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Chapter

Quasinormal Modes of Dirac Field
in Generalized Nariai Spacetimes
Joás Venâncio and Carlos Batista

Abstract

The exact electrically charged solutions to the Dirac equation in higher-
dimensional generalized Nariai spacetimes are obtained. Using these solutions,
the boundary conditions leading to quasinormal modes of the Dirac field are
analyzed, and their correspondent quasinormal frequencies are analytically
calculated.

Keywords: quasinormal modes, generalized Nariai spacetimes, Dirac field,
boundary conditions

1. Introduction

Quasinormal modes (QNMs) are eigenmodes of dissipative systems. For
instance, if a spacetime with an event or cosmological horizon is perturbed from its
equilibrium state, QNMs arise as damped oscillations with a spectrum of complex
frequencies that do not depend on the details of the excitation. In fact, these
frequencies depend just on the charges of the black hole, such as the mass, electric
charge, and angular momentum [1, 2]. QNMs have been studied for a long time,
and its interest has been renewed by the recent detection of gravitational waves,
inasmuch as these are the modes that survive for a longer time when a background
is perturbed and, therefore, these are the configurations that are generally measured
by experiments [3–29]. Mathematically, this discrete spectrum of QNMs stems
from the fact that certain boundary conditions must be imposed to the physical
fields propagating in such background [30]. In this chapter, we consider a
higher-dimensional generalization of the charged Nariai spacetime [31], namely,

dS2 � S2 �…� S2, and investigate the dynamics of perturbations of the electrically
charged Dirac field (spin 1/2). In such a geometry, the spinorial formalism [32–34]
is used to show that the Dirac equation is separable [35] and can be reduced to a
Schrödinger-like equation [36] whose potential is contained in the Rosen-Morse
class of integrable potentials, which has the so-called Pöschl-Teller potential
as a particular case [37, 38]. Finally, the boundary conditions leading to QNMs
are analyzed, and the quasinormal frequencies (QNFs) are analytically obtained
[5, 39].
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2. Presenting the problem

In D dimensions, the dynamics of general relativity in spacetimes with a
cosmological constant Λ is described by the Einstein-Hilbert action1

S ¼ 1

16π

ð

dDx
ffiffiffiffiffi

gj j
q

R� D� 2ð ÞΛ½ � þ Sm, (1)

where R is the Ricci scalar and Sm stands for the action of all matter fields Φif g
coupled to gravity appearing in the theory, which can be scalar, spinorial, vectorial,
and so on. The least action principle allows to find the equations of motion for the
fields gμν and Φi which are given, respectively, by

Rμν �
1

2
Rgμν þ

D� 2ð Þ
2

Λgμν ¼ 8πT μν,
δSm
δΦi

¼ 0, (2)

where T μν is the symmetric stress-energy tensor associated to Φi defined by the
equation

T μν ¼ 2
ffiffiffiffiffi

gj j
p

δSm
δgμν

: (3)

Since any symmetry has been imposed, the general solution of the system of
Eq. (2) is some metric and fields in the background this metric

ds2 ¼ gμν xð Þdxμdxν, Φi ¼ Φi xð Þ: (4)

Now, let the pair g 0ð Þ
μν and Φ

0ð Þ
i be a solution for the equations of motion Eq. (2).

Then, in order to study the perturbations around this particular solution, we write

our fields as a sum of the unperturbed fields g 0ð Þ
μν and Φ

0ð Þ
i and the small perturba-

tions hμν and Ψi

gμν ¼ g 0ð Þ
μν þ hμν, Φi ¼ Φ

0ð Þ
i þΨi, (5)

where by “small”we mean that we neglect the quadratic and higher-order powers
of the perturbation fields. Inserting the above equation into Eq. (2), we are left with a
set of linear equations satisfied by the perturbed fields hμν and Ψi . In general, these
equations are coupled, namely, Ψi is a source for hμν and vice versa. However, in the

special case in whichΦ
0ð Þ
i ¼ 0, the equations governing the perturbed fieldsΨi can

be decoupled from the metric perturbation hμν and vice versa. The reason why this

happen is that when Φ
0ð Þ
i ¼ 0, the stress-energy tensor T μν can be set to zero at first

order in the perturbation, since T μν is typically quadratic or of higher order in the
matter fields and, therefore, can be neglected. Therefore, investigating the linear
dynamics of generic small perturbations of the matter fields with T μν ¼ 0 is equiva-

lent to studying the test fields Ψi in the background g 0ð Þ
μν .

In what follows, let us consider a specific matter field Ψ propagating in a
generalized version of the Nariai spacetime described in Ref. [31]. Here, Ψ is an

1 The coefficient of Λ in S can be chosen of several manners. In particular, for any dimension D, in order

to insure that the pure dS or pure AdS spacetimes are described by gtt ¼ 1� Λ=3ð Þr2, as occurs in the case

D ¼ 4, this coefficient should be D� 1ð Þ D� 2ð Þ.
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electrically charged spinorial field of mass m that obeys the Dirac equation mini-
mally coupled to an electromagnetic field in such spacetime. In D ¼ 2d, this
spacetime is formed from the direct product of the de Sitter space dS2 with d� 1ð Þ
copies of the unit spheres S2 possessing different radii Rj. Thus, the natural line
element of the higher-dimensional version of the Nariai spacetime is given by

ds2 ¼ g0μνdx
μdxν ¼ �f rð Þdt2 þ 1

f rð Þ dr
2 þ

Xd

j¼2

R2
j dΩ

2
j , (6)

where f rð Þ is a function of the coordinate r and dΩ2
j is the line element of the jth

unit sphere S2 as follows

f rð Þ ¼ 1� r2

R2
1

, dΩ2
j ¼ dθ2j þ sin 2θjdϕ

2
j : (7)

The radii R1 and Rj are given by

R1 ¼ Λ� 1

2
Q2

1 þ
Q

2 D� 2ð Þ

� ��1=2

, Rj ¼ Λþ 1

2
Q2

j þ
Q

2 D� 2ð Þ

� ��1=2

, (8)

where Q1 is an electric charge and Q j are magnetic charges, while Q is

defined by

Q ¼ Q2
1 �

Xd

j¼2

Q2
j : (9)

This spacetime is a locally static solution of Einstein’s equation with a cosmolog-
ical constant Λ and electromagnetic field ℱ ¼ dA whose gauge field A is given by

A ¼ Q1 rdtþ
Xd

j¼2

Q jR
2
j cos θjdϕj: (10)

The coordinates in the metric are also called static, because they do not depend
explicitly on the time coordinate t. One may notice that, in this coordinate system,
this background has a local Killing vector ∂t whose norm vanishes at r ¼ �R1.
Indeed, r ¼ �R1 define closed null surfaces that surround the observer at all times,
known as event horizons. The boundary conditions defining QNMs in our
spacetime will be posed at these surfaces, as discussed in [39]. For this reason, the
dependence of all the components of the field Ψ on the coordinates along the
Killing vector ∂t is assumed to be of the form e�iωt. Usually, the articles consider
that the coordinate r in de Sitter space assume values in the interval r∈ 0, R1ð Þ
[40–42]. However, this is just justified for de Sitter with D> 2, but not for D ¼ 2;
see [39] for more details. By this reason, our domain of interest will be r∈ �R1, R1ð Þ.
In such domain, it is useful to introduce the tortoise coordinate x defined by the
equation

dx ¼ 1

f rð Þ dr ) x ¼ R1 arctanh
r

R1

� �

, (11)

in terms of which the line element Eq. (6) becomes

3
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ds2 ¼ 1

cosh 2 x=R1ð Þ
�dt2 þ dx2
� �

þ
Xd

j¼2

R2
j dΩ

2
j , (12)

and the gauge field can be rewritten as

A ¼ Q1R1 tanh x=R1ð Þdtþ
Xd

j¼2

Q jR
2
j cos θjdϕj: (13)

In particular, note that the tortoise coordinate maps the domain between two
horizons, r∈ �R1, R1ð Þ, into the interval x∈ �∞,∞ð Þ.

The QNMs accounting for an important class of fields are associated toΨwhich are
solutions to the equations ofmotion that satisfy specific boundary conditions imposed at
thehorizonsof the spacetime inwhich the field is propagating; see [5, 6, 43, 44] formore
details. In this chapter, wewill use the boundary conditions as illustrated in Figure 1.

From the mathematical of view, since we are assuming that the time dependence
of Ψ is e�iωt, this boundary condition means that near the horizons r ¼ �R1, that is,

as x ! �∞, the radial component of the fieldΨ should behave as e�iω tþxð Þ at x ! ∞,

while it should go as e�iω t�xð Þ at x ! �∞. The eigenfrequencies of this problem are
complex, the reason why they are called QNFs. The real part of the QNFs is
associated with the oscillation frequencies of the signal, while the imaginary part is
related to its decay in time. This decay in time is closely related to the fact that the
event horizon has a dissipative nature.

One interesting feature of this spacetime is that we can compute exactly the QNMs.
The exactly solvable systems are usually limits of more realistic systems and allow us to
study in detail some properties of a physical process and test somemethods which can
be used to analyze more complicated systems. Thus they are powerful tools in many
research lines. Thereforewe expect that the exactly computedQNFs forD-dimensional
generalized Nariai spacetimemay play an important role in future research [27].

3. Dirac equation in D-dimensional generalized Nariai spacetime

Let us present the construction of a solution to the Dirac equation minimally
coupled to the electromagnetic field ofD-dimensional generalized Nariai spacetime.

Figure 1.
Illustration of the boundary condition associated to QNMs in our spacetime. The wavy arrows represent the
direction of the perturbation field at the boundaries r ¼ �R1, while the cones are the local light cones.
Mathematically, the wavy arrow pointing to the right represents e�iω t�xð Þ, while the wavy arrow pointing to the
left represents e�iω tþxð Þ. For more details, see Ref. [39].
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A field of spin 1=2 with electric charge q and mass m propagating in such spacetime
is a spinorial field obeying the following version of the Dirac equation:

Γ
α ∇α � iqAαð ÞΨ ¼ mΨ, (14)

where Aα stands for the components of the background gauge field. In D ¼ 2d

dimensions, the Dirac matrices Γα represent faithfully the Clifford algebra by 2d �
2d matrices obeying the relation

ΓαΓβ þ ΓβΓα ¼ g eα, eβ
� �

d, (15)

with d standing for the 2
d � 2d identity matrix. The index α, β, γ run from 1 to 2d

and label the vector fields of an orthonormal frame eαf g. In order to solve the Dirac
equation, we must introduce a suitable orthonormal frame of vector fields, which in
the case of our background is given by

e1 ¼ �i cosh x=R1ð Þ∂t , ej ¼
1

Rj sin θj
∂ϕj

,

e~1 ¼ cosh x=R1ð Þ∂x , e~j ¼
1

Rj
∂θj ,

(16)

where the index j ranges from 2 to d. In particular, note that

g eα, eβ
� �

¼ δαβ $

g ea, ebð Þ ¼ δab,

g ea, e~b
� �

¼ 0,

g e~a, e~b
� �

¼ δ
~a~b,

8

>>><

>>>:

(17)

where a and ~a are indices that range from 1 to d. The index a labels the first d
vector fields of the orthonormal frame eaf g, while the index ~a labels the remaining d
vectors of the frame eaf g. The derivatives of the frame vector fields determine the
spin connection according to the following relation:

∇α eβ ¼ ω
γ

αβ eγ: (18)

Since the metric g is a covariantly constant tensor, it follows that the coefficients
of the spin connection with all low indices ωαβγ ¼ ω ε

αβ δεγ are antisymmetric in their

two last indices, ωαβγ ¼ �ωαγβ. Note that the indices of the spin connection are

raised and lowered with δαβ and δαβ, respectively, so that frame indices can be raised

and lowered unpunished. In particular, ωβγ
α ¼ ω

βγ½ �
α , where indices inside the

square brackets are antisymmetrized. The covariant derivative of a spinorial field Ψ

is, then, given by

∇αΨ ¼ ∂αΨ� 1

4
ω βγ
α ΓβΓγΨ, (19)

with ∂α denoting the partial derivative along the vector field eα.
Our aim is to separate the Dirac Eq. (14). In order to accomplish this, it is

necessary to use a suitable representation for the Dirac matrices. We recall that

σ1 ¼
0 1

1 0

� �

, σ2 ¼
0 �i

i 0

� �

, σ3 ¼
1 0

0 �1

� �

, (20)
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are the Hermitian Pauli matrices and  denote the 2� 2 identity matrix. Using
this notation, a convenient representation of the Dirac matrices is the following:

Γa ¼ σ3 ⊗…⊗
|fflfflfflfflfflffl{zfflfflfflfflfflffl}

a�1ð Þ times

σ1 ⊗ ⊗…⊗ 
|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}

d�að Þ times

,

Γ~a ¼ σ3 ⊗…⊗
|fflfflfflfflfflffl{zfflfflfflfflfflffl}

a�1ð Þ times

σ2 ⊗ ⊗…⊗ 
|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}

d�að Þ times

,
(21)

where  stands for the 2� 2 identity matrix. Indeed, we can easily check that the
Clifford algebra given in Eq. (15) is properly satisfied by the above matrices.2 In this
case, spinorial fields are represented by the column vectors on which these matrices
act. We can introduce a basis of this representation by the direct products of spinors
ξs given by

ξþ ¼
1

0

� �

, ξ� ¼
0

1

� �

, (22)

which, under the action of the Pauli matrices, satisfy concisely the relations

σ1ξ
s ¼ ξ�s, σ2ξ

s ¼ i sξ�s, σ3ξ
s ¼ sξs: (23)

Indeed, in D ¼ 2d dimensions, a general spinor field has 2d degrees of freedom
and can be written as

Ψ ¼
X

sf g
Ψ

s1s2…sdξs1 ⊗ ξs2 ⊗…⊗ ξsd , (24)

where each of the indices sa can take the values “+1” and “�1.” Since every sa can
take just two values, it follows that the sum over sf g � s1, s2,…, sdf g comprises 2d

terms, which is exactly the number of components of a spinorial field in D ¼ 2d
dimensions.

In the representation (Eq. (21)), the operator Γα∇α, called Dirac operator, is then
represented by

Γ
α∇α ¼

Xd

a¼1

Γa∇a þ Γ~a∇~að Þ ¼
Xd

a¼1

σ3 ⊗…⊗
|fflfflfflfflfflffl{zfflfflfflfflfflffl}

a�1ð Þ times

Da ⊗ ⊗…⊗ 
|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}

d�að Þ times

, (25)

where

Da ¼ σ1∇a þ σ2∇~a, (26)

is the Dirac operator on ℝ
2 with coordinates xa, yaf g. The spinorial basis intro-

duced previously is very convenient, since the action of the Dirac matrices on the
spinor fields can be easily computed. Indeed, using Eqs. (21), (23), and (24), we
eventually arrive at the following equation

2 In D ¼ 2dþ 1, besides the 2d Dirac matrices Γa and Γ~a, we need to add one further matrix, which will

be denoted by Γdþ1 given by Γdþ1 ¼ σ3 ⊗ σ3…⊗ σ3
|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}

d times

.

6
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ΓaΨ ¼
X

sf g
s1s2…sa�1ð ÞΨs1s2…sd ξs1 ⊗ ξs2 ⊗…⊗ ξsa�1 ⊗ ξ�sa ⊗ ξsaþ1 ⊗

… ⊗ ξsd ¼
X

sf g
s1s2…sað ÞΨs1s2…sa�1 �sað Þsaþ1…sd ξs1 ⊗ ξs2 ⊗

… ⊗ ξsa�1 ⊗ ξsa ⊗ ξsaþ1 ⊗…⊗ ξsd ,

(27)

where from the first to the second line we have changed the index sa to �sa,
which does not change the final result, since we are summing over all values of sa,

which comprise the same list of the values of �sa. Moreover, we have used sað Þ2 ¼ 1.
Analogously, we have:

Γ~aΨ ¼
X

sf g
s1s2…sa�1ð Þ isað ÞΨs1s2…sdξs1 ⊗ ξs2 ⊗…⊗ ξsa�1 ⊗ ξ�sa ⊗ ξsaþ1 ⊗

…⊗ ξsd ¼ �i
X

sf g
s1s2…sað Þ saΨs1s2…sa�1 �sað Þsaþ1…sd ξs1 ⊗ ξs2 ⊗

…⊗ ξsa�1 ⊗ ξsa ⊗ ξsaþ1 ⊗…⊗ ξsd :

(28)

All that was seen above are necessary tools to attack our initial problem of
separating the general Eq. (14). In order to solve such an equation, we need to
separate the degrees of freedom of the field, which can be quite challenging in
general. Fortunately, the spacetime considered here is the direct product of two-
dimensional spaces of constant curvature, which is exactly the class of spaces
studied in Ref. [39]. Indeed, in this latter paper, it is shown that the Dirac equation
minimally coupled to an electromagnetic field is separable in such backgrounds. In
particular, assuming that the components of the spinor field Eq. (24) can be
decomposed in the form

Ψ
s1s2…sd ¼ Ψ

s1
1 t, xð ÞΨs2

2 Φ2, θ2ð Þ…Ψ
sd
d Φd, θdð Þ, (29)

where each index sa can take the values sa ¼ �1, the fields Ψs1
1 t, xð Þ satisfy the

following differential equation (the reader is invited to demonstrate the equation
below or consult more details in [39]):

∂~1 þ
ω1~11

2
� iqA~1 � is1 ∂1 þ

ω~11~1

2
� iqA1


 �h i

Ψ
s1
1 ¼ L� i s1mð ÞΨ�s1

1 : (30)

The separation constant L in the above equation depends on the angular modes.
In particular, in the special case of vanishing magnetic charges Q j, it is determined

by the eigenvalues λj of the Dirac operator on unit sphere S2 according to the
following relation

L ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

λ22 þ λ23 þ…þ λ2d

q

, λj ¼ �1, � 2, � 3,…, (31)

as demonstrated in Appendix A of Ref. [39]. In our frame of vectors, the only
components of the spin connection that are potentially nonvanishing are

ω1~11 ¼ �ω11~1 ¼ � 1

R1
sinh x=R1ð Þ,

ωj~jj ¼ �ωjj~j ¼
1

Rj
cot θj,

8

>>><

>>>:

(32)
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and the nonzero components of the gauge field can be written as

A1 ¼ �iQ1R1 sinh x=R1ð Þ, Aj ¼ Q jRj cot θj: (33)

Now, since the components of the metric are independents of the coordinate t,
the vector ∂t is a Killing vector for this metric. So, it is useful to assume the
following time dependence for the field Ψ

s1
1 t, xð Þ

Ψ
s1
1 t, xð Þ ¼ e�iωtψ s1 xð Þ: (34)

Inserting this field along with the gauge field Eq. (33), and taking into account
the first relation of the Eq. (32) into the Eq. (30), we end up with the following
coupled system of differential equations:

d

dx
þ is1ωþ i sqQ1R1 �

1

2R1

� �

tanh x=R1ð Þ
� �

ψ s1 ¼ L� is1mð Þ
cosh x=R1ð Þ ψ

�s1 : (35)

In order to solve these equations, we should first decouple the fields ψ s1 and
ψ�s1 . Eliminating ψ�s1 we obtain a second-order equation for ψ s1 . Indeed, we can
prove that the fields ψ s1 satisfy the following second-order ordinary differential
equation

d2

dx2
þ ω2 � V xð Þ

" #

ψ s1 ¼ 0, (36)

which is a Schrödinger-like equation with V being a potential of the form

V xð Þ ¼ Aþ B tanh x=R1ð Þ þ C

cosh 2 x=R1ð Þ
, (37)

where the parameters A, B, and C are given by

A ¼ 1

4R2
1

� qQ1 is1 þ qQ1R
2
1

� �
,

B ¼ � ω

R1
is1 þ 2qQ1R

2
1

� �
,

C ¼ m2 þ L2 þ 1

4R2
1

þ q2Q2
1R

2
1:

8

>>>>>>>>>><

>>>>>>>>>>:

(38)

These are known as potentials of Rosen-Morse type, which are generalizations of
the Pöschl-Teller potential [37, 38]. It is straightforward to see that this potential
satisfies the following properties:

V !
Aþ B at x ! þ∞,

A� B at x ! �∞:

(

(39)

In many cases, the potential function V is regular at r ¼ 0 x ¼ 0ð Þ, in particular V
can be equal to a constant different from zero. In fact, in our case, we find that

V ! Aþ C at x ! 0, (40)

8
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which clearly is regular. So, we point out that for this potential both limits
(Eqs. (39) and (40)) are finite, and thus there is no reason to demand for a regular
solution in this point.

Thus, the problem of finding the QNMs is reduced to the searching of the
corresponding spectrum of QNFs ω of Eq. (36). Most of the problems concerning
the QNMs fall into Schrödinger-like equation with real potentials which vanish at
both horizons [5], highlighting the fact that the solutions can be taken to be plane
waves. However, clearly this is not the case. Although it is possible to make field
redefinitions in order to make the potential real, we shall not do this here. For such
procedure we refer the reader to [36]. Once an analytical form for the QNFs of
Rosen-Morse type potential is not known, we must find an analytical exact solution
of Eq. (36) and impose physically appropriate boundary conditions at the horizons,
x ! �∞, which define the QNFs in a unique way.

In order to solve Eq. (36), let us make the following change of variable

y ¼ 1

2
þ 1

2
tanh x=R1ð Þ: (41)

In particular, notice that y is defined on the domain y∈ 0, 1ð Þ with the bound-
aries x ! �∞ being given by y ¼ 0 and y ¼ 1. In addition to this change of inde-
pendent variable, if we now set the Ansatz

ψ s1 xð Þ ¼ yα 1� yð ÞβHs1 yð Þ, (42)

with the parameters α and β being constants conveniently chosen as

α ¼ R1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

A� B� ω2
p

, β ¼ �R1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Aþ B� ω2
p

, (43)

the functions Hs1 must be solutions of the following differential equation

y 1� yð Þ d
2Hs1

dy2
þ 2αþ 1� 2þ 2αþ 2βð Þy½ � dH

s1

dy
� CR2

1 þ αþ βð Þ 1þ αþ βð Þ
� 

Hs1 :

(44)

This new variable as well as the Ansatz that we have been using are really
interesting because in terms of these, it is immediate to see that the functions Hs1

satisfy a hypergeometric equation. Indeed, comparing with the standard
hypergeometric differential equation

y 1� yð Þ d
2Hs1

dy2
þ c� 1þ aþ bð Þy½ � dH

s1

dy
� abHs1 ¼ 0, (45)

we find that the constants a, b, and c are given by

a ¼ 1

2
þ αþ β þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

4
� CR2

1

r

,

b ¼ 1

2
þ αþ β �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

4
� CR2

1

r

,

c ¼ 2αþ 1:

8

>>>>>>>><

>>>>>>>>:

(46)
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Such an equation admits two linearly independent solutions whose linear com-
bination furnishes the following general solution:

Hs1 yð Þ ¼ D2F1 a, b, c;yð Þ þ Ey 1�cð Þ
2F1 1þ aþ c, 1þ bþ c, 2� c;yð Þ, (47)

where 2F1 is the hypergeometric function and D and E are arbitrary integration
constants. Given the hypergeometric solution for Hs1 is known, one can immediately
find the general solution for ψ s1 . Indeed, from Eqs. (42), (46), and (47), we conclude
that the solution of Eq. (36), which is regular at the origin, can be written as

ψ s1 ¼ 1� yð Þ12 aþb�cð Þ½Dy
1
2 c�1ð Þ

2F1 a; b; c; yð Þ

þ Ey�
1
2 c�1ð Þ

2F1 1þ a� c; 1þ b� c; 2� c; yð Þ�:
(48)

In order to fix the integration constants D and E, we need to apply the appro-
priate boundary conditions. Inverting the Eq. (41) we find that, near the boundaries
x ! �∞, the relation between the coordinates x and y assumes the simpler form

y≃ eþ2x=R1 at x ! �∞,

1� y≃ e�2x=R1 at x ! þ∞:

(49)

Thus, taking into account the latter relation and using the fact that at y ¼
0 x ! �∞ð Þ the hypergeometric function 2F1 a, b, c;0ð Þ ¼ 1, one eventually obtains
that near the boundary x ! �∞ the field ψ s1 behaves as

ψ s1 jx!�∞ ≃De c�1ð Þx=R1 þ Ee� c�1ð Þx=R1 : (50)

On the other hand, in order to apply the boundary conditions at y ¼ 1 x ! ∞ð Þ,
it is useful to write the hypergeometric functions as functions of 1� yð Þ, so
that they become united at the boundary. This can be done by rewriting the
hypergeometric functions appearing in Eq. (48) by means of the following
identity [45]:

2F a, b, c;yð Þ¼ Γ cð ÞΓ c� a� bð Þ
Γ c� að ÞΓ c� bð Þ2

F a, b, aþ b� cþ 1;1� yð Þ

þΓ cð ÞΓ aþ b� cð Þ
Γ að ÞΓ bð Þ 1� yð Þ c�a�bð Þ

2F c� a, c� b, c� a� bþ 1;1� yð Þ,

(51)

where Γ stands for the gamma function. Doing so, and using Eq. (49), we
eventually arrive at the following behavior of the solution at x ! þ∞:

ψ s1 jx!þ∞ ≃ D
Γ c� a� bð ÞΓ cð Þ
Γ c� að ÞΓ c� bð Þ þ E

Γ c� a� bð ÞΓ 2� cð Þ
Γ 1� að ÞΓ 1� bð Þ

� �

e� aþb�cð Þx=R1

þ D
Γ aþ b� cð ÞΓ cð Þ

Γ að ÞΓ bð Þ þ E
Γ aþ b� cð ÞΓ 2� cð Þ

Γ a� cþ 1ð ÞΓ b� cþ 1ð Þ

� �

e aþb�cð Þx=R1 :

(52)

Now, from parameters Eqs. (38) and (43), we find that the constants appearing
in the hypergeometric equation can be written as
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a ¼ iR1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

μ2 þ q2Q2
1R

2
1 þ L2

q

þ 1þ s1ð Þ 1

4
� iω

R1

2

� �

� i 1� s1ð Þ qQ1R
2
1

2
,

b ¼ �iR1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

μ2 þ q2Q2
1R

2
1 þ L2

q

þ 1þ s1ð Þ 1

4
� iω

R1

2

� �

� i 1� s1ð Þ qQ1R
2
1

2
,

c ¼ 1

2
þ is1 qQ1R

2
1 � ωR1

� �
:

(53)

In particular, the following relations hold

c� 1ð Þ=R1 ¼ �is1ωþ is1qQ1R1 �
1

2R1
, (54)

aþ b� cð Þ=R1 ¼ �iω� iqQ1R1 þ s1
1

2R1
: (55)

Now we are ready to impose the boundary conditions. Obviously, without loss of
generality, we can consider that the spin s1 is already chosen and fixed at s1 ¼ þ or
s1 ¼ � since the QNFs should not depend on the choice of s1 ¼ �. Let us impose, for
instance, the boundary conditions for the component s1 ¼ þ of the spinorial field.
In this case, using the identity Eq. (54) along with the Eq. (34), we eventually arrive
at the following behavior of the solution at x ! ∞:

Ψ
þ
1 t, xð Þ

�
�
x!�∞

¼ De�iω tþxð Þ e
iqQ1R1� 1

2R1


 �

x
þ Ee�iω t�xð Þ e

� iqQ1R1� 1
2R1


 �

x
: (56)

Now, Figure 1 tells us that the field is assumed to move toward higher values of
x at the boundary x ! �∞, while at the boundary x ! �∞ it should move toward
lower values of x. Then, since the time dependence of the field Ψ

þ
1 is of the type

e�iωt, this means that Ψþ
1 should behave as e�iω t�xð Þ at x ! �∞, while it should go as

e�iω tþxð Þ at x ! þ∞. Thus, from Eq. (55), we conclude that we must set D ¼ 0. In
such a case, from Eq. (52), the field Ψ

þ
1 becomes

Ψ
þ
1

�
�
x!þ∞

≃E
Γ c� a� bð ÞΓ 2� cð Þ
Γ 1� að ÞΓ 1� bð Þ

� �

e�iω t�xð Þ e
iqQ1R1� 1

2R1


 �

x

þE
Γ aþ b� cð ÞΓ 2� cð Þ

Γ a� cþ 1ð ÞΓ b� cþ 1ð Þ

� �

e�iω tþxð Þ e
�iqQ1R1þ 1

2R1


 �

x
:

(57)

Finally, to satisfy the QNM boundary condition near the boundary at x ! ∞, we

must eliminate the term e�iω t�xð Þ of the above equation. Since E cannot be zero (as
otherwise the field would vanish identically), we need the combination of the
gamma functions to be zero. Now, once the gamma function has no zeros, the way
to achieve this is to let the gamma functions in the denominator diverge, Γ 1� að Þ ¼
∞ or Γ 1� bð Þ ¼ ∞. Since the gamma functions diverge only at nonpositive integers,
we are led to the following constraint:

1� a ¼ �n or 1� b ¼ �n, where n∈ 0, 1, 2,…f g: (58)

Using the Eq. (53), we find that these constraints translate to

ω ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

m2 þ q2Q2
1R

2
1 þ L2

q

þ i

R1
nþ 1

2

� �

, (59)
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which are the QNFs of the Dirac field propagating in D-dimensional generalized
Nariai spacetimes. The real part of a QNF is associated with the oscillation fre-
quency, while the imaginary part is related to its decay rate. At this point, it is worth
recalling that L is a separation constant of the Dirac equation that is related to the
angular mode of the field.

Likewise, imposing the boundary condition to the component s1 ¼ � of the
spinorial field, we find that we must set E ¼ 0 at Eq. (50) and then c� a ¼ �n or
c� b ¼ �n, with n being a nonnegative integer. This, in its turn, leads to the same
spectrum obtained for the component s1 ¼ þ as expected, namely, Eq. (59).

4. Conclusions

In this chapter we have investigated the perturbations on a spinorial field prop-
agating in a generalized version of the charged Nariai spacetime. Besides the sepa-
rability of the degrees of freedom of these perturbations, one interesting feature of
this background is that the perturbations can be analytically integrated. They all
obey a Schrödinger-like equation with an integrable potential that is contained in
the Rosen-Morse class of integrable potentials. Such an equation admits two linearly
independent solutions given in terms of standard hypergeometric functions. This is
a valuable property, since even the perturbation potential associated to the humble
Schwarzschild background is nonintegrable, despite the fact that it is separable. We
have also investigated the QNMs associated to this spinorial field. Analyzing the
Eq. (59), namely,

ωD ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

m2 þ q2Q2
1R

2
1 þ L2

q

þ i

R1
nþ 1

2

� �

, (60)

it is interesting to note that the imaginary parts of the QNFs, which represent the
decay rates, do not depend on any details of the perturbation; rather, they only
depend on the charges of the gravitational background through the dependence on
R1. On the other hand, the real parts of the QNFs depend on the mass of the field
and on the angular mode of the perturbations. Another fact worth pointing out is
that the fermionic field always has a real part in its QNFs spectrum, meaning that it
always oscillates. This is not reasonable. Indeed, for Klein-Gordon and Maxwell
perturbations in the D-dimensional Nariai spacetime, their QNFs are equal to [39].

ωKG ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

m2 þ
Pd

j¼2

ℓj ℓj þ 1
� �

R2
j

� 1

4R2
1

s

� i

R1
nþ 1

2

� �

,

ωM ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Pd
j¼2

ℓj ℓj þ 1
� �

R2
j

� 1

4R2
1

s

� i

R1
nþ 1

2

� �

,

(61)

where ℓj and mj are integers, ∣mj∣ ≤ℓj, and ℓ≥0. Due to the negative factor

�1= 4R2
1

� �
inside the square root appearing in the bosonic spectrum, it follows that

for small enough R1, along with small enough mass and angular momentum, the
argument of the square root can be negative, so that this term becomes imaginary.

To finish, we believe that a good exercise is to calculate the QNFs of the gravi-
tational field in D-dimensional generalized charged Nariai spacetime. Research on
the latter problem is still ongoing and, due to the great number of degrees of
freedom in the gravitational field, shall be considered in a future work. The next
interesting step is the investigation of superradiance phenomena for the spin 1=2
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field. Although bosonic fields like scalar, electromagnetic, and gravitational fields
can exhibit superradiant behavior in four-dimensional Kerr spacetime [46],
curiously, this is not the case for the Dirac field [36]. Thus, it would be interesting to
investigate whether an analogous thing happens in the background considered
here [47].

Author details

Joás Venâncio1* and Carlos Batista2

1 Physics Program, Universidade Federal de Pernambuco, Brazil

2 Department of Physics, Universidade Federal de Pernambuco, Brazil

*Address all correspondence to: joasvenancio@df.ufpe.br

© 2019 TheAuthor(s). Licensee IntechOpen. This chapter is distributed under the terms
of theCreativeCommonsAttribution License (http://creativecommons.org/licenses/
by/3.0),which permits unrestricted use, distribution, and reproduction in anymedium,
provided the original work is properly cited.

13

Quasinormal Modes of Dirac Field in Generalized Nariai Spacetimes
DOI: http://dx.doi.org/10.5772/intechopen.89179



References

[1] Vishveshwara CV. Scattering of
gravitational radiation by a
Schwarzschild black-hole. Nature. 1970;
227:936

[2] Regge T, Wheeler JA. Stability of a
Schwarzschild singularity. Physical
Review D. 1957;108:1063

[3] Abbott BP et al. (LIGO scientific and
virgo collaborations), observation of
gravitational waves from a binary black
hole merger. Physical Review Letters.
2016;116:061102

[4] Cardoso V. Quasinormal Modes and
Gravitational Radiation in Black Hole
Spacetimes [doctoral thesis].
Universidade Técnica de Lisboa; 2004.
[arXiv:gr-qc/0404093]

[5] Berti E, Cardoso V, Starinets AO.
Quasinormal modes of black holes and
black branes. Classical and Quantum
Gravity. 2009;26:163001

[6] Kokkotas KD, Schmidt BG.
Quasinormal modes of stars and black
holes. Living Reviews in Relativity.
1999;2:2

[7]Hod S. Bohr’s correspondence
principle and the area spectrum of
quantum black holes. Physical Review
Letters. 1998;81:4293

[8]Dreyer O. Quasinormal modes, the
area spectrum, and black hole entropy.
Physical Review Letters. 2003;90:
081301

[9]Maggiore M. The physical
interpretation of the spectrum of black
hole quasinormal modes. Physical
Review Letters. 2008;100:141301

[10]Domagala M, Lewandowski J. Black
hole entropy from quantum geometry.
Classical and Quantum Gravity. 2004;
21:5233

[11] Konoplya RA, Zhidenko A.
Quasinormal modes of black holes:
From astrophysics to string theory.
Reviews of Modern Physics. 2011;83:793

[12] Frolov VP et al. Massive vector
fields in Kerr-NUT-(A)dS spacetimes:
Separability and quasinormal modes.
arXiv: 1804.00030

[13] Zhidenko A. Massive scalar field
quasi-normal modes of higher
dimensional black holes. Physical
Review D. 2006;74:064017

[14] Zhidenko A. Linear perturbations of
black holes: Stability, quasi-normal
modes and tails. [doctoral thesis].
Universidade de São Paulo; 2009.
[arXiv:0903.3555]

[15] Liu LH, Wang B. Stability of BTZ
black strings. Physical Review D. 2008;
78:064001

[16]Mukhi S. String theory: A perspective
over the last 25 years. Classical and
QuantumGravity. 2011;28:153001

[17] Emparan R, Reall HS. Black holes in
higher dimensions. Living Reviews in
Relativity. 2008;11:6

[18] Csáki C. TASI lectures on extra
dimensions and branes. In: Shifman M,
Vainshtein A, Wheater J, editors. From
Fields to Strings: Circumnavigating
Theoretical Physics. Vol. 2. Singapore:
World Scientific; 2005. p. 967

[19]Maldacena JM. The large-N limit of
superconformal field theories and
supergravity. International Journal of
Theoretical Physics. 1999;38:1113

[20]Horowitz GT, Polchinski J. Gauge/
gravity duality. In: Oriti D, editor.
Approaches to Quantum Gravity:
Toward a New Understanding of Space,
Time and Matter. Cambridge, England:
Cambridge University Press; 2009. p. 169

14

Progress in Relativity



[21]Hubeny VE. The AdS/CFT
correspondence. Classical and Quantum
Gravity. 2015;32:124010

[22]Horowitz GT, Hubeny VE.
Quasinormal modes of AdS black holes
and the approach to thermal
equilibrium. Physical Review D. 2000;
62:024027

[23] Birmingham D, Sachs I,
Solodukhin SN. Conformal field theory
interpretation of black hole quasinormal
modes. Physical Review Letters. 2002;
88:151301

[24]Nunez A, Starinets AO. AdS/CFT
correspondence, quasinormal modes,
and thermal correlators in N = 4 SYM.
Physical Review D. 2003;67:124013

[25] Keranen V, Kleinert P.
Thermalization of Wightman functions
in AdS/CFT and quasinormal modes.
Physical Review D. 2016;94:026010

[26]David JR, Khetrapal S.
Thermalization of green functions and
quasinormal modes. Journal of High
Energy Physics. 2015;07:041

[27] López-Ortega A. Dirac quasinormal
modes of D-dimensional de sitter
spacetime. General Relativity and
Gravitation. 2007;39:1011

[28] Brady PB, Chambers CM. Radiative
falloff in Schwarzschild-de sitter
spacetime. Physical Review D. 1999;60:
064003

[29] Abdalla E et al. Support of dS/CFT
correspondence from perturbations of
three dimensional spacetime. Physical
Review D. 2002;66:104018. arXiv:hep-
th/0204030

[30]Nollert HP. Quasinormal modes:
The characteristic’ sound’ of black holes
and neutron stars. Classical and
Quantum Gravity. 1999;16:159

[31] Batista C. Generalized charged
Nariai solutions in arbitrary even

dimensions with multiple magnetic
charges. General Relativity and
Gravitation. 2016;48:160

[32]Venâncio J. The spinorial formalism,
with applications in physics [Master
dissertation]. Federal University of
Pernambuco; 2017. Available from:
https://repositorio.ufpe.br/handle/
123456789/25303; https://www.
researchgate.net/publication/
324210081_The_Spinorial_Formalism_
with_Applications_in_Physics

[33] Benn I, Tucker R. An Introduction
to Spinors and Geometry with
Applications in Physics. Adam Hilger;
1987. Available from: http://inspirehep.
net/record/256204/; https://www.
amazon.com/Introduction-Spinors-
Geometry-Applications-Physics/dp/
0852741693

[34] Cartan E. The Theory of Spinors.
Dover; 1966. Available from: https://
store.doverpublications.com/
0486640701.html; http://cds.cern.ch/
record/104700

[35]Venâncio J, Batista C. Separability of
the Dirac equation on backgrounds that
are the direct product of bidimensional
spaces. Physical Review D. 2017;95:
084022

[36]Güven R. Wave mechanics of
electrons in Kerr geometry. Physical
Review D. 1977;16:1706

[37]Dutt R, Khare A, Sukhatme UP.
Supersymmetry, shape invariance, and
exactly solvable potentials. American
Journal of Physics. 1988;56:163

[38] Pöschl G, Teller E. Bemerkungen
zur Quantenmechanik des
anharmonischen Oszillators. Zeitschrift
für Physik. 1933;83:143

[39] Venâncio J, Batista C. Quasinormal
modes in generalized Nariai spacetimes.
Physical Review D. 2018;97:105025

15

Quasinormal Modes of Dirac Field in Generalized Nariai Spacetimes
DOI: http://dx.doi.org/10.5772/intechopen.89179



[40]Hartman T. Lecture notes on
classical de Sitter space. 2017. arXiv:
1205.3855 [hep-th]

[41] Anninos D. de Sitter Musings. 2013.
arXiv:1205.3855 [hep-th]

[42] Bengtsson I, Sandin P. Anti de sitter
space, squashed and stretched. Classical
and Quantum Gravity. 2006;23:971

[43] López Ortega A. The Dirac equation
in D-dimensional spherically symmetric
spacetimes. arXiv:0906.2754

[44] Zhidenko A. Linear perturbations of
black holes: Stability, quasi-normal
modes and tails [doctoral thesis].
Universidade de São Paulo; 2009. ArXiv:
0903.3555

[45]Du ED, Wang B, Su R. Quasinormal
modes in pure de sitter spacetimes.
Physical Review D. 2004;70:064024.
arXiv:hep-th/0404047

[46] Abramowitz M, Stegun IA.
Handbook of Mathematical Functions
with Formulas, Graphs, and
Mathematical Tables. New York: Dover;
1972

[47] Rosa JG. Superradiance in the sky.
Physical Review D. 2017;95:064017

16

Progress in Relativity


