40], confirmed a territorial 
organization of chromosomes, their arms, and stable sub-chromosomal domains during 

interphase, including their structural persistence during metaphase (de-)condensation. 

The assumption since then has been that the ~850 G, Q, R, and C ideogram bands [41, 

42] split into and thus also consist actually of ~2500 subchromosomal interphase domains. 
Chromatin rosettes explaining a (sub-)territorial folding were first visualized using elec-

tron microscopy by Jekatrina Erenpreisa [43] and others [44] but remained unappreciated, 

until Belmont and Bruce proposed the EM-based helical hierarchy chromonema fibre (CF) 
model [45]. Spatial distance measurements between small FISH-labelled genetic regions, led 

to the Random-Walk/Giant-Loop (RW/GL) model with the first analytical looped polymer 
description by Sachs [46–48]. Here, 1 to 5 Mbp loops are attached to a non-protein backbone, 
following the line of Pienta and Coffey [34]. Later, a combination of distance measurements 

using structure-preserving FISH protocols, high-resolution microscopy, and huge parallel 

polymer simulations of chromosomes and entire cell nuclei, only were compatible with 

the rosette-like Multi-Loop-Subcompartment (MLS) model in which around 60 to 120 kbp 
loops form rosettes connected by similar sized linkers [7, 21–24, 49, 50]. Thereafter, the RW/
GL model has then been discussed in terms of methodological “demolition” of the archi-
tecture [21, 22, 51, 52]. This is also in agreement with studies on replication (see [39] and 

thereafter). Again in vivo FCS measurements of nucleosome concentration distributions 

and dynamic and functional properties such as the diffusion of macromolecules are only in 
agreement with a small multi-loop aggregate/rosette-like chromatin folding [18–20, 22, 53, 

54]. The fine-structured multi-scaling long-range correlations of the DNA sequence once 
again also predict this [22–24, 55].

To further distinguish between the different architecture proposals, proximity crosslinking 
techniques (developed and used already in the last century) were further developed into a 

family of interaction capture techniques such as 3C [56, 57], 3C-qPCR [58], 4C [59], 3C-seq/4C-
seq [60], 5C [61], and Hi-C [62]. They once more confirmed the existence of looping and sub-

chromosomal domains, now inconsistenly referred to as topologically associated domains 

(TAD; [63]) with a somewhat higher localization accuracy when compared to FISH. These 

approaches also led to a number of - although by the underlying (raw) data basically unsup-

ported - conjectures (Imam et al., in preparation), e.g. the fractal globule model [62], the loop 

array architecture of mitotic chromosomes [64], and the highly dynamic loop formation based 

on single-cell experiments [65] or in a genome wide assay [66]. In contrast, with the introduc-

tion of targeted chromatin capture T2C [25, 67–69], we were able to show that the chromatin 

quasi-fibre forms small stable loops of ~30-100 kbp which form stable multi-loop aggregates/
rosettes connected by linkers of similar sizes as the loops [25, 26]. The development of our 

novel in vivo FCS approach came to the same conclusion [27].
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2. Finalizing the 3D Genome Architecture & Dynamics

Heuristically, it is very instructive how the central part of the 3D genome architecture and 

dynamics could now be determined by us in detail, and how out of this process immediately 

an also evolutionary consistent model (Figure 1) arises in agreement with the entire history 

and heuristics of the field. This has been achieved by a highly integrated systems approach 
linking holistically: i) a novel high-quality selective high-throughput high-resolution chro-

mosome interaction capture (T2C) technique [25, 26, 67–69] (elucidating the structure with 

unprecedented resolution of some base pairs), ii) a novel in vivo FCS approach [27] exploring 

the structure and dynamics by measuring chromatin movement, and iii) a novel analytical 

approach [27] and improvement of super-computer simulations of individual chromosomes 

and entire cell nuclei [7, 21–24, 26, 49–52, 70] to predict, analyse, and interpret the 3D archi-

tecture and dynamics from a theoretical standpoint, and combining all these with iv) scaling 

analysis of the 3D-architecture [21, 22, 26] and the DNA sequence itself [22, 24, 26] since the 

architecture and its dynamics leaves sequence "footprints" due to the co-evolutionary entan-

glement of structure and sequence. The combination of these resulted not only in a consistent 
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Figure 1. Overview on the size and time scaling of genome organization: The scaling and the levels of organization 
range over 9, 12, and 14 orders of magnitude! Initially base pairs are formed composing the DNA double helix (image 

see [22]), forming with a histone core complex the nucleosome (image from [22]), which condense into a chromatin 

quasi-fibre (simulation image; courtesy G. Wedemann). The DNA double helix forms also superhelices (AFM image of 
plasmid DNA; courtesy K. Rippe). The next compaction step consists of stable chromatin loops (FISH image; courtesy 

P. Fransz) forming stable loop aggregates/rosettes connected by a linker (EM image from [44]), which make up interphase 

chromosome arms and territories (FISH image; courtesy S. Dietzel) and the metaphase ideogram bands (image see [22]). 

46 chromosomes compose the human nucleus and are decondensed in interphase (EM image; courtesy K. Richter) and 

condensed for separation during mitosis (image from [22]).
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model for genome organization, but re-evaluation of the development of the entire field in 
the last ~170 years fostered this conclusion also tremendously and directly resulted in an 
evolutionary consistent model of genome organization in general.

2.1. Detailed Structure Determination by T2C

To finally determine and structurally sequence with highest resolution, signal-to-noise 
ratio, interaction frequency range, and statistical significance the 3D genome architec-

ture we developed targeted chromatin capture (T2C) - a chromatin interaction technique 

though with far-better quality specifically addressing the needs for genome architectural 
"sequencing" [25, 26 67–69]. Briefly: i) after chromatin crosslinking, ii) cell permeabiliza-

tion for intra-nuclear enzymatic DNA restriction, iii) the extracted and largely diluted 

cross-linked DNA is re-ligated primarily within the crosslinked complexes. After iv) de-

crosslinking, purification, and final shortening to <500 bp of the chimeric DNA ligates, v) a 
purified region-specific DNA interaction fragment library is selected by using DNA capture 
arrays, before finally vi) high-throughput sequencing, mapping to the reference genome, 
interaction partner determination and visual/quantitative analysis is conducted (Figure 2). 

Notably, we use only uniquely mapped sequences without applying any other corrections 

a

b
c

d

Figure 2. Simulated chromosome models [7, 21–23, 26, 49–52]: Volume rendered images of simulated Random-Walk/
Giant-Loop (RW/GL) and Multi-Loop-Subcompartment (MLS) models. As a starting conformation with metaphase 
chromosome form and size (top), rosettes were stacked (a). Thereof, interphase chromosomes in thermodynamic 
equilibrium, were decondensed by Monte-Carlo and relaxing Brownian Dynamics. The simulated RW/GL model 
containing here large 5 Mbp loops notably shows that the large loops do not form distinct structures but intermingle 

freely (b). In contrast, in the MLS model with 126 kbp loops and linkers, the rosettes form distinct subchromosomal 
domains and chromatin territories in which the loops do not intermingle freely (c). In an RW/GL model with 126 kbp 
loops and 63 kbp linkers, again distinct chromatin territories are formed but in contrast to the MLS model without 

subchromosomal domains (d). It is obvious that the MLS model not only balances stability and flexibility considerations 
in storage and transcriptional respects, but also is optimal for replication due to its in essence two-dimensional topology 

allowing controlled duplication and separation during mitosis.
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bearing information loss due to the very nature of T2C. This specific setup is not only far 
superior due to its improvement of 3 to 4 orders of magnitude compared to other interac-

tion approaches (see Introduction), but also allows nearly unlimited opportunities e.g. such 

as multiplexing for complex research and diagnostics.

Most importantly, however, T2C allows reaching fundamental resolution limits where 

"genomic" statistical mechanics and uncertainty principles apply [26]: With fragment length 

and thus resolutions of a couple of base pairs, a high interaction frequency range, and high 

signal-to-noise ratio, not only molecular resolution is reached and thus the fundamental lim-

its of cross-linking techniques, but also the mechanism of observation is now on the same 

scale as the observables (in analogy to classic and quantum mechanics). Actually due to the 

stochastics following the bias of the system behaviour, the observables, the observation, and 

thus the measured values are constrained by what we call “genomic” statistical mechanics 
with corresponding uncertainty principles. This originates from the individual complex-

ity of each highly resolved interaction with a unique but coupled individual probabilistic 

fragment setting in each cell at a given time. Hence, the actual conditions and components 
can be determined only partially with high accuracy while with low accuracy otherwise and 

are eventually even entirely destroyed by the measurement. Thus, the central limit theorem 

applies with an overlap of system inherent and real noise stochastics, and hence in the end 

only probabilistic analyses and statements can be drawn as hitherto is well known from clas-

sical mechanics, and more so from quantum (mesoscopic) systems. Consequently, popula-

tion based or multiple single-cell experiments have to be interpreted and understood in a 

“genome” statistical mechanics manner with uncertainty principles due to the inseparability 
of factors/parameters also seen there. Thus, in practical terms, valid results are obtained when 
the statistical limit is reached, i.e. when scaling up the experiment does not narrow down 

the distribution any further and does not lead to fundamental (overall) changes anymore in 

observables. Nevertheless, if the statistical limit is reached and if the quality parameters like 

resolution, frequency range, and signal-to-noise ratio are sound, conclusions could be drawn 

as in the many cases of classic mechanics, and more so of quantum (mesoscopic) systems.

Consequently, due to this sensitivity of T2C, we [26] were able to determine finally the miss-

ing parts of the 3D architecture on scales where a "genomic" statistical mechanics applies 

with stable reproducibility as one can already see visually in colour coded interaction maps 

(Figure 2): Not only are rare interactions stably detected within an unprecedented frequency 

range spanning 5-6 orders of magnitude, but also the maps are reproducibly mostly empty 

(<10% of possible signals are taken). Both interactions and non-interactions show clearly 
dedicated interaction patterns on all spatial scales within and between domains, including 
their re-emergence as attenuated repetition on other scales since obviously genomes are scale-
bridging systems [22, 23]—all of which can be immediately identified as structural features 
- briefly (Figure 2):

i. On the largest genomic and thus spatial scale, subchromosomal domains are visible 
as square-like interaction domains (often unfortunately called TADs; [63]) featuring in 

general a higher average uniform interaction degree compared to interactions between 

domains, with a sharp drop at the edge of domains, as well as a clear linker region 
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between the domains that connects them. The borders of the domains can be deter-

mined down to the single fragment level and thus a very high resolution (see below). 

The interaction of domains with each other and a closer inspection of the interactions in 

the vicinity of the linker interacting often more frequently compared to other domain 

parts are mainly due to the breaking of spatial isotropy.

ii. At intermediate scales within the subchromosomal domains, the interaction pattern 
shows clearly distinct gaps and a quantifiable grid-like arrangement of interactions, 
which also continues outside and “crosses” with the linear pattern originating from 
sequentially subsequent domain(s). These interactions on scales of tens of kilo base pairs 

are doubt-free originating from stable chromatin loops, forming a stable loop aggregate/
rosette like architecture, due to several consecutive loops coinciding.

iii. On the smallest scale, a dense and high interaction frequency pattern is observed in 
the region from 3 to 10 kbp (i.e. < ~5-15, and ~50 nucleosomes, respectively) along the 
diagonal. It varies independently of the local fragment size with distinct interactions 

and non-interacting “gaps”. This suggests, that there are defined stable interactions on 
the nucleosome scale forming an irregular yet locally defined and compacted structure, 
i.e. a quasi-fibre with average properties (e.g. an average linear mass density).

A detailed quantification [26, 27] of several regions leads to a quasi-fibre compaction of 5 ± 1 
nucleosomes per 11 nm, with an average chromatin quasi-fibre persistence length of ~80 to 
120 nm, loops and linkers of ~30 to 100 kbp, forming multi-loop aggregates/rosettes with 
typically 300 kbp to 1.5 Mbp subchromosomal domain sizes. Different cell types, species, or 
functional conditions showed only a relatively small variation of this theme [26, 27].

All this is consistent with a variety of previous observations and predictions such as compacted 

fibre structures described throughout the literature (see e.g. [16, 17]), the internal structure of 

subchromosomal domains [7, 21, 22, 24, 38–40, 43, 49, 50] agreeing on all structural levels 

with the absolute nucleosome concentration distributions [18, 19], the dynamic and functional 

properties such as the architectural stability and movement of chromosomes [7, 22, 54, 71, 72], 

chromatin dynamics [73], as well as the diffusion of molecules inside nuclei (e.g. [22, 54, 72]), 

and recent genome wide in vivo FCS measurements of the chromatin quasi-fibre dynamics 
[27] also suggesting such a chromatin quasi-fibre with variable,  function-dependent proper-

ties. Beyond, other hypothesis (see Introduction; [26, 27]) about the 3D genome organization 

on these scales can clearly be ruled out: e.g. no-compaction or a highly-regular chromatin 

fibre, unstable/dynamic loops or unstable/dynamic loop aggregates/rosettes can clearly be 
ruled out, because they simple would lead to other interaction patterns and the intrinsic chro-

matin fibre dynamics with movements on the milli-second scale (Movies 1, 2 [26]) would lead 

to immediate structural dissolution. Most importantly no other model leads to a consistent 

functional framework bridging consistently the here described scales as can also be shown by 

the agreement with scaling analysis of the 3D-architecture [21, 22, 26] and the DNA sequence 

itself [22, 24, 26]. Beyond, not only functional aspects as the easy (de-)condensation during 

mitosis can be easily explained, but we were also able to find this organization in the data of 
others across species and even across specie-kingdoms (Imam et al., in preparation).
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2.2. Dynamics and Structure Revealed by FCS

To investigate the 3D genome architecture and dynamics also by an orthogonal genome wide 

and in vivo approach, a novel in vivo FCS technique exploring the structure and dynamics by 

measuring chromatin movement combined with a novel analytical approach was introduced 

[27]. It is based on the fact that a specific chromatin quasi-fibre and its higher-order archi-
tecture directly influences its intrinsic dynamics. Thus, the concept dissects intra-molecular 
polymer dynamics from fluorescence intensity fluctuations measured with FCS to investigate 
meso-scale chromatin dynamics in living cells and connects this to the underlying three-

dimensional organization. Besides, the classical analytical polymer models where extended to 

include dynamics, physical properties, and accessibility. As primary tracer protein for chro-

matin movement a linker histone H1.0-EGFP construct was chosen [18, 19, 22]. On the one 
hand, H1.0 decorates chromatin globally and reflects its density. On the other hand, it binds 
only transiently such that photobleached molecules are constantly replaced by fluorescent 
ones, and thus chromatin dynamics becomes amenable to FCS analysis (see also [20, 54]): 

Here, topologically and dynamically independent chromatin domains of 500 kbp to 1.5 Mbp 

in size were identified that are best described by a compacted chromatin fibre and a loop-
cluster polymer model under theta-solvent conditions. In more detail again the formation 

of stable loops and stable multi-loop aggregates/rosettes from a chromatin fibre with certain 
density and flexibility properties emerged as prominent structural feature of dynamically 
independent domains - and this throughout the cell nucleus in living cells! The detailed quan-

titative values for the involved parameters again lead in essence to the same values as found 

already in the T2C data: a quasi-fibre compaction of 5 ± 1 nucleosomes per 11 nm, with an 
average persistence length of ~80 to 120 nm, and loops and linkers of ~30 to 100 kbp [27]. 

Notably, it cannot be stressed enough that the loops and multi-loop aggregates/rosettes form 
stable entities on the time scales which were approachable by FCS (between 10 μs and 10 to 

20 s) and do neither open, close, or in any other way reform (longer timescale up to hours 

are historically known). This not only moves many an assumption currently proposed (see 

Introduction) into the realm of fairy tales—conceptually and by hard experimental facts in 

agreement with the research of the last ~30 years (e.g. [18–20, 22, 54, 71]). Visualization of 

simulated structures illustrates this clearly (Movies 1, 2 [26]): structures described consis-

tently throughout the literature would dissolve immediately - what has never been observed 

(though attempted to be measured) - and also in consistent agreement with the T2C results 
measured at the limit of resolution. Beyond, also characteristic variations were found between 

eu- and heterochromatin: Hydrodynamic relaxation times and gyration radii of independent 

chromatin domains are larger for open (161 ± 15 ms, 297 ± 9 nm) than for dense chromatin 
(88 ± 7 ms, 243 ± 6 nm) and increase globally upon chromatin hyperacetylation or ATP deple-

tion. Thus, functional changes are a variation of a basic theme, e.g. more compact hetero-

chromatic domains have a larger inaccessible volume fraction than more open euchromatic 

ones. Nevertheless, molecular diffusion is fast enough to roam a complete domain within 
few microseconds, during which the domain itself appears static. Relaxation of domains in 

the 100 ms range affects genome access in a protein concentration-dependent manner: highly 
abundant molecules at several 100 nM concentrations ‘fill’ the fluctuating domain so that a 
larger volume fraction than for a static TAD becomes adiabatically accessible. In contrast, 
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for low-abundance molecules encounters with specific loci within a domain are diffusion-
limited. They sense a higher inaccessible volume fraction. Thus, domain dynamics result in a 

concentration-dependent differential accessibility that is more pronounced in heterochroma-

tin than in euchromatin due to its shorter relaxation times [20, 22, 27, 54]. In this manner the 

FCS approach can be extended to acquire complete nuclear maps and thus to "sequence" the 

dynamic organization of nuclei in living cells.

2.3. Analytical and Computer Simulations Theoretic Evaluation

To better understand the 3D genome organisation suggested e.g. by the above results, to 
evaluate hypotheses, and to plan future experiments, we were the first who have - since 1996 
- developed polymer models with pre-set conditions for in silico super-computer simulations 

(i.e. without attempting to fit data; [7, 21–23, 26, 49–52, 70]) and later also an analytical math-

ematics framework [27]. The simulations use a stretchable, bendable, and volume excluded 

polymer (hydrodynamic) approximation of the 30 nm chromatin fibre consisting of indi-
vidual homogenous segments with a resolution of ~1.0 to 2.5 kbp while combining Monte 
Carlo and Brownian Dynamics approaches (Figures 2–4). The analytical polymer approach 

extends and applies for the first time Gaussian chain and Kratky-Porod model descriptions 
in combination with the Rouse and Zimm models for polymer dynamics to complex star and 

rosette topologies under real excluded volume conditions as well as dilute and semi-dilute 
solvent conditions [27]. Whereas the analytical model is exact, the simulations explore emerg-

ing effects not explicitly introduced into the analytical model.

Simulations (Figure 2) of the Random-Walk/Giant-Loop model in which large individual 
loops (0.5–5.0 Mbp) are connected by a linker resembling a flexible backbone, as well as the 
Multi-Loop Subcompartment (MLS) model with rosette-like aggregates (0.5–2 Mbp) with 
smaller loops (60–250 kbp) connected by linkers (60–250 kbp), have already predicted that 

only an MLS model, i.e. a compacted quasi-fibre forming stable loops and stable loop aggre-

gates/rosettes connected by a linker, can properly explain the formation of chromosome arms 
and territories [22], the spatial distances measured both using fluorescence in situ hybridiza-

tion (FISH) experiments [7, 21–23, 26, 49–52, 70], and beyond even the general morphology of 

nuclei in vivo using histone fluorescence fusion proteins [22, 51], nucleosome concentration 

distributions, as well as dynamic and functional properties such as the diffusion of macromol-
ecules [18, 19, 22, 53, 54]. These models also contained already enough information/aspects to 
cover other architectures such as free random-walks, random or fractal globules as well as their 

stability and dynamics. Additionally, the visualization (Figures 2–4, Movies 1, 2 [26]) creates 

an immediate feeling for the behaviour of genomes in 3D - a fact which already by pure visual 

inspection rules out many of the introduction mentioned obscure suggestions immediately.

With the unprecedented quality of both the interaction mapping by T2C and the FCS dynamic 

measurements (see above) the introduction of simulation and analytical models complex 

enough to approximate the 3D genome organization adequately showed even more clearly 

that only a quasi-fibre, stable loop, stable loop aggregate/rosette-like architecture is compat-
ible with the measurements: In essence the simulations and analytical models describe even 

the slightest details of the T2C and FCS measurements correctly including many at first sight 
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paradoxical results as e.g. i) that high numbers of especially small loops in a rosette result 
due the high density in steric exclusion and thus stretched loops eventually even “shielding” 
inner-rosette parts, ii) that inter-domain interactions are influenced by the connecting linker, 
loop size and numbers, and how non-equilibrium effects would appear, as well as iii) the isot-
ropy breaking of consecutive subchromosomal domains as seen in the interactions at the bor-

der of domains and the domain-domain interactions. On a more general level the simulations 
support also the large and at first sight remarkable emptiness of interaction matrices and its 
link to the existence of a dedicated chromatin quasi-fibre. Additionally, the simulations hint 
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Figure 3. Determination of the 3D architecture in the IGF/H19 11p 15.5-15.4 region by T2C interaction mapping and 
computer simulations: Interaction matrices (logarithmic and colour coded scale; left & right) in HB2 and HEK293T TEV 

cells [26] show in unprecedented clarity the formation of a quasi-chromatin fibre, folding into stable loops (red lines; 
xL: number of loops), forming due to the grid-like pattern stable multi-loop aggregates/rosettes, i.e. subchromosomal 
domains separated by a linker (borders: pink lines, right; D1s, D1e: start and end of domains). A grid-like pattern is also 
visible in the interactions between the domains and corresponds to trans-domain loop interactions. The aggregation into 

a chromatin quasi-fibre is visible near the diagonal and loop internal structures are also detectable. Between different 
cell types or functional states only some local differences are visible resulting in a consensus architecture and allowing 
simulation of the 3D architecture (middle; resolution < ~1 kbp). Note that the simulation is driven by the dominant 
consensus architecture.
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to a relatively low crosslink probability, radius, and frequency in experiments comparing the 

clearly visible fine-structure (such as the (anti-)parallel neighbouring of the chromatin quasi-
fibre at loop bases [26]. Also both the simulation and analytical approach describe in detail 

every aspect of the experimentally found multi-scaling behaviour with a fine-structure not 
only of the architecture and dynamics, but also of the DNA sequence (see below) to a degree 

of detail even we are still astonished about. The stability of the architecture with respect to the 

intrinsic chromatin fibre dynamics can also be illustrated by e.g. the decondensation from a 
mitotic chromosome into interphase (Movie 1 [26]) or just in a normal interphase state (Movie 

2 [26]). This also shows that any 3D architecture would dissolve within seconds if it would 

not be stabilised. Consequently, both theoretic approaches came with old and new data 

300nm
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Figure 4. Insight into the spatial and dynamic/diffusional properties and morphology of the 3D organization of entire 
nuclei: The detailed view from the outside into a simulation for an MLS model with 126 kbp loops and linkers [22] 

shows the structure and low overlap of chromosome territories, the rosette like subchromosomal domains, and that the 
mean spacing between quasi-fibres ranges at least from 50 to 100 nm. Hence, the obstruction of diffusing particles (see 
spherical legend) is proportional to their size. Thus, small molecules as nucleotides and most (subunits of) proteins or 

gene transcripts reach every location of the nucleus by moderately obstructed diffusion. Consequently, active transport 
of molecules should be restricted to few exceptions and a channel like network for transportation (proposed by the Inter 

Chromosomal Domain model) is not necessary. Nevertheless, obviously the rosette core is denser leading to a general 
diffusion limited access. Thus, the interplay between accessibility and obstruction while considering the fast Brownian 
dynamics of the quasi-fibre and the entire system is of functional relevance.
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consistently to the same conclusion whatever orthogonal high-quality method is used and 

thus are a theoretical framework for the understanding, test, and engineering of genomes.

2.4. DNA-Sequence Fine-Structured Multi-Scaling

Since what is near in physical space should also be near (i.e. in terms of similarity) in DNA 

sequence space and this presumably genome-wide [22–24, 55], and because evolutionary sur-

viving mutations of all sorts will be biased by the genome architecture itself and vice versa, 

the correlation and thus scaling behaviour of the DNA sequence [22–24, 26, 55] and its con-

nection to the 3D genome architecture scaling - either from T2C interaction mapping [26] or 

from simulations [21–23] - allows for comprehensive investigation of genome organization in 

a unified scale-bridging manner from a few to the mega base pair level. Using to this end, the 
perhaps simplest correlation analysis possible (to avoid information loss or biases), we calcu-

lated the mean square deviation of the base pair composition (purines/pyrimidines) within 
windows of different sizes and calculating the function C(l) and its local slope δ(l), which 

measures the correlation degree, or in more practical lay-men terms, is similar to a spectral 

measure [22–24, 26]: in relation to mammalian genome organization for each of two different 
human and mouse strains i) long-range power-law correlations were found on almost the 

entire observable scale, ii) with the local correlation coefficients showing a species specific 
multi-scaling behaviour with close to random correlations on the scale of a few base pairs, a 

first maximum from 40 bp to 3.6 kbp, and a second maximum from 8 × 104 to 3 × 105 bp, and 

iii) an additional fine-structure is present in the first and second maxima. The correlation 
degree and behaviour within the species are nearly identical comparing different chromo-

somes (with larger differences for the X and Y chromosomes). The behaviour on all scales 
is equivalent concerning the different measures used to investigate the long-range multi-
scaling of the genome architecture with the transitions of behaviours even at similar scaling 

positions [26] and can be associated with a single base pair resolution i) the nucleosome, ii) 

the compaction into a quasi-fibre, iii) the chromatin fibre regime, iv) the formation of loops, 
v) subchromosomal domains, and vi) their connection by linkers. Additionally, the already 

previously proven association to nucleosomal binding on the fine-structural level [22–24] is 

not only found again, but also is in agreement with the fine-structure found in the interac-

tion scaling. Since the correlation analysis is genome-wide (in contrast to the T2C analysed 

regions so far) and since individual chromosomes show a highly similar scaling this clearly 

shows the genome-wide validity of the 3D organization. Moreover, the existence and details 

of this behaviour show the stability and persistence of the architecture since sequence reshuf-

fling or other destructive measures would result in a loss of this pattern. This would also be 
the case for an unstable architecture, which would not leave a defined footprint within the 
sequence. This is again in agreement with our simulations of the dynamics or the genome 

wide in vivo FCS measurements [27]. Consequently, this shows not only by two analysis of 

completely independent “targets” (the T2C interaction experiments and the analysis of the 
DNA sequence) the compaction into a chromatin quasi-fibre and a stable multi-loop aggre-

gate/rosette genome architecture again, but proved here also the long discussed notion that 
what is near in physical space is also near, i.e. more similar, in sequence space. Hence, the 3D 

architecture and DNA sequence organization are co-evolutionarily tightly entangled (review 
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of previous notions in [22, 24]). Thus, in the future from the DNA sequence and other higher-

order codes (e.g. the epigenetic code) most architectural genome features can be potentially 

determined, since most structural/architectural features left a footprint on the DNA sequence 
and other code levels and vice versa as one would expect from a stable scale bridging systems 

genomic entity.

3. Systems Consistency of the 3D Genome Organization

The above described holistic combination of several new orthogonal approaches [26, 27] includ-

ing the heuristics of the field leads interestingly undoubtedly to a consistent picture of genome 
architecture, dynamics, and in general organization, by establishing that nucleosomes com-

pact into a quasi-fibre folded into stable loops, forming stable multi-loop aggregates/rosettes 
connected by linkers creating chromosome arms and entire chromosomes. Nevertheless, the 

heuristics of the field immediately questions whether i) we really now have an evolutionary 
consistent picture of genome organization, ii) whether this is the unavoidable outcome of 

Darwinian natural selection and Lamarkian self-referenced manipulation (what we introduce 

here), and iii) finally whether we can understand now genome organization in its systems 
context within cells, organs, and the entire organism? This in essence already relates back to 

the fundamental question of how life emerged from the primordial soup [5, 6, 22]; see details 

in following sections) but in the context discussed here can be addressed by first reflecting on 
the existing major functions of genomes, thus setting the stage: i) genomes need to stably store 
genetic information, ii) the information needs to be differentially read out to give rise to and 
regulate the molecular machinery, and iii) genomes need to replicate and mutate to spread 

and evolve:

i. Obviously the by far most important function is to stably store over long periods of 
time genetic information though with enough flexibility including mutations - or in 
short: without proper storage neither information retrieval, nor replication, nor evo-

lutionary development exist. This involves obviously being resistant against physical/
chemical and/or in- or external mechanical destruction. Whereas, the first act mainly as 
from the bottom up involving one or a group of chemical bonds in proximity by direct 
interactions in the molecular soup, the latter depends on the large-scale structure of 
the basic molecular components and thus acts indirectly top-down on chemical bonds, 

i.e. that in- or external global stress is transferred and eventually accumulated via the 

global structure down to molecular levels while leading to mechanical failure. Both this 

physico-chemical and structural conformation-based destruction paradigms, influ-

ence genome architecture on all its levels under evolutionary pressure. They can be 

formulated such that a) mechanical failure rates are minimized regarding very long time 

spans, and b) in- or external mechanical failure rates reach an optimum due to the right 

balance between internal stability increasing with scale (for sensible ranges) and external 

stress decreasing the stability with increasing scale. From the well known average DNA 

breaking length of ~300–500 bp after already relatively severe sonication, this translates 
right away to the nucleosome and chromatin quasi-fibre level assuming that internal 
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nucleosomal attachment increases the stability and elongating it by a factor 146 bp to 
200 bp (repeat length), i.e. the average breakage length of an uncompacted chromatin 

fibre is 44 kbp or in the extreme 100 kbp balancing the quasi-fibre internal stability 
increase by further compaction counteracted by the bigger mechanical susceptibility 

due to local compaction clusters. Thus, the found loops size of 30-100 kbp as well as its 

chromatin quasi-fibre persistence length of 80-120 nm is just what one would theoreti-
cally expect as the evolutionary outcome. The same holds for the formation of stable 

multi-loop aggregates/rosettes where the major player is internal stability, which is a 
function of quasi-fibre compaction, loops sizes, and loop numbers [51, 52], giving rise to 

the natural found size distribution between ~0.3-1.5 Mbp [21–24, 26, 27, 40–42]. Also on 

the entire chromosome level again in- and external stability criteria have reached an opti-

mum during evolution concerning the number of subchromosomal domains as well as 

their total size and number within a genome which again would just fit what one would 
theoretically expect: subchromosomal domain linkers are in the ballpark of loop sizes, 

the number of subchromosomal domains is <200-300 which just is the optimum size 
where mechanical stress does not too much destruct mitotic chromosomes under normal 

conditions. Consequently, the stability criteria are clearly satisfied while obviously still 
allowing enough flexibility by variation of this theme within the relatively broad bound-

ary limits and various levels compensating individual stretching of limits (e.g. bigger 

loops might be stabilised by higher quasi-fibre compaction). Beyond, destruction of a 
complete structural element (e.g. nucleosome, loop) in relation to the characteristic scale 

seems never really to exceed 1-5% - an important criterion for overall system resilience.

ii. Access to and obstruction of genetic information, i.e. genetic information retrieval in 

a regulated fashion is, of course, next to pure storage the major task for a genome, 

although without a stable information storage retrieval gets arbitrarily complicated 

whether replication takes place or not. Since the information is readout with similar 

means as the storage itself, i.e. in a molecular way in contrast e.g. to an optical readout, 

this relies in principle on two major conditions: a) the physical space for the regulation 

of the 3D architecture needed that a readout takes place, and b) accessibility/obstruction 
to the genetic information for the readout-machinery as well as post-processing and 

transport of the transcribed information. For the first the DNA, nucleosomes, chromatin 
quasi-fibre, loops and loop aggregates/rosettes, need to have the space to be modified 
and get rearranged, i.e. that a volume several times bigger than the actual structure exists 

for ease of change. This involves, naturally a certain compaction, since a homogenous 

soup would not allow this. Since the regulation and readout is done by molecular mecha-

nisms, it is also obvious that a low spatial occupancy allows moderately obstructed diffu-

sional access of both the regulation and readout machinery only for DNA with a certain 

compaction degree. For such a scenario the volume occupancy of the architecture in 

aqueous solution should be well (!) below the limit of ~50% (model depending) as known 
from percolation studies [74], i.e. in terms of the performance expected for genomes, 

volume occupancy should be <10% since both the genomic architecture as well as the 
machinery should be able to access it for regulation by modification as well as readout. 
For chromatin, experimental values are between 2.5% to ~8% with a homogenous mesh 
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spacing ranging from 115 to 65 nm ([22] and literature cited therein). Together with 

other factors and molecules in the cell nucleus like proteins and RNA, which all have 

a similar density, the volume occupancy is still <25%. These percolation assumptions 
hold, of course, also for the dynamics of the structure itself as pointed out above. At 

first sight this seems to be a dense system but the architecture is moving constantly by 
Brownian motion like in a spaghetti soup with additional floating components [18–20, 

22, 27, 53, 54]. For chemical reactions this is well known for diffusion limited aggregation 
processes [75] as well as for percolating systems [75]. Due to the described consistent 

multi-layered 3D organizations showing also a multi-scaling of its volume occupancy as 

well as the space in-between this creates now even more and especially a scale depend-

ent accessibility and obstruction to enhance the theoretic predictions of homogeneous 

though compacted systems with percolating space. Thus, under such conditions the 

necessary machinery for transcription as well as transcript transport is based mainly on 

moderately obstructed diffusion and despite of its high overall concentrations acts as an 
adequate multi-scale space [22, 53]. Consequently, similar to diffusion limited (catalytic) 
processes modification of the intrinsic architecture and dynamics of the entire genome 
organization is used for locally or globally fine-tuning of processes and thus functional 
regulation. Concerning, the stability of the 3D architecture only a quasi-fibre with stable 
loop aggregates/rosettes allows in terms of stability and flexibility local containment of 
large-scale interactions during the initiation of transcription e.g. by enhancer promoter 

interactions. For knot-free replication of the genome these (spatial) arguments also apply: 

whereas accessibility allows access of the machinery and space for the duplication, 

spatial obstruction protects the structural integrity. Interestingly, none of the described 

alternative architectures and dynamics hypothesis (see Introduction) agree to even a 

sufficient degree with these fundamental necessities to guaranty genome function.

iii. Replication and extinction of genetic information is the most crucial intervention into 

genome organization, since in contrast to the readout and regulation of genetic informa-

tion by transcription, the entire structure and dynamics are affected by copying every 
single component of the organization. Here, an exact copy within a constrained space 

not only sequence wise, but also of its 3D architecture and dynamics as well as its 

disentanglement are the crucial parameters while still allowing structural stability/flex-

ibility and even the access/obstruction of genetic information. From protein folding it is 
well known, that already during the amino-acid chain synthesis in the ribosome folding 

takes place, leading to a different 3D folding compared to the relaxation of finished and 
stretched out amino-acid chains. Obviously, also chromosome replication is such an 
adiabatic process (also chromosomes never fold from scratch, i.e. de novo, and always go 

continuously from one state to another), which takes place in parallel in the entire cell 

nucleus. And here again, genome architecture and dynamics are enabling replication to 

take place easily in principle only compatible with a chromatin quasi-fibre arranged in 
stable multi-loop aggregates/rosettes. This is due to the fact this architecture on the level 
of stable multi-loop aggregates/rosettes follows a knot-free two-dimensional topol-
ogy. Of course, genome architecture is not a simple two-dimensional object in space 
considering the DNA-double helix and nucleosomal twist and writhe but nevertheless 
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in terms of replication disentanglement it is. Consequently, replication origins can be 

situated and start replication everywhere in each chromatin loop with replication forks 

leading towards both directions until they hit a loop base (which is the reason for the 

bidirectional CTCF sites functioning as linear DNA markers for the directional oriented 

replication machinery). During this procedure even the twist and writhe are copied and 

need to be untangled as in the case of transcription. While hitting the loop bases then 
the two forks coming from two loops have to be joined and untangled, but no complex 

network of knots as they would appear even in a Random-Walk/Giant-Loop or even 
more so in a fractal globule like replication scenario would have to be cut and re-joined. 

Again here theoretical predictions for loop size and loop numbers are just fitting the 
experimental findings (see e.g. [39] and thereafter). Due to the two-dimensional topol-

ogy of the multi-loop aggregates/rosettes, they can just be separated very easily in 3D 
space (this idea was proposed and illustrated to the author by his at the time 6 year old 

son Leander Aurelius!). And again the compaction and volume occupancy in the cell 

nucleus play an important role: the compaction into a chromatin fibre reduces not only 
the formation of DNA knots largely (perhaps almost to zero), but also provides with 

the volume occupancy in the cell nucleus the room for undisturbed replication, with the 

right flexibility provided by the intrinsic dynamics, allowing the disentanglement of rep-

licated structures with minimal e.g. topoisomerase/decatenase driven active processes.

In summary, the above proves even further and especially in a holistic combination with 

the presented new orthogonal approaches [26, 27] and including the heuristics of the field, 
that indeed the described 3D genome organization - DNA forming nucleosomes compacted 

into a quasi-fibre folded into stable loops, forming stable multi-loop aggregates/rosettes con-

nected by linkers creating chromosome arms and entire chromosomes (Figure 1) - presents 

without doubt a consistent scale bridging systems statistical mechanics genomics fulfilling 
the functional conditions necessary for storage, transcription, and replication. Additionally, 

the actual values found for the various parameters involved are just found in those "regions" 

one would expect as the unavoidable outcome of Darwinian natural selection and Lamarkian 

self-referenced manipulation (see below).

4. A Systems Genomics Statistical Mechanics

The heuristics leading to the here described consistent 3D genome organization has also 

resulted in another fundamental breakthrough besides merely clarifying the missing gap(s): 

the emergence of a multilistic systems statistical mechanics with uncertainty principles by 

reaching the fundamental resolution limits (see Section 2.1 above; [26]. Hence, this allows 

directly not only i) to extend the atomic theory based on ancient Greek philosophy and 
the notion of Theodor Schwann of cells being the fundamental atomic unit of tissues to the 

mesoscopic scale of genome architecture/dynamics, but also ii) to analyse and to describe 
how from the collective behaviour of these elements a holistic meta level, i.e. a phenotype, 

emerges. Thus, by reaching fundamental resolution limits now the statistical and uncertainty 

properties of each architectural/dynamic level can be determined both by experimental 
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measurements as well as theoretical descriptions. Hence, from each of these "atomistic" 

basic units/elements their collective behaviour can be derived by a statistical mechanics on 
each individual level as wells as a complex interwoven scale-bridging, i.e. a hierarchic back 

referencing networked systems statistical mechanics - which obviously exists - can now be 

established in detail. This exceeds and is much more complex than establishing the statistical 

mechanics at the turn of the 20th century where from the individual components e.g. gas 

molecules a statistical mechanics established the collective properties of the entire system, 

e.g. the entire gas, because genome organization is not only a simple dualistic system of e.g. 

two levels but a complex multilistic network system with back references: In detail this means 

determining experimentally the behaviour of a genome structural/dynamic level precisely 
with its entire statistics and then doing the same on the level emerging from the underlying 

level. In principle this is what we have started already by setting up an experimental and the-

oretic framework over the past 20 years to elucidate genome organization [7, 18–24, 26, 27, 49, 

50], although only now with the complete description of the general 3D genome architecture/
dynamics it is possible to fill the existing lack of knowledge in detail, determine the values 
for parameters with high precision, and in constant cycles of refinement adjust the descrip-

tion to an ever higher degree of approximation. Thus, the difference to the development of 
statistical mechanics in classical and later quantum physics at the turn to the 20th century is 

that in biology many and also much higher levels still are determined by and also act back 

even on the very first level to a much higher degree. This also immediately unites the at 
first sight contradicting theoretic descriptions of living systems of Ilia Prigogine [75], stating 

that living systems are far away from thermodynamic equilibrium, with those proposed by 

Georgi Gladyshev [76] stating that hierarchic substance stability is locally in thermodynamic 

equilibrium. Actually, these descriptions are even extended due to the multilistic statistical 

systems mechanics, i.e. manifold recursive hierarchically back-referencing, which are until 

now not described but e.g. envisioned in efforts to extend quantum mechanics to higher 
order complexities [77]. Consequently, a genomic multilistic statistical systems mechanics 

allows not only to describe and test basic properties of life, but also to answer perhaps the 

most fundamental questions of life as e.g. whether life time-wise can be extended beyond the 

currently obvious or thought of limits by manipulated engineering in one of its most central 

parts - the genome - a quest of epic dimensions appearing already at least between the lines 

in "What Is Life ?" by Erwin Schrödinger [78].

5. Genotype-Phenotype-Entanglement and Genome Ecology

The most important implication from the findings described above is most likely the multilis-

tic entanglement between genotype and phenotype being the natural outcome of Darwinian 

natural selection and Lamarkian self-referenced manipulation in a genome ecology frame-

work, which is connected directly to the origin of genomes and life itself: While entropy 

grows like an inexorable river, local disturbances lead to ever more ordered self-organizing 

and self-sustaining resistors, more complex structures, and finally life. In the 1970s Manfred 
Eigen [5, 6] showed how from the primordial soup autocatalytic chemical reaction-networks 

emerged and how they form ever more complex cooperatively organized networks and 
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systems of so called hypercycles. With environmental separation by the emergence of units 

as cells and specialization of subunits, then genomes have developed as specialized keepers 

of the blueprint needed to maintain, regulate, and develop this syntropic machinery. Since 

genetic information is physically stored in molecular structures with dedicated architecture 

and dynamics, it is thus also obvious that the material carrier for the storage, usage, and rep-

lication of genetic information co-evolved inseparably. Yet another inevitable consequence 
of our results leading to the consistent statistical systems genome mechanic framework is 

indeed our proof [26, 27] that architecture, dynamics, and DNA sequence are co-evolutionary 

unseparably entangled (in a quantum mechanical sense): All architecture/dynamics levels 
have not only left a footprint on the DNA sequence level but beyond also all levels have 

left a footprint on all other levels with an astonishing degree of detail (see Section 2.4). 

Consequently, the co-evolution of all levels has also co-evolved not only to a higher degree 

than previously thought, but also indeed as an entire system where all levels are (equally ?) 

determinant (Figure 5).
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Figure 5. Genome ecology emerging from the system mechanics of genomes in relation to the genotype-phenotype 
entanglement and its embedding in- and environment: Genomes are interwoven holistic multi-scale hierarchic systems 
entities in which all organizational levels are also manifest, i.e. fingerprinting, on all other levels. Thus, immediately each 
level is a phenotype of its underlying genotype immediately conditioning back on it recursively. Thus, both genotype 

and phenotype are entangled inseparably in a (due to the involvement and entanglement of all levels) multilistic manner. 

In consequence this not only unites Darwinian and Lamarckian evolutionary paradigms, but also embeds and relates 

genomes with their in- and environment, and thus giving rise to a general genome ecology.
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In evolutionary terminology the genotype (i.e. the double helix) creates a phenotype (the nucleo-

some) and this phenotype recursively conditions the genotype (i.e. again the double helix). The 

nucleosome is also a genotype conditioning the quasi-fibre phenotype, recursively conditioning the 
nucleosome and DNA, etc. Since this is happening with all levels simultaneously this inseparable 

dualism extends in the present genome organisation to a multilism, shaping evolutionary develop-

ment in hierarchical terms from bottom to top by Darwinian natural selection as well as from top 
to bottom by Lamarkian self-referenced manipulation. Thus, our finding that indeed all genome 
architecture/dynamic levels are tightly entangled with each other also immediately resolves the 
falsely assumed paradoxes between Darwinian and Lamarckian evolution by uniting them at least 

on the genome level. This is remarkable not only in historic terms considering the even politi-

cally and religiously extremely hot debates/fights about "man evolving from apes" as well as the 
"intentionally planed long neck of giraffes", but also heuristically, since the in principle relatively 
simple final completion of the 3D genome architecture/dynamics at the limit of the resolution leads 
not only to a consistent 3D genome organization and statistical systems genome mechanics, but 

beyond reveals in one go some and perhaps the most important fundamentals of life (Figure 5).

Beyond, this strong entanglement over several orders of magnitude (Figures 1, 2) within the 

genome, the described genotype-phenotype-entanglement can be driven conceptually even fur-

ther considering the influence of both the a) hierarchically constituting elements giving rise to 
the system, i.e. chemical molecular base, atomic, and subatomic units, which will be called here 

i(!)nvironment, and b) the hierarchical higher levels, i.e. tissues, organs, animal etc., which are the 

environment. Although this may seem far fetched, but influences from both "directions" are well 
known (see e.g. Section 3), although due to their complexity this is often hard to track down in 

a reductionistic manner, thus hence their degree of influence is just emerging. In this respect the 
found entanglements bridging so many multi-scale levels and orders of magnitude in space and 

time, are on the one hand already astonishing in terms of the obviously wrong assumption that 

such influences would die-off very fast, while on the other hand this has general implications for 
all hierarchic systems showing that complex inter-, cross-, and even multi-cross-level influences 
are much more frequent and far reaching. Actually, the here shown multilistic genotype-pheno-

type entanglement shows a highly interwoven, networked, and recursive structure: instead of 

more or less separate hierarchic layers where only first or at the most secondary neighbour layers 
are connected, there are also influential connections to more distant layers at least locally if not 
in every part of the layer space. Thus, the genotype-phenotype entanglement embedded within 

an i(!)n- and environment actually results in a genome ecology in direct analogy to e.g. human 

ecology, autopoieses of social systems, or just any kind of systems theoretic entity [77–82].

6. Conclusion

Nature has created ever more complex forms of life by creating structural and dynamical islands 

of systems with specialized organelles such as genomes being responsible for storage, access, 

and replication of the information for their persistence and development. Despite the epic quest 

to determine the details and origin of inheritance, only recently we were finally able to fill the 
debated gaps of the central part of genome architecture and dynamics - despite the pioneering 
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works of the last 170 years - by establishing that nucleosomes compact into a quasi-fibre which 
is folded into stable loops, forming stable multi-loop aggregates/rosettes connected by linkers 
creating chromosome arms and entire chromosomes [26, 27]. Although the heuristics of the 

field leads already to a sound basis, this could only be achieved - as we summarized here - by 
a highly integrated systems approach linking holistically i) a by far superior selective chromo-

some interaction (T2C) technique, ii) a novel in vivo FCS dynamic method, iii) a novel analytical 

approach and improved super-computer simulations, and iv) finally scaling analysis of the 
3D-architecture and the DNA sequence itself. Including the heuristics of the field this leads to 
a consistent picture of genome organization, which match all the criteria necessary for storage, 

transcription, and replication as one would expect them as the outcome of Darwinian natural 

selection and Lamarkian self-referenced manipulation as shown here. In parallel, a multilis-

tic systems statistical mechanics with uncertainty principles has emerged while reaching the 

fundamental resolution limits in the above holistic approach, which represents a theoretical 

framework which also reunites the overall far from thermodynamic equilibrium notion with 

local hierarchic substance stability. Beyond, the tight entanglement of genome levels having 

left footprints on all levels, has not only shown that genomes have evolved as an entire system, 

but also the multilistic entanglement between genotype and phenotype. Hence, the natural out-

come of Darwinian natural selection and Lamarkian self-referenced manipulation is united in a 

genome ecology framework, which we consider a major step in the systems theory of life. Thus, 

this not only leads to a solid basis for sequencing genetic information holistically and thus for 

applied diagnostics and treatment of disease, as well as future genome manipulation and engi-

neering efforts, but more importantly paves the path to a true understanding of genomes, their 
function and evolution, and thus of life in general - earthbound, extra-terrestrial, or artificial.
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Legends Movie 1 and 2

Video files available at: https://bit.ly/34KCuxe

Movie 1. Brownian Dynamics simulated decondensation from a metaphase starting configu-

ration of a simulated Multi-Loop-Subcompartment model with 126 kbp loops and linkers with 

segment length of 50 nm (~5.2 kb) [26]. The whole 750 ms long movie shows how abruptly 

the metaphase chromosome expands due to its high density while opening the linker, which 

is constrained/condensed/pulled into a loop in metaphase. Nevertheless, the rosettes form 
distinct chromatin territories in which the loops do not intermingle freely in contrast to other 

models (see Introduction) such as the RW/GL model (Figure 2). The final shape and form in a 
whole nucleus would be determined by the limitations the other adjacent chromosomes pro-

vide (for more details see [22]). The different densities during decondensation also resemble 
nicely the conditions of shorter linkers, general genome regions with higher densities, or also 

the variation of nuclear volumes. Notably, the intrinsic movement of the chromatin fibre is 
clearly taking place on the millisecond scale, and hence, obviously a topological preformed 

architecture would dissolve within seconds if it would not be stable [26, 27].

Movie 2. Brownian Dynamics simulation of the consensus architecture (i.e. with the real 

measured loop and linker sizes) of the of the IGF/H19 region at HS11p15.5–15.4 (Figure 3), 

with a segment length of 20 nm (~2.0 kbp; colours of loops like in Figure 3 middle, with addi-

tional linkers at the beginning and end of the region in red; for details see [26]). The whole 

movie encompasses 146 ms and shows the high intrinsic dynamics of the loops and the loop 

aggregate/rosette. Obviously, the single subchromosomal domains are constrained by the 
subsequent subchromosomal domains. Hence, and also obviously a topological preformed 

architecture would dissolve within seconds if it would not be stable [26, 27]. Nevertheless, the 

loop aggregates/rosettes form distinct subchromosomal domains in which the loops do not 
intermingle freely in contrast to other models (see Introduction) such as the RW/GL model 
(Figure 2). The final shape and form in a whole nucleus would be determined by the limita-

tions adjacent chromosomes provide (for more details see [22]).
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