
Selection of our books indexed in the Book Citation Index 

in Web of Science™ Core Collection (BKCI)

Interested in publishing with us? 
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected. 

For more information visit www.intechopen.com

Open access books available

Countries delivered to Contributors from top 500 universities

International  authors and editors

Our authors are among the

most cited scientists

Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

12.2%

186,000 200M

TOP 1%154

6,900



1

Chapter

Organic Nitrogen in Agricultural 
Systems
Eulene Francisco da Silva, Marlenildo Ferreira Melo,  

Kássio Ewerton Santos Sombra, Tatiane Severo Silva,  

Diana Ferreira de Freitas, Maria Eugênia da Costa,  

Eula Paula da Silva Santos, Larissa Fernandes da Silva,  

Ademar Pereira Serra  

and Paula Romyne de Morais Cavalcante Neitzke

Abstract

This work summarizes information about organic nitrogen (N) in the agricul-
tural system. The organic N forms in soils have been studied by identifying and 
quantifying the released organic compounds when soils are acid treated at high 
temperature, in which the following organic N fractions are obtained: hydrolyzable 
total N, subdivided into hydrolyzable NH4

+-N, amino sugars-N, amino acids-N, 
and unidentified-N and acid insoluble N, a fraction that remains associated with 
soil minerals after acid hydrolysis. Nitrogen mineralization and immobilization 
are biochemical processes in nature. This chapter summarizes how these processes 
occur in the agricultural system. Then, soluble organic nitrogen (SON), volatiliza-
tion and denitrification processes, and biological nitrogen fixation (BNF) as a key 
component of the nitrogen cycle and how it makes N available to plants are also 
discussed. Finally, we discuss the use of organic fertilizers as N source to satisfy the 
worldwide demand for organic foods produced without synthetic inputs.

Keywords: biological N fixation, immobilization, mineralization,  
organic fertilization

1. Introduction

Nitrogen (N) is the fourth most abundant element in cellular biomass and com-
prises most of the Earth’s atmosphere. In the surface layer of most soils, over 90% 
of N occurs in organic forms. Soil organic N can be divided into two categories: (1) 
N from organic residues and (2) N from soil organic matter or humus [1]. All these 
materials are important in maintaining or improving soil fertility and plant nutri-
tion through direct and indirect effects on microbial activity and nutrient avail-
ability [2]. Analysis of organic fractions has been highlighted due to the increasing 
application of organic fertilizers and their direct and indirect effects on crop growth 
and yield and soil attributes. Thus, we will discuss about organic N forms, N miner-
alization and immobilization, volatilization and denitrification, soluble organic N, 
biological N fixation, and organic fertilization with emphasis on N.
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2. Organic nitrogen

Nitrogen is an essential element for plants, being constituent of important 
biomolecules such as adenosine triphosphate (ATP), reduced nicotinamide adenine 
dinucleotide (NADH), nicotinamide adenine dinucleotide phosphate (NADPH), 
chlorophylls, amino acids and proteins (glyco- and lipoproteins), nitrogenous bases 
and nucleic acids, and various enzymes [3, 4]. Soil organic N consisting of proteins, 
chitins, amino acids, and nucleic acids represents about 90–98% of total soil N 
[1, 5]. Mineralized N forms are transient in the soil so that the existing amount 
depends on numerous processes such as mineralization, immobilization, nitrifica-
tion, denitrification, leaching, and plant uptake. Therefore, the study of mineral N 
may not represent the N availability during the crop growing. On the other hand, 
the study of organic N fractions and their transformations over time can help in 
predicting the N availability for crops, in estimating the N supply to the soil, and in 
evaluating the potential release of mineral N by organic fertilizers.

Many compounds account the soil organic N, being approximately 40% protein 
material (proteins, peptides, and amino acids), 5–6% amino sugars, 35% heterocy-
clic nitrogen compounds (including purines and pyrimidines), and 19% NH3, with 
¼ fixed as NH4

+. Thus, protein materials and heterocyclic compounds predominate 
in the total soil N, and organic N fractionation may inform about the mineralization 
susceptibility of compounds [6]. The organic N forms in soil have been studied by 
identifying and quantifying the released organic compounds when soils are acid 
treated at high temperature. The organic N fractions obtained by acid hydrolysis 
are hydrolyzable total N, subdivided into hydrolyzable NH4

+-N, amino sugars-N, 
amino acids-N, and unidentified-N and acid insoluble N, a fraction that remains 
associated with soil minerals after acid hydrolysis [7].

The fractionation allows separating the labile N forms from the soil, such as 
amide-N and amino-N (acid hydrolyzable), which can be rapidly synthesized in the 
mineralization process, releasing inorganic N (NH4

+ and NO3
−) to the soil solution. 

However, most of the organic N can compose more stable fractions in the soil, such 
as non-hydrolyzable-N and unidentified-N. Variation in the non-hydrolyzable-N 
may be related to soil management, because the higher the hydrolysis intensity of 
organic N fractions in the soil, the higher the presence of finer particles that form 
clay-metal-humus complexes that constitute the non-hydrolyzed N. In Brazil, studies 
are reported in soils from Amazônia [8], São Paulo [9–12], and Espirito Santo [13].

In Latosols and Argisols from Amazônia, determination of the organic N forms 
indicated that the immobilization was mainly from microbial origin and the 15N 
immobilized in the soil was found as acid-soluble N and undistilled-N [8]. In São 
Paulo, in sugarcane-cultivated soil, amino acid-N fractions predominated, and, 
after 12 weeks incubation, the total hydrolyzable-N did not vary, but the hydrolyz-
able NH4+-N decreased [9]. In soil samples under different cover plants [10], the 
amino acid-N fraction predominated, with the following distribution: 14–38% 
hydrolyzable NH4

+-N, 36–52% adenosine triphosphate as NH4
+-N + amino sugars, 

10–32% amino sugar-N, 26–46% amino acid-N, and 3–28% unidentified-N.
Moreover, in São Paulo, in a soil under maize cultivation, it was observed that 

topdressing N fertilization decreased the N content of the most labile fractions 
(hydrolyzable NH4

+-N and amino sugars-N) in the surface layer of the soil, and 
the amino acid-N and amino sugar-N fractions were considered the organic N 
reservoirs that control the soil N availability [11]. In contrast, fertilization with 
cattle manure [12] increased the most easily mineralized (up to 100 days) organic N 
fractions and subsequently increased the more stable organic N fractions, mainly in 
clay soil. In Espirito Santo, in soil under eucalyptus, [13] observed that the amino-N 
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was predominant (39%), followed by unidentified-N (27%), amide-N (18%), and 
hexosamine-N (15%).

Several theories have been developed to explain the resistance of some N com-
pounds to microbial attack. It is mentioned that N compounds are probably protein 
constituents (amino acids, peptides, and proteins) that are stabilized by reactions 
with lignins, tannins, quinones, and reducing sugars. Moreover, N compounds 
would adsorb to the clay fraction of soil and thereby would be protected against 
the action of protease enzymes. Also, the formation of organic N complexes and 
polyvalent cations (iron and aluminum) is another biologically stable form of 
protection [14]. Accumulation and/or decrease of organic C and N is more dynamic 
in sandy soils than in clayey ones, probably due to the highest oxygenation capacity 
and lower residue input of sandy soils due to its low productive potential, which 
gives it less resilience.

3.  Nitrogen mineralization and immobilization in the agricultural 
systems

Nitrogen mineralization and immobilization are biochemical processes widely 
discussed in the literature. We will focus on how these processes occur in the 
agricultural system. N mineralization occurs through hydrolysis and biodegrada-
tion of soil organic matter when N content in the substrate exceeds the metabolic 
N requirement by microbial cells. The process is mediated by heterotrophic soil 
microorganisms [15] that use nitrogenous organic substances as a source of C, N, 
and energy, releasing NH4

+ ions as a residue (ammonification). In its turn, immo-
bilization is defined as the transformation of inorganic N (NH4

+, NH3, NO3
−, NO2

−) 
to microbial forms. Microbiota assimilates inorganic forms of N by incorporating 
them into the amino acids, which will participate in protein synthesis during soil 
biomass formation [14].

N mineralization and immobilization occur simultaneously and oppositely in 
the soil. The net balance between these processes is controlled by several factors: (a) 
environmental, such as soil temperature, aeration, and moisture; (b) soil physical, 
such as texture, structure, and size of aggregates [16]; (c) soil chemical, such as pH; 
(d) agricultural management system adopted [17]; and (e) quality parameters of 
the decomposing waste (such as C/N, C/P, and C/S ratios), content of easily decom-
posable and recalcitrant fractions, type of associated decomposers, size and activity 
of microbial biomass, and inorganic N availability [18]. Carbon/nitrogen (C/N) 
ratio less than 25 in organic waste favors N mineralization and fast decomposition, 
while greater than 30 strongly favors N immobilization and fast decomposition 
[19]. The crop developmental stage also influences waste C/N ratio. For instance, 
wastes from millet plants cut at the flowering or milky grain stages present high 
C/N ratio which delays mineralization. On the other hand, wastes from millet cut 
at the flag leaf stage, even though phytomass is lower, present less C/N ratio which 
favors N mineralization for the next crop [20].

In residue plant, considering 13C-CPMAS NMR spectral regions [21], observed 
that the carbonyl C and N-alkyl and methoxyl C regions had the most significant 
positive correlation with N mineralization, while the di-O-alkyl C and O-alkyl 
C were strongly associated with N immobilization. This study demonstrates that 
the biochemical quality of organic C defined by 13C-CPMAS NMR is capable of 
predicting N dynamic pattern better than C/N ratio. Abbasi et al. [22] observed 
positively correlated with the initial residue N contents and negatively correlated 
with lignin content C/N ratio, lignin/N ratio, polyphenol/N ratio, and (lignin + 
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polyphenol)/N ratio indicating a significant role of residue chemical composition 
and quality in regulating N transformations and cycling in soil.

In the N compartments, N from the most labile fractions is released in the early 
mineralization process, and its mineralization estimate can be used to adjust the 
nitrogen fertilization recommendations. In fact, it was observed that the mineral-
ization potential and the respective mineralization rate can be used to predict the N 
availability for plants in the agricultural system. Camargo et al. [23] found that the 
potentially mineralizable nitrogen values in 10 soils from Rio Grande do Sul ranged 
from 108.6 to 210.8 mg kg−1.

In respect to the management system adopted, time is essential for N mineraliza-
tion, mainly in the no-tillage (NT) system. Siqueira et al. [24] found that in soil 
under NT system for 12 and 22 years, the averages for N mineralization were 0.19 
and 0.26 g m−2 day−1, respectively. For organic compounds such as sludge, the N 
mineralization rate is generally below 50%, 5–38% [25], 14–43% [26], 7–16% [27], 
and 24–31% [28]. Among the species used in straw production, Fabaceae plants 
stand out for fixing atmospheric N2 and presenting low C/N ratio tissues, in addi-
tion to the high soluble compound content and low lignin and polyphenol contents. 
This fact favors the fast decomposition and mineralization, with significant N 
input to the soil–plant system, but with reduced soil cover, which is essential for NT 
system [29]. On the other hand, Poaceae plants present relatively high dry matter 
content and high C/N ratio (> 30), which increase the persistence of soil cover 
although increase N immobilization [30, 31].

4. Nitrogen volatilization and denitrification

Volatilization is the main cause of N loss where ammonia gas (NH3) is pro-
duced according to the simplified equation: NH4

+ + OH− ↔ NH3(g) + H2O. NH3 loss 
increases with increasing soil pH. Ammonium ion (NH4

+) can be adsorbed by soil 
colloids (clays in humus); thus the largest losses are found in sandy soils and poor 
in soil organic matter (SOM). Denitrification is another factor that favors N loss, 
which is mainly controlled by organic matter content, pH, and soil temperature. 
This process is performed by anaerobic bacteria such as Pseudomonas, Bacillus, 
Micrococcus, and Achromobacter, which are heterotrophic and get energy from 
carbon, through oxidation of organic compounds. Some autotrophic species also 
participate in the process such as Thiobacillus denitrificans and T. thioparus [32].

NH3 losses by volatilization in agriculture occur due to many factors: ambient 
temperature, soil moisture at fertilization time, urease enzyme activity, soil pH, 
cation exchange capacity, soil cover, rainfall after fertilization, and SOM content 
[33, 34]. Tasca et al. [34] reported 4.6-fold less NH3 volatilization when topdressing 
urea was performed at 18°C temperature, compared to 35° C, which demonstrates 
that N losses increase with increasing temperature. Low volatilization rates are 
also reported under higher soil moisture values, around 20%, because fertilizer 
hydrolysis facilitates the NH4

+ diffusion, making it less susceptible to volatilization, 
even considering the increased soil biological activity in that moisture. In con-
trast, higher N losses occur under   around 10% humidity values, because the NH4

+ 
incorporation is inefficient, resulting in higher N-NH3 emissions [34]. Moreover, 
NH3 losses by volatilization are higher during the driest periods of the year. Soil 
moisture at fertilization time directly interferes with urea hydrolysis and conse-
quently with NH3 volatilization losses. Thus, soil wetting soon after urea application 
is more important than the soil moisture at the application time [35]. According to 
Ros et al. [36], water applied after urea fertilization or the occurrence of rainfall 
may decrease NH3 volatilization if it is sufficient to dilute the hydroxyl (OH−) 
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concentration around the urea granules produced during the hydrolysis, besides 
providing the incorporation of urea in the soil.

Plant cover also influences N-NH3 volatilization. Pinheiro [37] found the removal 
of sugarcane straw from the soil decreased NH3 volatilization rates. The analysis of 
topsoil and straw indicated higher urea and NH4

+ retention in the largest amounts 
of straw on the soil, besides effective urea hydrolysis occurring directly in the straw. 
These results demonstrated a direct contribution of the straw mulches on NH3 volatil-
ization. However, despite NH3 volatilization decreases with straw removal, the choice 
of straw amount to be removed cannot be based only on NH3 volatilization of N fertil-
izer. Analyzing fertilizer mixtures in laboratory, Vitti et al. [38] found that mixing 
urea (330 mg) with ammonium sulfate (300 mg) significantly reduced N-NH3 losses 
(97.47 mg) relative to urea (121.52 mg), without affecting the physicochemical quality 
attributes of the mixture for technical and agronomic efficiency purpose. In Brazil, 
urea is the most used mineral N fertilizer, but it has volatilization losses due to the 
enzymatic hydrolysis that consumes H+ and increases soil pH. For that reason, even 
in acidic soils, urea is subject to N losses by volatilization [39]. In agricultural systems, 
the largest N losses by volatilization occur 3–5 days after fertilizer application [40]. 
Santos [41] observed that from total N-NH3 loss by volatilization, 92.5% occurred 
until the fifth day after fertilization, negatively affecting the corn grain yield.

Fertilizer type may also influence N-NH3 volatilization. The application of 
polymer and organic compound-coated urea promoted the lowest ammonia losses 
by volatilization [42, 43]. In soil under pasture (Brachiaria decumbens), Lana et al. 
[44] observed NH3 losses 2 days after urea application (2765 mg) and that the use 
of an inhibitor (NBPT) reduced the volatilization peak by up 4 days. The use of 
urea plus Uremax NBPT 500® decreased volatilization by approximately 75% after 
11 days. Also, adding acid fertilizers may reduce NH3 losses by 29% [45]. According 
to Gurgel et al. [46], mineral fertilizers mixed with urea and humic acid (5 and 
10%) and urea and zeolite (10%) reduced N-NH3 losses up to 38%. Results were 
even more effective in sandy soils.

The use of liquid and solid organic biofertilizers such as poultry and swine resi-
dues are also alternative means to reduce N losses, since N is present in biofertilizers 
as organic form, thereby requiring more time to be mineralized by microorganisms 
for plant uptake. Niraula et al. [47] reported that cattle manure applied in corn 
had 11% lower cumulative NH3 emission than urea, without affecting grain yield, 
despite having higher CO2 and CH4 emissions. Thus, after comparing the ammonia 
volatilization levels reported in 92 studies, Bouwman et al. [48] concluded that the 
average NH3 emissions from the synthetic urea fertilizer and manure slurry were 
21.0 and 21.2% from applied N fertilizer, respectively. Moreover, acidification has 
been a resource used to minimize urea volatilization with liquid waste. Park et al. 
[49] observed the application of acidified slurry reduced NH3 emissions by 78.1%, 
N2O emissions by 78.9%, and NO3

− leaching by 17.81% compared to control (non-
pH-controlled pig slurry), over the course of the experiment.

Quantifying ammonia volatilization from various organic N sources (castor bean 
cake, bokashi, legume fertilizers, cattle manure), Rocha et al. [50] observed (i) the 
N loss rate by NH3 volatilization varies from 3 to 25% in winter/spring and 2 to 38% 
in summer/autumn among the studied organic fertilizers; (ii) when incorporating 
organic fertilizers into the soil, volatilization was significantly lower than when they 
are maintained on the soil surface, with a volatilization reduction by 80% for castor 
cake, 78% for bokashi, and 67% for legume fertilizer, while for cattle manure there 
was no difference; and (iii) when on surface, potential NH3 volatilization from the 
total N applied in winter/spring and summer/autumn seasons, respectively, was 
25.5 and 38.1% for castor cake, 16.6 and 13.7% for bokashi, 8.2 and 8.8% for legume 
fertilizer, and 3.4 and 2.4% for cattle manure.
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In Planosol under irrigated rice, the addition of cover plants on the soil and 
water management by intermittent irrigation were practices that mitigated N2O 
emissions. Zschornack et al. [51] observed an increase in N2O emissions by more 
than 200% in a drained area than continuous water blade area. Thus, soil drainage 
during rice cultivation increases N2O emissions by stimulating nitrification and 
denitrification processes. In addition, N2O emissions depend on the input waste 
quality and increase significantly when legumes are inserted into cover plants. 
Moreover, analyzing biochar in rice, He et al. [52] suggested that the combination 
of biochar and HQ (urease inhibitor-hydroquinone) or the combined application 
of urease and nitrification inhibitors to soil enriched with biochar at least 1 year 
previously could be an effective practice for reducing NH3 emissions and increasing 
rice yields.

Finally, microorganism respiration may also contribute to retaining N into 
the soil. By dissimilatory nitrate reduction to ammonium (DNRA), a respiratory 
process antagonistic to denitrification, nitrate is used by microorganisms, mainly 
Bradyrhizobium and Mesorhizobium bacteria, as electron acceptors. This process 
results in N retention and production of the less mobile ammonium cation (NH4

+), 
thereby reducing the contribution to the total N2O pool [53]. In addition to N 
fixation, the potential N retention by microorganisms through DNRA becomes a 
relevant feature in the reduction of N losses by denitrification [54]. This suggests 
DNRA may act as a mechanism for conserving N in agricultural systems.

5. Soluble nitrogen

Soluble organic nitrogen is a labile source of N for microorganisms and is an 
important soluble N reservoir in agricultural soils. Plant species (associated or 
not with mycorrhizae) can directly uptake simple organic N present in the SON 
pool [55]. The SON pool is composed of high (protein oligomers), medium (small 
peptides) [56], and low molecular weight compounds (monomers such as amino 
acids) [57]. As plants uptake organic and inorganic N, the relative proportion of 
these different N sources in soils is a determinant of N management.

SON is suggested as a transitional phase during N transformation between soil 
organic matter and inorganic N (NH4

+-N) and considered an intermediate step in 
microbial mineralization of organic N [58]. The SON pool can regulate the N trans-
formation rate in the soil, i.e., the ammonification and nitrification rates, affecting the 
substrate associated with different plant species. Thus, soil organic N fractions and 
SON pools are important indicators of soil fertility and plant nutrition requirements 
[59], inferring the potential supply of N mainly in low N mineralization soils [60].

Besides an important component of soil total soluble N, SON plays a key role 
in N cycling and therefore in determining soil N availability in agricultural sys-
tems [61]. The amount of SON represents a relatively high proportion of the total 
soluble nitrogen (TSN) pool. It has been reported that SON constitutes 17–90% 
and 32–50% of TSN in pasture and agricultural soils, respectively [46, 47, 62, 63]. 
Like in mineral N, SON dynamics are affected by mineralization, immobilization, 
leaching, and plant uptake, but its pool size is more constant than mineral N [64]. 
Although remains unclearly understood, SON is an important pool in N transfor-
mations and plant uptake.

Biotic and abiotic processes are involved in the SON generation in soil [58]. 
By biotic processes, SON can be produced directly from microbial turnover and 
indirectly through the microbial excretion of extracellular enzymes [61]. However, 
as plants and microorganisms can compete for soil organic N, it is also possible 
that SON reservoirs vary spatially due to the variation in activity and density of 
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microbial population between different types of agricultural management. Zhang 
et al. [65] reported that SON fractions were significantly and positively correlated 
with the no-tillage system practices and that this agricultural system is beneficial 
and effective for increasing soil N turnover.

Proteins are the most abundant nitrogen compounds in SON. Depolymerization 
of these organic macromolecules in monomeric SON (amino acids) can be consid-
ered rate-limiting for the total N cycling in soils [66]. Soil amino acids can contrib-
ute, in relative and absolute terms, to the SON pool in agricultural soils, which was 
observed in soil under fertilized sugarcane [55]. Also, plants can use proteins as N 
source without the help of other organisms [67]. Although the relative contribution 
of amino acids to N supply for crops remains unclear, all studied plants have shown 
the ability to uptake and metabolize amino acids as well as soils containing amino 
acids [68].

Organic agriculture practices can increase the content of SON, protein, and free 
amino acids in the soil as a result of frequent and long-term inputs of organic mat-
ter. In addition, agricultural production quantity may also influence the SON pool 
abundance. However, the effect of organic cultivation on specific free amino acids 
and protein pools remains unclear [66].

Soil organic matter, pH, total C, total N, and C/N ratio are the main factors 
affecting soil SON abundance. SON dynamics can be significantly affected by 
mineralization and immobilization during microbial growth and decomposition 
of organic matter. Besides that, agricultural practices such as irrigation manage-
ment, fertilization, plowing, harrowing, harvesting, and the plant growth stage 
can also play an important role in SON dynamics [59, 63]. Furthermore, high 
temperatures may increase the SON content by stimulating decomposition of 
organic matter [69]. Knowing the temporal dynamics of organic N pools in the 
soil may help to understand how these pools are affected by soil properties, 
climate and crop management, and whether SON can contribute to N supply of 
crops.

6. Biological nitrogen fixation

Nitrogen in the gaseous form (N2) represents 78% of the atmospheric gases but 
is inert and unavailable to plants. Only nitrogen-fixing microorganisms, including 
bacteria, cyanobacteria, and fungi, are able to break the triple bond between the 
atoms (N ≡ N) of the atmospheric nitrogen, thus transforming it into ammonia 
(NH3) through the nitrogenase enzyme (N2 + 8H+ + 6e− → 2NH3 + H2) [70]. 
Biological nitrogen fixation is a key component of the nitrogen cycle and respon-
sible for most of the nitrogen available to plants.

BNF is performed by symbiotic, endophytic, or free-living microorganisms [71, 
72]. Symbiotic bacteria associate with plants forming root nodules (rhizobia), where 
they fix nitrogen while benefiting from plant photoassimilates. It has been observed 
that this symbiosis occurs not only in plants from the Leguminosae family [71] but 
also in cereals such as rice, maize, and wheat from the Poaceae family [73]. BNF also 
occurs in nonsymbiotic associations. Endophytic bacteria colonize plant tissues and 
fix N while benefiting from plant photoassimilates, although the amount of N fixed is 
lower than in symbiosis [73, 74]. Also, free-living microorganisms inhabiting rhizo-
sphere, soil region around plant roots, fix nitrogen while feeding on root exudates 
(amino acids, peptides, proteins, enzymes, vitamins, and hormones), which stimu-
late growth of diazotrophic bacteria from genera Acetobacter, Azoarcus, Azospirillum, 
Azotobacter, Beijerinckia, Burkholderia, Enterobacter, Herbaspirillum, Klebsiella, 
Paenibacillus, and Pseudomonas [71].
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Nitrogen-fixing microorganisms occur naturally in soil [71] and in water [72] 
or colonize seeds [74]. However, in the agricultural environment, conventional 
practices such as plowing, harrowing, chemical fertilization, and pesticide applica-
tion reduce the soil microorganism populations, which make these areas depending 
on the application of nitrogen fertilizers [75, 76]. Chemical fertilizers require a 
great amount of energy to be produced, energy that is derived from fossil fuels. 
Moreover, they are potential soil and water contaminants and expensive and scarce 
for many developing country farmers [77]. Therefore, strategies have been studied 
to increase BNF by plants and thus reduce dependence on chemical fertilization.

Conservation practices such as minimum tillage, no tillage, and cover crops 
stimulate BNF as they increase the population and activity of soil microorgan-
isms (bacteria, actinomycetes, and mycorrhizae) [78, 79]. In addition to captur-
ing soil N, reducing N loss by leaching, and becoming an N source for succeeding 
crops, mixing cover crops (legumes and grasses) provide additional N through 
BNF [79, 80].

Another alternative for increasing BNF is to inoculate nitrogen-fixing microor-
ganisms in crops. Inoculated into the seeds, roots, or leaves, these microorganisms 
may increase the formation of root nodules, stimulate root growth, improve nutri-
ent uptake, stimulate antioxidant defense system, increase tolerance to biotic (pest 
and pathogen) and abiotic (drought and salinity) stresses, and thereby increase 
crop productivity. Inoculation of nodulating as well as endophytic fungi or bacteria 
stimulates growth in both legumes and grasses and represents a viable and sustain-
able alternative (Table 1). Among the most used microorganisms are Rhizobium 
and Bradyrhizobium genera bacteria inoculated in legumes and Azospirillum and 
Enterobacter genera in grasses (Table 1).

Studies also focus on the application of nitrogen-fixing microorganisms through 
irrigation water, on the genetic improvement for BNF by legume crops [96], on 
becoming plants able to self-fertilize by stimulating root fungal associations in 
grasses, and on providing cereals with the nitrogen-fixing enzyme (nitrogenase) 
[77]. Estimations indicate these practices can reduce fertilizer application costs by 
billions of dollars annually.

Crop Scientific name Inoculated microorganism Reference

Rice Oryza sativa Bacillus amyloliquefaciens, Enterobacter cloacae, 
Klebsiella variicola

[81, 82]

Sugarcane Saccharum 

officinarum

Gluconacetobacter diazotrophicus, Herbaspirillum 

seropedicae, H. rubrisubalbicans, Burkholderia tropica e 
Azospirillum amazonense

[83]

Cowpea Vigna 

unguiculata

Actinomadura, Bradyrhizobium elkanii, B. pachyrhizi, 
B. yuanmingense, Paenibacillus graminis, Rhizophagus 

irregularis

[84–88]

Common 
bean

Phaseolus 

vulgaris

Rhizobium leguminosarum bv. phaseoli, R. tropici [89]

Maize Zea mays Azospirillum brasilense, Herbaspirillum seropedicae [90, 91]

Soybean Glycine max Bradyrhizobium japonicum, Bacillus megaterium, 
Methylobacterium oryzae,

[92, 93]

Wheat Triticum 

aestivum

Azospirillum brasilense, A. insolitus, Enterobacter 
sp., Microbacterium arborescens, Serratia marcescens, 
Zoogloea ramigera

[94, 95]

Table 1. 
Legume and cereal crops and nitrogen-fixing microorganisms used for inoculation.
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7. Nitrogen and organic fertilization

The worldwide demand for organic foods, produced without the use of synthetic 
inputs, has driven the use of conservation practices, especially fertilization using 
organic wastes. The application of organic wastes to the soil improves soil fertil-
ity by increasing the organic matter (OM) and nutrient contents, such as N and 
phosphorus (P), and soil microbiota population, as well as improving the cation 
exchange capacity (CEC) [97].

Organic fertilization improves yield and quality of vegetables such as lettuce 
(Lactuca sativa L.) [98], tomato (Solanum lycopersicum Mill.) [99], and carrot (Daucus 
carota L.) [100]; fruits such as papaya (Carica papaya L.) [101], citrus (Citrus spp.) 
[102], and raspberry (Rubus idaeus L.) [103]; and annual crops such as maize (Zea 
mays L.) [104] and cowpea (Vigna unguiculata (L.) Walp) [105]. Most organic fertil-
izers used as N source are derived from (a) agricultural wastes (cattle, swine and 
poultry manure), slaughterhouses (bone and blood meal), composting, and vermi-
composting; (b) agro-industrial wastes (oilseed pies, sugarcane bagasse, and vinasse) 
and biochar; and (c) household wastes and sewage sludge composting (Table 2).

N input by organic fertilizers occurs predominantly through mineralization 
of organic N, although some mineral N fractions may be released [107, 119]. The 
organic N mineralization rate is regulated by N fractions and C/N ratio of the 
decomposing waste, as well as by environmental temperature and humidity [120, 
121]. Under favorable conditions, high N content organic fertilizers mineralize 
quickly similarly to synthetic fertilizers, while those with low N content and high 
C/N ratio mineralize slowly [122]. Thus, knowing the mineralization rate allows 
choosing the best organic fertilizer to be used in agriculture (Table 2).

Manures are the main used organic fertilizers worldwide, especially as N source, 
though the amount and quality of N in manure may vary according to animal 
species, age, and feed. Forage-based diets increase the residue production, although 
reduce the quality that is provided by a concentrate-based diet [97, 119]. Cattle, 
equine, sheep, goat, and swine manures present similar N content, ranging from 
0.77 to 3.90%. In its turn, poultry litter may have 2.80–4.60% N content, due to 
concentrate-based feed supplied to poultries, being a fast mineralizing fertilizer 
[106, 107]. Thus, manure fertilization has been efficient for many crops, such as 
sweet pepper (Capsicum annuum L.) [123] and radish (Raphanus sativus L.) [124].

Residues from the castor bean (Ricinus communis L.; Euphorbiaceae) chain stand 
out due to the high N content which is found in the pie (7.54% N), in the oil extrac-
tion residue (12.82% N), and in the pulp from direct oil transesterification for 
biodiesel production [106, 125–127]. Castor pie mineralization rate is more intense 
than in other composts and thus quickly releases N and other readily available 
nutrients to plants. As reported by [126], evaluating microbial respiration, who 
obtained mineralization rates 6 times faster than those obtained in cattle manure 
and 14 times faster than in sugarcane bagasse, other pies, such as peanut (Arachis 
spp.) and cotton (Gossypium spp.), may also have high N (4.0–7.0%) content and 
similar mineralization characteristics [128, 129].

The product obtained from the composting of organic wastes is rich in stable organic 
matter. Wastes are transformed through biological decomposition, and the process is 
affected by environmental conditions and N content. As nitrogen compounds are food 
for microbiota, N deficiency in waste may retard the maturation process, and the excess 
may increase the N volatilization as ammonia (NH3), consequently affecting N stabili-
zation processes in composting [130]. Also, humus from vermicomposting (usually by 
using Eisenia foetida species) is highly stable and presents high contents of N and humic 
acids, which indicate a better relationship between the mineralization and humification 
processes of OM, with decreasing C/N ratio [115, 131].
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In addition to the earthworms, arthropods that constitute the edaphic macro-
fauna [87, 132, 133] are also of great interest. Millipedes (Myriapoda: Diplopoda) 
fragment and feed on organic wastes and excrete low C/N ratio feces (2.2% N) 
producing the millicompost [134–136]. Studies suggest that millicompost is similar 
to vermicompost and commercial substrates in relation to N supply and other 
macro- and micronutrients for seedling production, such as in lettuce (Lactuca 
sativa) [98] and pitaya (Hylocereus spp.) (Cactaceae) [137].

In relation to slow-release organic fertilizers, biochar is an alternative. 
A by-product from carbonization (pyrolysis) of biomass under low-oxygen 
atmosphere, biochar is fine-grained carbonaceous material with decomposition 
resistance [118]. N content in biochar depends on the source material (biomass) 
as well as on the pyrolysis temperature. Biochars from wood have high C/N ratio 
and low N content (0.1%), while those from manures have low C/N ratio and high 
N content (5.0%). For instance, biochar from eucalyptus wood (Eucalyptus uro-
phylla S. T. Blake and Corymbia citriodora (Hook.) K.D. Hill and L.A.S. Johnson) 
contains 0.66 and 0.48% N, respectively, while from coffee husks (Coffea spp.) 
contains 2.74% N [138]. Besides slowly releasing nutrients, the use of biochars 
increases N uptake via ion exchange and NH3 removal by adsorption, stimulates 
immobilization (reducing NO3

− losses), and reduces N2O emissions [139–142]. 
Moreover, biochar improves mycorrhizal associations and nitrogen biological 
fixation [118].

Source N content (%) C/N ratio Reference

Cattle manure 0.8–3.2 16.0–21.0 [97, 106]

Equine manure 1.4–3.9 21.9–25.0 [97, 107]

Sheep manure 1.2–1.8 9.0–29.0 [108, 109]

Swine manure 1.9–2.8 10.0–12.0 [97, 107]

Poultry litter 2.8–4.6 4.2–22.0 [97, 106, 107]

Blood meal1 11.8–12.9 — [110, 111]

Bone meal 4.1–4.2 4.0–7.0 [97, 112]

Meat and bone meal 5.5–6.6 6.0 [106, 112, 113]

Castor pulp1 12.8 —

Castor pie 5.2–7.5 6.0–9.0 [97, 106, 112]

Cotton pie1 4.5 — [106]

Filter pie 1.5–1.8 21.0–24.0 [97, 112]

Sugarcane bagasse 0.9–1.5 85.0 [106, 111, 114]

Vinasse 0.3–1.2 4.0–17.0 [97, 112]

Compost 0.7–2.6 11.3–64.0 [107, 115]

Humus 1.3–2.6 11.0–34.0 [115, 116]

Millicompost 2.0–2.2 15.0–19.0 [98, 117]

Biochar 0.1–5.0 7.0–400.0 [118]

Sewage sludge 0.8–3.5 9.0–50.0 [97, 112]

Household waste 0.9–2.6 7.0–27.0 [97, 107, 112]
1C/N ratio not found.

Table 2. 
Nitrogen content and carbon/nitrogen ratio (C/N) in organic fertilizers.
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Urban wastes have also been used in agriculture. Sewage sludge showed to be 
an excellent N source (0.80 and 3.47% N) besides slowly mineralizing. N miner-
alization rates from 20 to 38% were found after 105 days [143], which depends on 
source material characteristics and treatment processes as well as on heavy metal 
content that accelerate or limit mineralization [107, 144]. Slaughterhouse residues, 
such as bone and blood meal, present high N rates, but they are not yet used in 
agriculture because studies on its adoption and behavior as organic fertilizer are 
scarce [97, 110, 112].

8. Concluding remarks

In the surface layer of most soils, the soil organic N can be divided into two 
categories: N from organic residues and N from soil organic matter or humus. N 
mineralization and immobilization processes occur simultaneously and oppositely 
in the soil. The net balance between these processes is controlled by several fac-
tors such as environmental conditions, soil physicochemical factors, agricultural 
management adopted, quality of the decomposing residues, and content of easily 
decomposable and recalcitrant fractions. As organic agriculture increases soluble 
organic nitrogen content, this fraction has been extensively studied. Also, being 
biological nitrogen fixation a key component of the nitrogen cycle and responsible 
for most of the nitrogen available to plants, it was also discussed in this chapter.

Finally, we discussed nitrogen and organic fertilization, since the worldwide 
demand for organic foods produced without the use of synthetic inputs has driven 
the use of conservation practices, especially fertilization using organic wastes. Most 
organic fertilizers used as N source is derived from agricultural and agro-industrial 
wastes, slaughterhouse wastes, composting and vermicomposting, biochars, house-
hold wastes, and sewage sludge composting.
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