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Abstract

This chapter presents the ability of some pathogenic (Listeria monocytogenes, 
Escherichia coli, Salmonella enterica, Campylobacter jejuni, Pseudomonas aeruginosa) 
and toxigenic bacteria (Bacillus cereus, Staphylococcus aureus) to form biofilms 
and contribute to the persistence of these microorganisms in the food industry. 
Particularities regarding attachment and composition of biofilms formed in food 
and food processing environments are presented and genes involved in biofilm 
production are mentioned. To give a perspective on how to fight against biofilms 
with new means, nonconventional methods based on bacteriocins, bacteriophages, 
disruptive enzymes, essential oils, nanoemulsions and nanoparticles, and use of 
alternative technologies (cold plasma, ultrasounds, light-assisted technologies, 
pulsed electric field, and high pressure processing) are shortly described.

Keywords: bacteriocin, essential oils, bacteriophages, nanoemulsion,  
alternative technologies

1. Introduction

Food matrices having water activities above 0.9 and wet food processing 
environments are wonderlands for microorganism multiplication and biofilm 
development. Biofilms are considered of great concern in regard to functioning 
of mechanical parts that may be blocked, to energy consumption, which becomes 
higher when heat transfer decreases, and to corrosion as corrosion rate of surfaces 
increases underneath biofilms (corrosion grows 10–1000 times faster causing loss 
of material and increasing porosity) but their presence in food and food processing 
environments is also a serious public health risk due to problems associated with 
foodborne illnesses and food spoilage [1].

The biofilms that are threatening the safety of food products are produced by 
some pathogenic bacteria such as Listeria monocytogenes, Escherichia coli, Salmonella 
enterica, Campylobacter jejuni, and Pseudomonas aeruginosa and toxigenic bacteria 
such as Staphylococcus aureus and Bacillus cereus [2]. Biofilms are responsible for per-
sistence of such bacteria in food processing environments and (re)contamination 
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of processed foods [3]. When contamination of food products happens, recalls are 
necessary. These actions present large economic burden to industry and are also 
associated with brand damage.

2. Biofilm formation

Biofilms are formed on all types of surfaces existing in food plants ranging from 
plastic, glass, metal, cement, to wood and food products [4]. Usually, biofilms form 
a monolayer or more often multilayers, in which bacteria may undergo a significant 
change in physiology with an increased tolerance to environmental stresses [5].

L. monocytogenes, the pathogen that proliferates at low temperatures, is able 
either to form pure culture biofilms or to grow in multispecies biofilms [6]. 
Prevalent strains in food processing environments have good adhesion ability due to 
the presence of flagella, pili, and membrane proteins [7]. Composition of biofilms 
produced by L. monocytogenes is different in comparison with that produced by 
other bacteria. For example, exopolysaccharides like alginate in Pseudomonas or 
poly-N-acetylglucosamine in Staphylo-coccus have not been put into evidence [8].

Salmonella spp. express proteinaceous extracellular fibers called curli that are 
involved in surface and cell-cell contacts and promotion of community behavior and 
host colonization [9]. Besides curli, different fimbrial adhesins have been identified 
to have implications in biofilm formation, dependent of serotype. The presence of 
cellulose in the biofilm matrix contributes to cells’ resistance to mechanical forces 
and improved adhesion to abiotic surfaces [10]. Significant differences between 
serovars were put into evidence regarding biofilm formation the most persistent in 
food processing environments being the ones that are capable to form biofilms [11].

Flagella, pili, and membrane proteins are also used by E. coli to initiate attach-
ment on inanimate surfaces. Flagella are lost after attachment and bacteria start 
producing an extracellular polymeric substance (EPS) that provides a better 
resistance of bacteria to disinfectants as hypochlorite [12]. Similarities in biofilm 
structure and composition as well as regulatory mechanisms with Salmonella spp. 
have been demonstrated for E. coli, mostly in terms of expression of small RNAs 
leading to a change in bacterial physiology regarding the cell motility and produc-
tion of curli or EPS [13].

In general terms, different E. coli serotypes have been reported to enhance flex-
ibility and adaptability in forming biofilms when exposed to different stresses. For 
example, E. coli seropathotype A isolates associated with human infection, O157:H7 
and O157:NM, showed greater ability to form biofilms than those belonging to 
seropathotype B or C associated with outbreaks and hemolytic-uremic syndrome 
(HUS) or sporadic HUS cases but no epidemics, respectively [14]. In addition, 
synergistic interactions are taking place in a fresh-cut produce processing plant in 
which E. coli is interacting with Burkholderia caryophylli and Ralstonia insidiosa with 
the formation of mixed biofilms [15].

C. jejuni, which is known as an anaerobic bacterium, is able to develop biofilms 
both in microaerophilic conditions (5% O2 and 10% CO2) and in aerobic conditions 
(20% O2) [1]. The cells embedded in the biofilm matrix are better protected from 
oxygen and survive for days in food processing environments [1].

Pseudomonas spp. produce high amounts of EPS and have been shown to attach 
and form biofilms on stainless steel surfaces. They coexist within biofilms with 
Listeria, Salmonella, and other pathogens forming multispecies biofilms, more 
stable and resistant [6].

B. cereus is a cause of biofilm formation on many food contact surfaces such as 
conveyor belts, stainless steel pipes, and storage tanks [16], but it is also able to 
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form immersed or floating biofilms, and to secrete within the biofilm a vast array 
of metabolites, surfactants, bacteriocins, enzymes as lipases and proteases affecting 
the sensorial qualities of foods, and toxins. For floating biofilms, the production of 
kurstakin, a lipopeptide biosurfactant, that is regulated via quorum sensing (QS) 
signaling is important [17].

Within the biofilm, B. cereus exists either in vegetative or in sporal form, the 
spores being highly resistant and adhesive, properties that increase the resistance of 
the bacterium to antimicrobials and cleaning procedures.

Four mechanisms based on the flagellar motility of B. cereus are described as 
being involved in biofilm formation. The first mechanism is used in static condi-
tions when the bacterium must reach on its own suitable places for biofilm forma-
tion [18], at the air-liquid interface. The second one is represented by the creation 
of channels in the biofilm matrix to facilitate nutrients’ access on one hand and 
penetration of toxic substances on the other hand [19]. The third mechanism refers 
to motile planktonic bacteria that penetrate the biofilm and increase its biomass [18, 
19], while the fourth represents the extension of the biofilm based on the ability of 
motile bacteria located at the edge of the biofilm to colonize the surroundings [18].

It has been showed that, in its planktonic form, S. aureus does not appear resistant 
to disinfectants, compared to other bacteria, but it may be among the most resistant 
ones when attached to a surface [20]. It seems that different stress-adaptive responses 
may enhance biofilm formation, with certain differences in terms of their composition 
and architecture, especially for the wild-type biofilms colonizing the food and related 
processing environments. Examples include protein-based sources responsible for 
the structure of biofilms formed by S. aureus of food origin [21] similar to those put 
into evidence for the coagulase-negative ones. However, other studies demonstrated 
that simple carbohydrates, such as milk lactose, can modulate the biofilm formation 
especially by inducing the production of polysaccharide intercellular adhesins [22].

3. Genes involved in the biofilm formation

Over time, beside the conditions that favor the biofilm formation in food 
processing plants, the genetic background of biofilm forming microorganisms was 
also intensively studied. At each step of biofilm development and dispersal, there is 
a specific genetic signal control.

The L. monocytogenes pattern of the microarray gene expression was analyzed 
at different time intervals (4, 12, and 24 h) in order to depict genes’ expression at 
different stages of biofilm formation. The results showed that more than 150 genes 
were upregulated after 4 h of biofilm formation and a total of 836 genes highlighted 
a slow increase in expression with time [23]. Although for many bacterial species 
the genome sequencing allowed the identification of genes that were involved in 
biofilm synthesis, for L. monocytogenes, these genes could not be identified using 
just the bioinformatics analysis.

In the biofilm formation, the attachment step is a prerequisite in which flagella 
and type I pili-mediated motilities are critical for the initial interaction between the 
cells and surface.

In order to find out the roles of the genes and regulatory pathway controlling the 
biofilm formation, researchers applied one or two genome-wide approaches, like 
transposon insertion mutagenesis or/and transcriptome analyses. With a transposon 
mutagenesis library, it was possible to identify 70 L. monocytogenes mutants, with 
Himar1 mariner transposon insertion, which produced less biofilms [24]. From a 
total of 38 genetic loci identified, 4 of them (Table 1) were found to be involved in 
bacterial motility (fliD, fliQ , flaA, and motA), a required property for initial surface 
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Gene/KEGG/protein encoded Gene function Role Bacterium Ref.

Initial attachment

fliQ/LMON_0682/Flagellar biosynthesis protein Motility
Flagella bio-synthesis

Cell adhesion and bacterial attachment L. monocytogenes [23–25]

flaA/lmo0690/Flagellin

fliD/Flagellar hook-associated protein 2 Enable the polymerization of the flagellin 
monomers; flagellar capping protein

[148]

motA/BN418_0793/Flagellar motor protein Flagellar motor rotation

prfA/IJ09_09365/Listeriolysin positive regulatory 
factor A

DNA-binding transcription factor activity Positive regulation of single species biofilm 
formation

L. monocytogenes

fimA/JW4277/Type-1 fimbrial protein, A chain Enable bacteria to colonize the host epithelium Cell adhesion E. coli [30, 
31]

fhiA/ECUMN_0250/Flagellar biosynthesis protein Motility bacterial-type flagellum assembly

yadL/ECs0141/yadM/yadK/yadC/Fimbrial protein Fimbrial bio-synthesis

tabA/yjgK/b4252/toxin-antitoxin biofilm protein Represses fimbria genes Single-species biofilm

icaA/Poly-beta-1,6-N-acetyl-D-glucosamine 
synthase from icaADBCR operon

Acetylglucosaminyl transferase activity, cell 
adhesion

Involved in the polymerization of a biofilm 
adhesin polysaccharide

S. aureus [149]

tpiA/SAR0830/Triosephosphate isomerase Involved in gluconeogenesis pathway Role in adherence [150]

sraP/SAOUHSC_02990/ Serine-rich adhesin for 
platelets

Mediates binding to human platelets Plays a positive role in biofilm formation [151]

Spo0A/BSU24220/Stage 0 sporulation protein A Regulatory role in sporulation Single-species surface biofilm formation B. cereus, B. subtilis [152]
[153]

degS/BSU35500/Signal transduction histidine-
protein kinase/phosphatase

Transition to growth phase; flagellum formation Biofilm formation [154, 
155]

fliL/STM1975/Flagellar protein Controls the rotational direction of flagella Motility, cell adhesion S. enterica [156]

ycfR/Outer membrane protein Promotes the attachment to the surface [157]



5 B
iofilm

s F
orm

ed
 b

y P
a

th
ogen

s in
 F

ood
 an

d
 F

ood
 P

rocessin
g E

n
viron

m
en

ts
D

O
I: h

ttp
://d

x.d
oi.org/10.5772/in

tech
op

en
.90176

Gene/KEGG/protein encoded Gene function Role Bacterium Ref.

Microcolonies development

dltA/LMOf2365_099/D-alanine-D-alanyl carrier 
protein ligase

Catalyzes the first step in the D-alanylation of 
lipoteichoic acid (LTA)

Cell wall biogenesis L. monocytogenes S. 

aureus

[24]

dltC/LMOf2365_099/D-alanyl carrier protein Carrier protein involved in the D-alanylation of 
LTA

dltB/lmo0973/DltB Involved in the transport of activated D-alanine 
through the membrane

S. aureus, B. subtilis

sdrC/NWMN_0523/Serine-aspartate repeat-
containing protein C
sdrH/SAUSA300_1985 Serine-aspartate repeat 
family protein

Cell adhesion Mediates interactions with components 
of the extracellular matrix to promote 
bacterial adhesion

S. aureus [158]

bhsA/STY1254/Multiple stress resistance protein Stress response, response to copper ion Regulation of biofilm formation. May 
repress cell–cell interaction and cell surface 
interaction

E. coli [159]

bsmA/yjfO/Lipoprotein Stress response to hydrogen peroxide and to DNA 
damage

Single-species biofilm formation; enhanced 
flagellar motility

E. coli, S. enterica [160]

csgD/b1040/CsgBAC operon transcriptional 
regulatory protein

DNA-binding transcription activator activity The master regulator for adhesive curli 
fimbriae expression

[161]

mlrA/b2127/HTH-type transcriptional regulator DNA-binding transcription factor activity Activates transcription of csgD [162]

sinR/BSU24610/HTH-type transcriptional 
regulator

Negatively regulates transcription of the eps 
operon

DNA-binding protein master regulator of 
biofilm formation

B. subtilis, B. cereus [163, 
164]

epsG (yveQ )/BSU34310/Transmembrane protein Production of exopolysaccharide Biofilm maintenance [165]

epsH (yveR)/BSU34300/Putative 
glycosyl-transferase

[166]

ymdB/BSU16970/2′,3′-cyclic-nucleotide 
2′-phospho-diesterase

Regulatory role. Induces genes involved in 
biofilm formation

Directing the early stages of colony 
development

pgcA/Phosphoglucomutase Catalyzes the interconversion between glucose-6-
phosphate and alpha-glucose-1-phosphate

Exopolysaccharide synthesis [167]
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Gene/KEGG/protein encoded Gene function Role Bacterium Ref.

gcpA/SL1344_191/Biofilm formation in nutrient-
deficient medium

Biofilm production under low-nutrient 
concentrations

S. enterica [156]

Biofilm maturation

tasA/ BSU24620/major biofilm matrix component Identical protein binding Major component of the biofilm 
extracellular matrix

B. cereus [168]

tapA/ BSU24640/TasA anchoring/assembly 
protein

Important for proper anchoring and 
polymerization of TasA fibers at the cell surface

Essential for biofilm formation B. subtilis No paralog in 
B. cereus genome

[169]

sipW/BSU24630/Signal peptidase IW Cleavage of the signal sequence of TasA and 
TapA

B. cereus

bslA (yuaB)/BSU31080/Biofilm-surface layer 
protein A

Confers a specific microstructure to the biofilm 
surface

Confers hydrophobicity to the biofilm B. subtilis, No paralog 
in B. cereus genome

[170–
171]

wcaF/b2054/Putative colanic acid biosynthesis 
acetyl-transferase

Synthesis of colanic acid Involved in the pathway slime 
polysaccharide biosynthesis

E. coli [172]

wcaL/STM2100/Putative colanic acid biosynthesis 
glycosyl-transferase

S. enterica [173]

bssR (yliH)/JW0820/Biofilm regulator Regulation of biofilm formation In the glucose presences, cells showed 
increased biofilm formation

E. coli [33]

mqsR/b3022/mRNA interferase toxin Motility-quorum sensing cell proliferation Biofilm architecture [172]

tqsA/b1601/AI-2 transport protein Efflux transmembrane transporter activity Represses biofilm formation and motility [31]

bdcA/b4249/Cyclic-di-GMP-binding biofilm 
dispersal mediator protein

Controls cell motility, size, aggregation, 
and production of extracellular DNA and 
extracellular polysaccharides

Biofilm dispersal E. coli, S. enterica [174]

ihfAB/Integration host factor Specific DNA-binding protein Matrix density
Cellulose production

S. enterica, S. aureus [175–
177]

bapA/biofilm-associated protein Large surface proteins family Bacterial adhesion
Biofilm maturation
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Gene/KEGG/protein encoded Gene function Role Bacterium Ref.

clfA/ / Clumping factor A; clfB/ NWMN_2529/ 
Clumping factor B

Cell surface-associated protein implicated in 
bacterial attachment

Aggregation of unicellular organisms; cell 
adhesion

S. aureus [178]

icaC/SAOUHSC_03005/poly-beta-1,6-N-acetyl-D-
glucosamine export protein (PNAG)

Export of PNAG across the cell membrane E. coli, S. aureus [149]

pflA/SAOUHSC_00188/Pyruvate formate lyase-
activating enzyme
pflB/SACOL020/Formate acetyltransferase

Enzymes that catalyze the first step in the 
acetogenesis from pyruvate

Organic free radical synthesis [29]

sarA/Transcriptional regulator Global regulator of a few genes with important 
roles in biofilm development

Biofilm formation process in a cell density-
dependent manner

S. aureus [179]

agrD/LMM7_0043/Putative autoinducing peptide Involved in proteolytic processing Quorum Sensing L. monocytogenes [180]

lmo0048/Putative AgrB-like protein Involved in proteolytic processing L. monocytogenes

B. cereus

agrC/Accessory gene regulator Histidine kinase activity S. aureus [181]

agrA/CQ02_00305/BN389_00610/
Accessory gene regulator

A response regulator [182]
[183]

agrB/MF_00784/Accessory gene regulator Proteolytic processing of AgrD S. aureus [184]

luxS/lmo1288/S-ribosyl-homo-cysteine lyase Catalysis of precursor molecules of AI-2 L. monocytogenes 

E. coli, B. cereus, S. 

enterica

[48]
[49]

luxQ/Autoinducer 2 sensor kinase/phosphatase Phospho-relay sensor kinase activity E. coli, B. cereus, S. 

enterica

Table 1. 
List of genes with significant role in biofilm formation within pathogenic microorganisms (UniprotKB database).
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attachment. Another gene with increased expression at 4 h and decreased expression 
after 12 h from biofilm initiation was prfA, the listeriolysin positive regulatory factor 
A. It seems that this regulatory factor is necessary just in the initial stages of biofilm 
formation and aggregation but not in the colonization stage [23, 25, 26].

Extracellular and surface proteins such as internalin A and BapL, respectively, 
have been found to be involved in the initial bacterial adhesion in L. monocytogenes 
EGD-e [27]. Moreover, its mobility is ensured by flagella and is temperature-
dependent affecting the biofilm formation. As such, above 30°C, the transcription 
of flaA is stopped.

S. aureus genes responsible for cell adhesion to the surface are included in the 
icaADBC operon with functions in biosynthesis of the glucosamine polymer and 
polysaccharide intercellular adhesins [28]. Therefore, other genes encoding a num-
ber of transporter proteins (proP, opuD, aapA, and dltA) were upregulated after 
8 hours from the biofilm initiation [29]. For E. coli, the genes involved in the cell 
adhesion, like fimA, yadK, yadN, yadM, and yadC-encoding fimbriae-like proteins-
are coexpressed with the integral cell membrane genes, with outer membrane 
proteins (htrE), with transcriptional regulators (mngR and nhaR), or other genes, 
but this network appears to be strain specific [30, 31].

In the case of S. enterica, differential expression analysis revealed that ycfR is 
highly conserved as in many Gram-negative bacteria, being upregulated under 
chlorine stress and responsible for the virulence and attachment of bacterium to the 
glass or polystyrene [32, 33].

Moreover, Salmonella spp.-related biofilms are driven by a transcriptional 
regulatory CsgD protein that activates the expression of curli and cellulose. The 
transcription of csgBAC operon, which encodes the structural subunits for curli, 
indirectly activates the transcription of the second mechanism, adrA, associated 
with cellulose production [10]. Important factors in the activation of Salmonella 
spp. biofilms are the c-di-GMP that is behaving like a secondary messenger mol-
ecule when the CsgD content is elevated [34].

Microcolonies are formed by cell proliferation, and many genes involved in cell 
division, cell wall biogenesis, virulence and motility, stress response, and transcrip-
tional regulation factors are expressed.

Table 1 shows a selection of the genes that are expressed in all the steps of 
biofilm formation or are upregulated under influence of different biotic or abiotic 
factors. It was reported that the ∆dltABC L. monocytogenes strains are defective 
in biofilm formation, validating by transposon mutagenesis, the critical role of 
d-alanylation of teichoic acids, for biofilm synthesis [24]. So, the mutants without 
d-alanine on the surface of teichoic acids have a higher negative charge and develop 
a biofilm-negative phenotype.

The mature biofilm evolves from microcolonies and this development is associ-
ated with EPS production. The biofilm matrix of B. cereus is similar to other Bacillus 
sp., but the eps genes, responsible for the EPS synthesis, are not mandatory for B. 
cereus compared to B. subtilis [35]. Little is known about the regulatory networks in 
B. cereus, but studies have shown that CodY and SpoOA may as well play a crucial 
role in biofilm formation [36].

Furthermore, the structural proteins encoded by tapA and bslA from B. subtilis 
genome are absent in the matrix of B. cereus because these genes have no paralog 
in B. cereus genome. Instead the tasA gene is essential for B. cereus biofilm develop-
ment, being responsible for the matrix fiber synthesis [37].

An important polysaccharide identified in the matrix biofilm of many patho-
genic bacteria is the colanic acid, which plays an important physiological role for 
bacteria living in biofilm. This EPS is synthesized by specific enzymes encoded 
by wcaL gene (S. enterica) or wcaF (E. coli). It has been also shown that rpoS gene, 
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the main regulator of the general stress response, may be seen as a key factor in the 
development of mature biofilms in E. coli [38].

Consequently, the transition from the planktonic state to the biofilm state is 
critical and it is subjected to a strict gene regulation, essential for matrix synthesis, 
cell aggregation, and cell signaling.

Nevertheless, bacteria of multiple genetic backgrounds communicate by regu-
lating their relationship of cooperativeness through a mechanism called quorum 
sensing (QS) in which the bacterial cells are having social interactions with each 
other through small diffusible signal molecules called autoinducers, thus contribut-
ing to the biofilm development [10].

Quorum sensing process described in the 1970s is involved in the control of 
various gene expressions through chemical signaling molecules that are synthesized 
in response to cell population density [39]. When bacteria start to sense their criti-
cal biomass, they answer by activating or repressing genes from 10% of bacteria 
genome [40]. The system has been described for both Gram-negative and Gram-
positive bacteria.

Among QS, other two important regulators are known to control biofilm shape 
and structure: cyclic diguanosine-5′-monophosphate (c-di-GMP) and small RNAs. 
For example, S. aureus biofilm development is regulated by many environmental 
conditions and genetic signals. A significant constituent in biofilm formation is 
mediated by the polysaccharide intercellular adhesin composed mainly of poly-
meric N-acetyl-glucosamine (PNAG) and eDNA, encoded by the ica operon [41]. 
In certain cases, such as S. aureus, biofilm-associated protein (Bap) is involved in 
biofilm maturation rather than polysaccharide intercellular adhesion (polysaccha-
ride intercellular adhesins) expression [42].

The c-di-GMP involvement in S. aureus is an important biofilm regulator that 
allosterically switches on enzymes of exopolysaccharide biosynthesis [43], while the 
function of small RNA genes involved is still not yet studied in detail [44]. Although 
it has been noticed to show an increased susceptibility to disinfectants in planktonic 
state, however, in biofilm state, it may be among the most resistant ones equally 
important for food as well as for the medical sectors.

Gram-positive bacteria such as S. aureus, B. subtilis, and L. monocytogenes are 
communicating through inducers encoded by accessory gene regulator (Agr) 
system (Table 1). It seems like the Agr complex regulates more than 100 genes in 
the S. aureus genome [45], and its deletion from L. monocytogenes genome affects 
more than 600 genes [46].

The accessory gene regulator of S. aureus modulates the expression of virulence 
factors and toxins in response to autoinducing peptides (AIPs) while luxS synthe-
sizes AI-2, which inhibits exopolysaccharide synthesis through an unknown QS 
cascade [47].

For S. enterica and E. coli, the QS system is mediated by two genes, luxS and 
luxR, homolog to SdiA in order to reach intercellular signaling [48, 49].

The L. monocytogenes QS signaling triggers the transcriptional activation of one 
of the virulence PrfA-regulated genes actA, resulting in the bacterial aggregation 
and biofilm formation [10]. Another gene involved in the cell-to-cell interactions 
is secA2 gene. Its deletion may inactivate the SecA2 pathway with an increased cell 
aggregation and sedimentation [50].

4. Fighting against biofilms with nonconventional methods

Since biofilms act as a barrier that protects the embedded cells against clean-
ing and disinfecting agents [51], the control of biofilm is an issue that is currently 
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addressed to find effective solutions that can prevent biofilm formation or eliminate 
the already formed one. Biocontrol of biofilms by using bacteriocins, disruptive 
enzymes, essential oils, or bacteriophages is gaining importance, as well as using 
nanoemulsions and nanoparticles. These new methods are promising strategies 
with remarkable results in the fight against biofilms.

4.1 Bacteriocins used to control biofilms

Bacteriocins are antimicrobial peptides ribosomally produced by an extensive 
range of bacteria to inhibit or kill competing microorganisms in a micro-ecological 
system [52, 53]. The most studied bacteriocin and the only one allowed presently as 
food-grade additive is nisin, a lantibiotic with proven effects against many Gram-
positive bacteria including foodborne pathogens [54]. This bacteriocin was shown 
to penetrate the biofilm formed by S. aureus and permeate the sessile bacterial cells 
by real-time monitoring [55]. Moreover, nisin and its bioengineered derivatives 
were able to enhance the capability of conventional antibiotics such as chloram-
phenicol of decreasing S. aureus biofilm viability [56]. Nevertheless, a study assess-
ing the effect of neutral electrolyzed water and nisin and their combination against 
listerial biofilm on glass and stainless steel surfaces indicated the potency of this 
bacteriocin to improve the efficacy of sanitizers used in food industry [57]. Nisin 
was also indicated to be effective against biofilms formed by Gram-negative bacte-
ria such as Salmonella typhimurium when combined with P22 phage and EDTA, a 
synergistic combination that reduced 70% of the mature biofilm [58].

Another way to prevent biofilms development is represented by the adsorption 
of these bioactive compounds on the surfaces that come into contact with foods 
[59]. In this case, Nisaplin adsorbed to three types of food-contact surfaces com-
monly encountered in food processing plants, namely stainless steel, polyethylene 
terephthalate (PET), and rubber, reduced the adhesion ability of food-isolated L. 
monocytogenes strains [60]. Other studies showing the efficacy of nisin in preventing 
surface colonization by L. monocytogenes were conducted by Daeschel et al. [61] and 
Bower et al. [62].

A bacteriocin found to markedly inhibit the biofilm formed by S. aureus is 
sonorensis, a member of the heterocycloanthracin subfamily produced by Bacillus 
sonorensis MT93 [63].

4.2 Disruptive enzymes for fighting against biofilms

Disruptive enzymes, such as proteases, glycosidases, amylases, cellulases, or 
DNAses, are considered a green alternative to chemical treatments often used in the 
fight against biofilms’ formation in food-related environments [2]. Such enzymes 
do not have toxic effects and are used both alone and as part of the industrial 
detergents’ composition to improve their cleaning efficacy [64–66].

Proteases are a class of enzymes that catalyzes the cleavage of proteins’ peptide 
bonds. Although they are produced by all living organisms, microbial proteolytic 
enzymes are preferred over animal or plant origin proteases. The most commonly 
used source of bacterial proteases is represented by those produced by the genus 
Bacillus since they have remarkable properties such as tolerance to extreme tempera-
tures, large pH domain, organic solvents, detergents, and oxidizing compounds [67]. 
Given their low substrate specificity, extracellularly produced proteases were shown 
to be more effective in degrading organic-based aging biofilms compared to amylases 
[68]. Combinations of a buffer that contained surfactants and dispersing and chelat-
ing agents with serine proteases and polysaccharidases were shown to be efficient in 
removing the biofilms formed by B. cereus and P. fluorescens, respectively, on stainless 



11

Biofilms Formed by Pathogens in Food and Food Processing Environments
DOI: http://dx.doi.org/10.5772/intechopen.90176

steel slides by the cleaning-in-place procedure [69]. Purified alkaline proteases from 
B. subtilis were reported to degrade biofilms produced by both P. mendocina and E. 
coli within 10 minutes [70]. Mold-origin proteases, such as proteinase K, were proved 
to be effective agents against biofilms formed by L. monocytogenes when used either 
alone or in combination with other biofilms’ inhibitors. In a study, proteinase K was 
capable of complete dispersion of L. monocytogenes biofilms grown for 72 h on both 
plastic and stainless steel surfaces at concentrations above 25 μg/mL. The same study 
also emphasized the synergistic effect between DNases and proteinase K regarding 
L. monocytogenes-established biofilm dispersion [71].

Polysaccharide-hydrolyzing enzymes were indicated to remove the biofilms 
formed by Staphylococcus spp. and Pseudomonas spp. on steel and polypropylene 
substrata. However, these enzymes did not exhibit a significant bactericidal effect, 
so they were combined with oxidoreductases for an improved performance [72]. 
Experimental studies showed that cellulase in conjunction with cetyltrimethylam-
monium bromide had the capacity of removing 100% of the S. enterica mature 
biofilm at the phase of irreversible attachment. This finding suggests an alternative 
strategy for removing Salmonella biofilms in meat processing facilities [73].

4.3 Using essential oils against biofilms

Plant essential oils (EOs) are rich in phytochemical compounds, which are 
secondary metabolites produced by plants as defense mechanism against pathogens 
[74]. Regarding microbial inactivation, EOs have been reported to mainly affect the 
cellular membrane by permeabilization [75]. This leads to the disruption of vital 
cellular processes, including energy production, membrane transport, and meta-
bolic regulatory functions [76].

Studies evaluating the potential of EOs as disinfectants were conducted. 
Leonard et al. [77] assessed the bioactivity of Syzygium aromaticum (clove), Mentha 
spicata (spearmint), Lippia rehmannii, Cymbopogon citratus (lemongrass) EOs, 
and their major components on the listerial biofilm. The assessment revealed that 
M. spicata and S. aromaticum EOs inhibited the growth of listerial biofilm, while, 
surprisingly, in the presence of their main compounds alone, namely R-(−) carvone 
and eugenol, respectively, the biofilm biomass increased. Similar phenomenon 
was previously noticed by [78] in the case of α-pinene, 1,8-cineole, (+)-limonene, 
linalool, and geranyl acetate, with researchers arguing that bacterial cells in biofilms 
have a reduced metabolic activity, which make them more resistant to deleterious 
agents. These results suggest that antimicrobial activity of EOs is rather due to 
the synergism among the chemical substances that compose them, than due to an 
individual component’s activity. On the other hand, a disinfectant solution based on 
Cymbopogon citratus and Cymbopogon nardus EOs was reported to completely reduce 
the number of L. monocytogenes stainless steel surface-adhered cells residing in a 
240 h biofilm after 60 min of interaction [79].

Thyme EO has proven antimicrobial properties [80]. In terms of biofilm inhibi-
tion capacity, this EO was shown to inhibit significantly the biofilm formed by 
B. cereus [81] and biofilms formed by other food-related pathogens, including 
S. aureus and E. coli [82, 83]. Thymol and carvacrol are principal constituents 
of thyme oil [84], and their potential regarding biofilm inhibition is intensively 
studied. Surfactant-encapsulated carvacrol was effective against biofilms produced 
by E. coli O157:H7 and L. monocytogenes on stainless steel coupons [85]. This natural 
biocide was also shown to control a dual-species biofilm formed by S. aureus and 
S. enterica at quasi-steady state [86]. However, scientists emphasized that carvacrol 
concentration should be seriously considered when used to combat strong biofilm 
producers, such as S. aureus strains isolated from food-contact surfaces, since low 
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concentrations may exhibit an inductive effect. In the case of the biofilm formed by 
Salmonella typhimurium on stainless steel surfaces, exposure to thymol resulted in 
a more pronounced decrease in the biofilm mass compared to exposure to carvacrol 
or eugenol [87]. Moreover, these compounds enhanced the susceptibility of this 
pathogen to the treatments with antibiotics such as nalidixic acid [88].

Eugenol is a phytochemical compound preponderantly found in aromatic plants 
[89]. Interestingly, a study showed that this substance was able to inhibit the intra-
cellular signaling pathway called quorum sensing in the case of biofilms formed by 
methicillin-resistant S. aureus strains isolated from food handlers. This mechanism 
has an important role in the host colonization, biofilm development, and defense 
strategies against harmful agents, allowing bacterial cells to act as social communi-
ties [90]. EOs of bay, clove, pimento berry, and their major constituent, eugenol, 
were proved to inhibit significantly the biofilm formed by E. coli O157:H7. The 
antibiofilm activity was assigned to the benzene ring of eugenol. Moreover, eugenol 
led to the downregulation of genes associated with the biofilm formation, attach-
ment, and effacement phenotype, such as curli, fimbriae, and toxin genes [91].

4.4 Fighting against biofilms with bacteriophages

Bacteriophages are viruses that infect bacterial cells. They use the genetic 
machinery of their host cells to replicate, killing bacteria when reaching a suf-
ficiently high number to produce lysis [92]. They are abundantly encountered 
anywhere host bacteria live [93] and, therefore, their potential is presently 
harnessed as natural antimicrobial agents to control pathogenic bacteria in food 
products and food-related environments [94]. One of the bacteriophages’ applica-
tions that is intensively explored targets biofilm-forming bacteria that are relevant 
for food industry, including L. monocytogenes, S. aureus, E. coli, B. cereus, and S. 
enterica. However, the success of this approach in fighting biofilms depends on a 
series of factors such as composition and structure of biofilms, biofilms’ maturity, 
and physiological state of bacterial host residing within biofilms, concentration of 
bacterial host, or extracellular matrix [95].

Although it is generally thought that biofilms confer resistance to bacterio-
phages, these bacterial predators developed several mechanisms to destroy bacteria 
communities. Once they reach the EPS (extracellular polymeric substances) 
producing host, they start to replicate, resulting in an increased number and, 
implicitly, in a progressive degradation of the biofilms and prevention of their 
regeneration. Bacteriophages can also express or induce the expression from within 
host genome of depolymerizing enzymes that degrade EPS. Nevertheless, they can 
also infect persister cells, which are dormant variants of regular bacterial cells that 
are highly resistant to antibiotics. In this case, the lysis process is triggered once 
persister bacteria are reactivated [96].

Scientists [97] reported the ability of a bred phage to reduce L-form biofilms 
formed by L. monocytogenes on stainless steel surfaces. This bacteriophage was as 
effective as lactic acid (130 ppm) in the eradication of preformed L-form biofilms. 
P100 phage treatment was also shown to reduce the number of L. monocytogenes 
cells under biofilm conditions on stainless steel coupon surface regardless of 
serotype [98]. The potency of three bacteriophages, namely LiMN4L, LiMN4p, and 
LiMN17, used as a cocktail or individually at ~9 log10 PFU/mL was evaluated to 
inactivate L. monocytogenes cells residing within 7-day biofilms strongly adhered to 
clean or fish broth-coated stainless steel coupons and dislodged biofilm cells [99]. 
These phages exhibited a higher efficiency in the case of dislodged cells compared 
to intact biofilms when applied for short periods of time. Therefore, for high effi-
ciency, short-term phage treatments in fish processing environments may require 
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prior processes aiming at disrupting the biofilms [99]. The ability of Salmonella 
spp. to develop biofilms was shown to depend on the attachment surface types 
that may be encountered in chicken slaughterhouses. With regard to this, surfaces 
such as glass and stainless steel favored the formation of Salmonella biofilms, while 
polyvinyl chloride surface sustained less the development of them. The antibiofilm 
activity of a pool of bacteriophages isolated from hospital and poultry wastewater 
was concentrated at 3 h of action for all types of surfaces. Curiously, biofilms 
attached to the glass surface were resistant to a 6-h treatment. Bacteriophages were 
able to degrade the glass-attached biofilms after 9 h of interaction [100]. A bacte-
riophage BPECO 19 was evaluated as possible inhibitor of a three E. coli O157:H7 
strain biofilm grown on both abiotic (stainless steel, rubber, and minimum biofilm 
eradication concentration device) and biotic (lettuce leaves) surfaces. This bacte-
riophage showed great biofilm inhibition activity on all the tested surfaces, being 
suggested as effective antibiofilm agent in food industry [101].

4.5 Nanotechnology-based antimicrobials used to control biofilms

Currently, controlling biofilm formation by nanotechnology-based antimicrobi-
als is of industrial interest, nanoemulsions and nanoparticles (NPs) with antibio-
film activity being an alternative to conventional methods.

Recently, some studies made on model system (polystyrene well plates) and 
real systems (fresh pineapple, tofu, and lettuce) indicated that nanoemulsions of 
EOs have significantly higher antibiofilm activity compared to pure EOs (Table 2). 
Antimicrobial efficacy of nanoemulsions is dependent on the droplet size and 
electrical properties of nanoemulsions [102, 103], nature of bacteria [75, 104], and 
food matrix [105–107].

Nanoparticles (NPs) can be used for both inhibition of biofilm formation and 
eradication of already formed ones [108].

In the last period, NPs with natural compounds gained increased interest because 
it was demonstrated that the inorganic capsules can protect the natural products 
with antimicrobial activity [109]. In this respect, cinnamaldehyde-encapsulated 
chitosan nanoparticles, garlic-silver NPs, and “tree of tee” oil NPs were used to 
combat biofilm formation by P. aeruginosa on polystyrene well plates and glass pieces 
[110–112]. Meanwhile, the biofilm formed by S. aureus on glass slide was inhibited by 
applying gold NPs with EO of Nigella sativa [113] and garlic-silver NPs [111].

Nanoemulsion Particle size, 

nm

Biofilm-forming 

bacteria

Mode of action Ref.

EO of Citrus medica 
L. var. sarcodactylis

73 S. aureus Inhibit the ability of 
bacteria to attach to 

surfaces

[185]

EO of Cymbopogon 

flexuosus 
(lemongrass)

78.46 ± 0.51 P. aeruginosa (PA01) 
and S. aureus (ATCC 

29213)

Reduce the adhesion of 
pathogenic bacteria to 

surfaces

[186]

Trans-CA >100
<100

P. aeruginosa 
(CMCC 10104), S. 
typhimurium and  

S. aureus

Membrane disruption 
by destabilization of 

lipids

[187]

Linalool 10.9 ± 0.1 S. typhimurium 
(ATCC 1331)

Cell membrane 
integrity disruption

[107]

Table 2. 
Antibiofilm activity of essential oil (EO) nanoemulsions.
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Metal-based NPs (silver, gold, and metal oxides) with antimicrobial activity 
can be used to create different nanocomposite materials able to prevent bacterial 
adhesiveness to food-contact surfaces and equipment. Wu and coworkers [114] 
showed that cysteine dithiothreitol and beta-mercaptoethanol were able to reduce 
S. aureus biofilm formation on polystyrene polymer. Liang and coworkers [115] 
revealed that silver salt of 12-tungstophosphoric acid NPs (AgWPA-NPs) can be 
used to develop new materials for preserving foods, since they were able to inhibit 
S. aureus biofilm formation by damaging bacterial cells’ membrane. Moreover, 
genes related to biofilm formation, such as icaA, sarA, and cidA were shown to 
be downregulated as a consequence of AgWPA-NPs’ application. Naskar and 
coworkers [116] tested the antibiofilm activity of polyethylene glycol-coupled 
Ag-ZnO-rGO (AZGP) nanocomposite on both Gram-positive bacteria (S. aureus 
ATCC 25923) and Gram-negative bacteria (P. aeruginosa MTCC 2453). These NPs, 
at a concentration of 31.25 μg/mL, reduced the biofilm formed by S. aureus with 
~95% and that formed by P. aeruginosa with ~93%. Zinc oxide NPs were used for the 
destruction of the biofilm formed on glass slide by S. aureus and P. aeruginosa [117]. 
Titania nanoparticles can be used to prevent the formation of P. fluorescens biofilm 
on the surfaces of TiO2/polystyrene nanocomposite film [118]. It has been shown 
that nanostructured TiO2 combined with UVA irradiation can be used to destroy 
L. monocytogenes biofilm, while silver NPs at a concentration of 15 μg/mL had the 
capacity to inhibit S. aureus and E. coli biofilms [119, 120].

The ability of two types of superparamagnetic iron oxide (IONs and IONs coated 
with 3-aminopropyltriethoxysilane) to inhibit biofilm formation by B. subtilis was 
successfully tested by [121].

5. Food technologies to control the biofilm formation

Some food technologies belonging to alternative technologies seem to be suc-
cessful for preventing the biofilm formation and/or for targeting resistant micro-
organisms and making them more susceptible to molecular interventions in order 
to hinder their biofilm formation ability. Among these technologies are included 
plasma treatments, ultrasound treatments, light-based technologies, pulsed electric 
fields (PEF), and high hydrostatic pressures. With the exception of ultrasound 
treatments that can be used to fight against biofilms formed on mechanical parts or 
pipes, the others are mostly applied for food matrix decontamination.

5.1 Plasma treatments

Plasma is generated when the added energy ionizes a gas, which is composed 
of ions, neutrals, and electrons. Plasma treatment is a surface treatment that has a 
low penetration depth and was reported to be effective against biofilms, depending 
on the type of surface biofilms are formed on, the distance between plasma and 
surface, and the thickness or the microbial load.

Plasma sources for producing nonthermal plasma at atmospheric pressure are 
plasma jets, dielectric barrier discharges (DBD), corona discharges, and microwave 
discharges. Different other characteristics of the plasma have been reported to 
influence the biofilms’ inactivation such as the setup (electrode configuration), the 
exposure mode, the operating gas, the frequency, the plasma intensity (voltage), 
and the time of exposure [122].

Researches [123] showed that the efficacy of DBD in-package atmospheric cold 
plasma (ACP) against S. typhimurium, L. monocytogenes, and E. coli could reach up 
to 5 log CFU/g after 300 s of treatment at 80 kV. Other researchers [124] studied the 
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effect of ACP on monoculture biofilms (E. coli, S. enterica, L. monocytogenes, and 
P. fluorescens) and mixed culture biofilms (L. monocytogenes and P. fluorescens) and 
demonstrated that the latest are more difficult to inactivate than the former ones. 
L. monocytogenes and P. fluorescens inoculated as mixed cultures on lettuce were 
reduced by 2.2 and 4 log CFU/g, respectively, and the biofilms formed at 4°C were 
more resistant than the ones formed at 15°C.

Govaert et al. [122] studied the influence of different plasma characteristics 
on the inactivation of L. monocytogenes and S. typhimurium biofilms and showed 
that inactivation can vary from 1 log to approximately 3.5 log (CFU/cm2), but the 
highest reduction was obtained for a DBD electrode with He and no O2 in the gas 
mixture and an input voltage of 21.88 V. A high efficiency of the inactivation of 
bacterial biofilm was achieved by DBD for low-dose discharges (70 mW/cm2) and 
short treatment times (≤300 s), and the most effective reduction in the number of 
S. aureus cells of 2.77 log was reported after 300 s. E. coli biofilm was reduced only 
by 66.7% [125].

It was shown that ACP is a promising technique but alone cannot achieve 
complete biofilm inactivation and thus it should be complemented by other surface 
treatments. Possibility to combine ACP with different biocides such as hydrogen 
peroxide, sodium hypochlorite, ethylenediaminetetraacetic acid, chlorhexidine, 
octenidine, and polyhexanide applied before or after the plasma treatment was 
tested by [126] to reduce biofilms cultivated on titanium discs. Also, Gupta et al. 
[127] studied the antimicrobial effect of an ACP, plasma jet combined with 
chlorhexidine, for the sterilization of the biofilms formed by P. aeruginosa on 
titanium surfaces [128].

5.2 Ultrasound-assisted technologies

Ultrasound (US) is a form of energy generated by sound waves at frequencies 
that are too high to be detected by the human hearing (>16 kHz). The US band is 
also divided into low frequency (16 kHz−1 MHz) and high frequency (>1 MHz) 
bands.

US was used as biofilm removal method; however, many studies demonstrated 
that it should be complemented by other inactivation methods [129, 130]. For 
example, [130] demonstrated that US removed a significant amount of E. coli and 
S. aureus biofilm, up to 4 times higher compared to the swabbing method. Later 
on, the same researchers [131] showed that two ultrasonic devices developed failed 
to completely remove E. coli and S. aureus biofilms for closed surfaces, but they 
succeeded in biofilm inactivation on opened surfaces (10 s at 40 kHz). The use of 
chelating agents such as EDTA completely dislodged E. coli biofilm but not signifi-
cantly improved S. aureus biofilm removal. A synergistic effect was achieved when 
US was combined with enzymes (proteolytic or glycolytic) that demonstrated a 2–3 
times higher efficacy in biofilm removal compared to sonication.

Combination of US with mild heat and slightly acidic electrolyzed water was 
used to test the inactivation of B. cereus biofilms on green leaf surfaces. Slightly 
acidic electrolyzed water with 80 mg/L treatment for 15 min combined with US of 
fixed frequency (40 kHz) and acoustic energy density of 400 W/l at 60°C resulted 
in a reduction of ~3.0 and ~3.4 log CFU/cm2 of B. cereus reference strains ATCC 
10987 and ATCC 14579 [132].

Synergistic effects were registered also for ultrasound (US; 37 kHz, 380 W 
for 10–60 min) assisted by peroxyacetic acid (PAA; 50–200 ppm) on reducing 
Cronobacter sakazakii biofilms on cucumbers [133].

The efficacy of US (37 kHz, 200 W, for 30 min)-assisted chemical cleaning 
methods (10% alcohols, 2.5% benzalkonium chloride, and 2.5% didecyl dimethyl 
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ammonium chloride) for the removal of B. cereus biofilm from polyurethane 
conveyor belts in bakeries using US was better compared to each individual method 
as demonstrated by [134].

5.3 Combined light-based technologies

Ultraviolet (UV) light technology is based on the emission of radiation within 
the ultraviolet region (100–400 nm). The antimicrobial behavior of UV light 
is based on the formation of DNA photoproducts that inhibit transcription and 
replication and can lead to cell death [135]. Since the absorption of the DNA is in 
the 200–280 nm range with the maximum at 254 nm, this wavelength of the UV-C 
range is called germicidal UV light [136].

Pulsed light (PL) is the next-generation approach to UV delivery. PL is a 
technology that can be used to decontaminate surfaces by generating short-time 
high-energy light pulses (millions or thousands of a second) of an intense broad 
spectrum (200–1100 nm). PL can be used to decontaminate a great variety of foods 
as well as to decontaminate contact surfaces, thus improving safety in foods and 
extending their shelf life [137]. The antimicrobial effect is based on strand breaks 
that lead to the destruction/chemical modification of the DNA and thus prevent the 
replication of the bacterial cell [138].

Recently, Rajkovic and coworkers [139] evaluated the efficacy of pulsed UV 
light treatments to reduce S. typhimurium, E. coli 0157:H7, L. monocytogenes, and S. 
aureus on the surface of dry fermented salami inoculated with 6.3 log CFU/g at 3 J/
cm2 (1 pulse) or 15 J/cm2 (5 pulses) for 1 or 30 min. The authors found a signifi-
cant effect of PL treatment time, with the best results after 1 min of applying PL 
(2.18–2.42 log CFU/g reduction), while after 30 min, the reduction varied from 1.14 
to 1.46 log CFU/g.

A comprehensive review in the literature underlined the various researches 
directed mainly at inactivation of pathogens in food or on surfaces and for prevent-
ing biofilm formation [137]. While there are often considerable differences in the 
rate of microbial inactivation by PL, a maximum reduction of 3-log was typically 
achieved, which is below the reduction performance standard of 5-log required by 
HACCP regulation [138].

Regarding the combined methods, synergistic interaction between gallic acid and 
UV-A light was able to inactivate E. coli O157:H7 in spinach biofilm [140]. The UV-A 
treatment complemented by the gallic acid presence was found to be effective produc-
ing a 3-log (CFU/mL) reduction in E. coli O157:H7 on the surface of spinach leaves.

However, PL technology limitation related to the inability to effectively treat uneven 
food surfaces with crevices, the presence of organic material, and large microbial popu-
lations generating shading effects should also be taken into account. Future innovation 
in PL technology will seek to improve fluence efficiency, for example by considering 
alternative light sources such as LEDs [141], reflective surfaces included in the treat-
ment chamber, using materials such as titanium dioxide to augment irradiation efficacy 
[138], and other combination of treatments assisted by PL, based on hurdle approach.

5.4 Pulsed electric field

Pulsed electric field (PEF) is a food processing technology that applies short, 
high-voltage pulses, across a food material placed between two or more electrodes. 
The pulses enhance cell permeability by damaging the cell membrane, and if the 
transmembrane potential is sufficiently high, it produces electroporation. Further, 
if pores are not resealed, it results in cell death. Most of the food applications are 
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designed for liquid flow through pipes where in a certain region the liquid passes 
in-between the electrodes area that applies the PEFs [142].

Thermosonication (TS) was investigated in combination with PEF to determine 
its effects on inactivation and sublethal injury of P. fluorescens and E. coli. While 
TS was applied at a low (18.6 mm) and high (27.9 mm) wave amplitude, PEF was 
applied at a low (29 kV cm−1) and high electrical field strength (32 kV cm−1). TS/
PEF caused a maximum of 66% inactivation, while sublethally injuring approxi-
mately 26% of the E. coli population [143].

PEF demonstrated synergistic potential in combination with additives (EDTA or 
triethyl citrate) to inactivate Salmonella serovars in whole liquid eggs [144].

There is a lot of potential demonstrated by PEF and the combination with dif-
ferent other hurdles could contribute to the elimination of persistent clones able to 
form biofilms.

5.5 High pressure processing

High pressure processing (HPP) is a cutting-edge technology that represents 
an alternative to conventional processing. HPP has the ability to inactivate micro-
organisms and enzymes and has a minimal impact on sensorial and nutritional 
properties of food [145, 146].

Combined with other different hurdles, the pressure-assisted processing could 
be oriented toward a more targeted inactivation of pathogens and prevention of 
biofilm formation.

Recent studies were focused on L. monocytogenes, a pathogen able to form 
surface-attached communities that have high tolerance to stress. In order to under-
stand how agr gene regulates virulence and biofilm formation, a recent molecular 
study [147] was conducted. L. monocytogenes EGD-e ΔagrD showed reduced levels 
of surface-attached biomass in 0.1 BHI (brain heart infusion) broth.

However, L. monocytogenes mutant deficient in agr peptide sensing showed 
no impaired resistance to HPP treatment at 200, 300, and 400 MPa for 1 min 
compared to wild-type and L. monocytogenes EGD-e and thus demonstrating that 
weakened resistance to cell wall stress is not responsible for the reduced biofilm-
forming ability.

Understanding better the molecular mechanisms of stress-related genes will 
allow to better target pathogen inactivation and to select the right hurdle combina-
tion and parameters of unconventional technologies to able to reduce the suscep-
tibility of certain pathogens to form biofilms. These types of studies are just at the 
beginning and many more researches are expected to focus on these topics in the 
near future.

6. Conclusions

Pathogenic and toxigenic bacteria are able to form biofilms, structures that 
protect the cells and allow them to remain postsanitation in the food processing 
environment.

Specific genes are expressed in all the steps of biofilm formation or are upregu-
lated under influence of different biotic or abiotic factors. Genes codify for cell 
surface structures and appendages (flagella, curli, fimbriae, and pili) that are 
facilitating biofilm formation by helping bacteria to move toward surfaces and to 
adhere to them, for extracellular polymeric substances that stabilize the biofilms 
and protect the cells and for quorum sensing communication.
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