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Chapter

Many-Core Algorithm of the 
Embedded Zerotree Wavelet 
Encoder
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Abstract

In the literature, the image compression was implemented using a variety of 
algorithms; such as vector quantization and subband coding and transform-based 
schemes. The current problem is that the selection of an image compression algo-
rithm depends on criteria of compression ratio, but the quality of reconstructed 
images depends on the technology used. Some papers about of the wavelet 
transform-based coding show this field as an emerging option for image compres-
sion with high coding efficiency. It is well known that the new wavelet-based 
image compression scheme JPEG-2000 has been standardized. This chapter shows 
the developed novel algorithm executed in parallel using the embedded Zerotree 
wavelet coding scheme, in which the programs integrate parallelism techniques to 
be implemented and executed in the many-core system Epiphany III.

Keywords: image compression, vector quantization, subband coding, embedded 
systems, Zerotree wavelet

1. Introduction

Wavelet transform consists in uses a compact multi-resolution representation of 
an image, allows uses the energy compaction to exploit redundancy and to achieve 
compression [1].

The discrete wavelet transform (DWT) usually was used in the literature using a 
two-channel wavelet filter bank in a recursive process [2].

A two-dimensional image of the DWT type is usually calculated using a separable 
approach, this consists of scanning the input image in a horizontal direction, and 
passing it through the decomposition filters passes low and passes high [3]. All the 
selected data are subsampled vertically in order to classify the low frequency and high-
frequency data in the horizontal direction. The result produces output data which is 
scanned vertically; the filters are repeated to generate characteristic frequency sub-
bands [4]. After the subsampling stage, the transformation generates four LL, LH, HL 
and HH subbands, where each image represents 25% of the original image size [5–8].

In this particular case, the energy was concentrated in the low-frequency LL 
subband, so it represents a low-resolution version of the original image. The most 
frequent subbands contain very detailed information in three directions (horizon-
tal, vertical and diagonal).
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At the end of the process, the image was decomposed by applying the 2-D 
DWT algorithm to the LL subband [9]. With this iterative process, multiple levels 
of transformation will be generated where the energy is fully compacted and 
represented with few low-frequency coefficients [10]. The above can be seen in 
Figure 1(a) and (b). Figure 1 shows an example of decomposition of three levels 
of an image using the wavelet transformation, and both images defined the parent/
child relationship between levels.

2. Many-core technology

Epiphany III is a low-cost embedded system formed with the main memory and 
16 cores distributed in a mesh, as shown in Figure 2. The system is characterized 
by having low energy consumption and a high level of parallelism, concurrency 
and high computing power. All these features and in combination, allow data to be 
processed at different levels of software and hardware, thereby performing opera-
tions at each core [11, 12].

A multi-core system needs a shared memory space that consists of 232 bytes for 
this system. The memory addresses for access are accessed as unsigned numbers, 
from 0 to 232, together, they represent 230 of 32-bit words in which any core has 
access concurrently through a 2D mesh type topology [13]. The use of this intercon-
nection topology avoids overloading or blocking access to shared memory that is 
reported in the literature as a factor that affects the high-performance system [14–17].

Figure 2. 
Components of the Epiphany III architecture [11].

Figure 1. 
(a) Wavelet decomposition in subbands and (b) higher and lower level coefficients for an original image.
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This system has an energy consumption of 1 W per 50 Gigaflops in simple preci-
sion calculations; these cores measure 65 nm. This technology is RISC and can be 
run at a speed of 1 GHz, and the 16 cores have the same architecture [11, 14].

With this memory capacity in the Epiphany III system, it is possible to process 
an image of (128 × 128 pixels) that is equivalent to 16 kB of memory.

3. Embedded Zerotree coding

A wavelet represents a waveform of limited duration that has an average value 
close to zero. A wavelet transform modifies a signal from the time domain to the 
whole time scale domain. Wavelet coefficients are two-dimensional, given this, an 
image can be represented using trees due to the subsampling that is performed in 
the transformation.

Fourier analysis allows dividing a signal into sine waves of various frequencies, 
due to this the wavelet analysis is the breaking of a signal in displaced and scaled 
versions of the original or mother wavelet.

In zerotree coding, each wavelet coefficient of an arbitrary scale can be related to 
a set of coefficients in the next more excellent scale.

Zerotree root (ZTR) represents a low-scale zero value coefficient for which all 
larger scale coefficients have that same value. By specifying a ZTR, the encoder can 
track and reset all related coefficients on a larger scale.

The EZW encoder is a particular type of encoder used to encode image or sound 
signals of any dimension; it offers the advantages found in denoising algorithms.

When using the wavelet transform on an input image, the embedded zerotree 
encoding (EZW) will allow the encoder to quantify the coefficients using a binary 
encoding to create a representation of the image [18]. EZW uses the direct relation-
ship between the upper and lower level coefficients (parents and children) to obtain 
maximum coding efficiency [19, 20].

In order to perform the EZW encoding, it is necessary to perform the following 
steps:

STEP 1: Determine the initial threshold using bit plane coding, where the subse-
quent iterations, the threshold (Ti) is reduced by half, and the coefficients <2Ti are 
only encoded in each flow.

EZW involves two passes, as a recursive process:

• Dominant pass.

• Subordinate pass.

STEP 2: Two individual lists are defined:

a. Dominant pass: Contains the coordinates of those non-significant coefficients.

b. Subordinate pass: Contains the magnitudes of the significant coefficients for 
each threshold, involves the use of two passes:

1. Key stage.

2. Low pass.

In the dominant step, the magnitude of the wavelet coefficients is compared to 
an arbitrary threshold value; the essential data is determined, and the coefficients 
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are defined with an absolute value. The scanning was done with spatial frequencies; 
two bits are used to define the sign and the position of the significant coefficients. 
The positive significant coefficient and the non-significant coefficients are above 
an arbitrary threshold, usually starting with the two highest powers, two below the 
maximum wavelet value, where the wavelet coefficient is insignificant and has a 
significant descendant.

STEP 3: Dominant pass (significant pass):
Let wavelet coefficients in the dominant list are compared with Ti to determine 

the importance and, if significant, its sign. The resulting significance map is coded 
and sent by a zero tree. The inclusion of the ZTR symbol increases the coding 
efficiency because the encoder maximizes the correlation between image scales.

STEP 4: Four symbols are used to form a code:

1. Zerotree root.

2. Zero isolated.

3. Significant positive.

4. Significant negative

The EZW technique can be significantly improved using entropy coding as a 
preoccupation to achieve better compression [22].

STEP 5: Define the entropy code.
The low pass filter follows, where significant coefficients are detected and 

refined under the successive approach quantification (SAQ ) approach [21].
STEP 6: Define refinement pass.
STEP 7: The entropy code sequence of 1 and 0 is defined, and adaptive AC is 

used, and send STOP.

4. Proposed algorithm

The development of proposed EZW (embedded zerotree wavelet) image coding 
has attracted considerable attention among researchers [23–25]. It is the most 
popular wavelet-based compression algorithm and is widely used in several image-
based applications. In this paper is used the recursive transformation method for 
multi-level decomposition, where the result data is then preprocessed before of the 
zerotree compression, the block diagram of a wavelet-based image coding algorithm 
is shown in Figure 3.

Our objective of this paper is to show our proposed algorithm to enhance the 
compression of an image eviting to minimal loss during reconstruction.

Our algorithm was applied as a preprocessing stage; this allows to eliminate 
unused data in the transformed image that is not important and significant in the 
reconstruction of the image.

However, it is necessary to mention that more bits are required during compres-
sion and the processing time increases so that a parallel proposal can help.

When compensation is used to a greater extent between the compression ratio 
and reconstruction in image quality, it is possible to eliminate irrelevant data in the 
image where higher compression is achieved with a slight reduction in quality [21].

In an image transformed by wavelet, the coefficients represent a low-resolution 
image in the LL subband. The high-frequency subbands contain subbands of 
specific data in each direction.
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The use of the three subbands contributes to a smaller scale within the image 
reconstruction process because the coefficients are mostly zero, and few large 
values correspond to border information and textures in the image [22].

In this article, an algorithm was proposed to reduce less essential data in order 
to achieve higher compression, and thus preserve high-value coefficients, thereby 
eliminating the lowest values of the minimum value subband.

Our proposed algorithm uses the weight calculation method to have the mini-
mum value subband for each level. The weight of each subband is calculated by 
adding the absolute value in all subband coefficients. Only three subbands (LHi, 
HLi and HHi) with a minimum weight are seen in detail.

Eq. (1) shows it.

  Ws = ∑ abs (coefficients in subbands)  (   min  (subbandi)   
= Subband with minimum weight, at the level   I (1)

After finding the required subbands in each level, the algorithm reduces the 
depreciable data in these subbands depending on the importance of the data for 
preserver the reconstruction. In this age, the majority of the values are close to zero, 
and the coefficients have the smallest data in each subband, where it is used as a 
threshold to eliminate low-valued data in that subband.

The coefficients whose value is higher than a set threshold value are retained, and 
the value is near to zero are deleted. In our experiments, it was used different two 
threshold values to show the effect of compressed output and reconstructed image.

In the zerotree coding, the reduction of low valued significant coefficients in 
minimum weight subbands, result in higher compression ratio with a slight loss in 
decoded PSNR. Our results show that this algorithm shows better efficiency with a 
cost of negligible loss in picture quality.

5. Parallel implementation

In the Epiphany, III System is used a memory model and also a programming 
model, in a flow system that includes single instruction multiple data (SIMD), 
single program multiple data (SPMD), master–slave programming, multiple 
instruction multiple data (MIMD).

Can also be programmed, to data flow, static, dynamic, systolic array, multi-
threads, message passing and sequential communication processes (SCP) [26].

First, the operating system performs a review of the hardware of the Epiphany 
system and then begins to configure the cores that are in the mesh-type topology 
and then the distributed information of the matrices A, B. This is due to the struc-
tural nature of the epiphany system, and finally the distribution of tasks in small 
blocks that is appropriate (Figure 4).

Figure 3. 
Block diagram of a wavelet-based image coding algorithm.
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For this distribution, the programming model single program multiple data 
(SPMD) is used [27], which is responsible for distributing the execution for each of 
the cores, as shown in Figure 5.

6. Distributions of data and tasks

Depending on the problem. It can choose between two approaches to decompo-
sitions: data decomposition or task decomposition.

Establish strategies to choose decompositions: decomposition of instructions or 
decomposition of tasks.

Decomposition of instructions: this refers to the distribution of instructions 
for the cores, which will handle the processing. Then, it describes the process of 
distributing the instructions that can execute in parallel on different cores.

In which the results of each one of the executions of each nucleus, of this type 
of executions in parallel accelerates n times faster if a single nucleus were executed. 
Except for the minimum delay involved in the initial distribution of workload or 
instructions, and the final collection of data results, resulting in linear acceleration 
with the number of cores.

Decomposition of tasks: this refers to the distribution of tasks for each of 
the cores, which will be responsible for processing tasks. That is to say that the 
whole program is devoted to tasks. A task is a sequence of the program that can be 
executed in parallel, concurrent with other tasks. This approach is beneficial when 
tasks maintain high levels of independence.

Figure 5. 
Execution SPMD.

Figure 4. 
Sequential execution.
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If each task and algorithm are different, then both can be implemented, the 
functional decomposition, in which the particular characteristics of each type of 
task or algorithms will be used to execute them in the nucleus for that purpose.

Recalling that the new technologies of embedded systems have integrated 
circuits with several cores, in which the cores perform threads that are the tasks that 
are executed in parallel, so the applications will be made in less time. This allows 
increasing the parallelism and the concurrence in hardware and software. It is also 
important to make the distribution between cores, the tasks, as well as the synchro-
nization between the cores.

Matrices are mathematical operations that scientists use. In which, the algorithm 
used for matrix multiplications that run in parallel is described by IBM [28]. The 
importance of data communication between neighboring cores according to the 
Cannon algorithm [29] is also mentioned. The memory in each core represents a 
challenge in the implementation because it is limited, which makes it necessary to 
use the available memory space for communication between the cores. These are 
some important factors for the system dedicated to parallel processing.

Figure 6 shows the multiplications of matrices for each core. It also shows the 
sending of data for the execution of the tasks, between each core, so the Epiphany 
III system incorporates the mechanism, message passing, to synchronize the send-
ing of the threads avoiding conflicts between the cores or accesses to the shared 
global memory.

Figure 6 shows the data flow for matrix multiplication that runs in specific 
numbers of steps, this is determined by the quadratic root of √P. Then P is the 
number of cores, in which the matrix multiplication is the data set of size √P × √P.

At each repetition, element C of the product matrix obtained, then matrix A 
moves down and matrix B moves to the right. This example can be programmed 
using the standard high-level ANSI programming language “C.” The Epiphany III 
system provides specific functions to simplify the programming of many cores, 
thanks to the open operating system, but its use is not mandatory for programmers.

The implementation of the algorithm, in the Epiphany III system with 16 cores, 
operating at 1 GHz, which solves matrix multiplication of 128 × 128 in 2 ms. The 
performance of the Epiphany III system grows linearly, using appropriate program-
ming and data distribution models, and this is seen in the cost/performance of an 
optimized system [11, 30–33].

To exploit the parallelism, in the hardware platform epiphany, it is encouraged 
that the application is broken down into tasks (code portions). Thus, each of the 
cores could run a program part in parallel to other cores.

Figure 6. 
Data flow in matrix multiplication.
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The decomposition of tasks must be followed by a synchronization of the differ-
ent parties involved to ensure data consistency.

In Figure 6, it represents the matrix mathematically. It also shows the sim-
plification of matrix multiplication. This multiplication is represented by (2).

    C  ij   =   ∑ 
k=0

  
N−1

   ( A  ij    B  kj  )   (2)

The input matrices are A and B, C is the resulting matrix of Ai and Bj, in which 
they have as coordinate (i, j), which is (row, column), these are elements of the 
matrix. The procedure to program matrix multiplication in a single core is shown 
below.

The previous code used the standard language C, which compiles and executes 
in a single core.

If these matrices A, B, will proceed to run on each of the cores in the system and 
the result of each element of the matrix C. are placed in the local memory of each of 
the cores.

7. Experiment results

Different image outputs of the wavelet-based compression were shown in 
Figure 7.

Table 1 shows the values when was applied our proposed, Table 2 shows the 
obtained values using adaptive arithmetic coding.

Image Min weight subband EZW method Proposed method 

threshold = 2

Proposed method 

threshold = 5

L3 L2 L1 Bytes PSNR Bytes PSNR Bytes PSNR

Lena HH HH HH 63,456 22.98 dB 62,256 25.57 dB 61,465 24.96 dB

Table 1. 
Obtained values.

Image Min weight subband EZW method Proposed method 

threshold = 2

Proposed method 

threshold = 5

L3 L2 L1 Bytes PSNR Bytes PSNR Bytes PSNR

Lena HH HH HH 3024 22.98 dB 2952 25.57 dB 2830 24.96 dB

Table 2. 
Obtained values using the adaptive arithmetic coding.
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8. Conclusion

The above method exploits the property of tradeoff between compression ratio 
and output PSNR and reduces the least essential data in order to attain further com-
pression. The better compression ratio is achieved compared to original EZW coder 
after applying threshold with a slight reduction in PSNR during reconstruction.
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