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Chapter

Al for Improving the Overall
Equipment Efficiency in
Manufacturing Industry

Francesc Bonada, Lluis Echeverria, Xavier Domingo
and Gabriel Angaldi

Abstract

Industry 4.0 has emerged as the perfect scenario for boosting the application of
novel artificial intelligence (AI) and machine learning (ML) solutions to industrial
process monitoring and optimization. One of the key elements on this new indus-
trial revolution is the hatching of massive process monitoring data, enabled by the
cyber-physical systems (CPS) distributed along the manufacturing processes, the
proliferation of hybrid Internet of Things (IoT) architectures supported by polyglot
data repositories, and big (small) data analytics capabilities. Industry 4.0 paradigm
is data-driven, where the smart exploitation of data is providing a large set of
competitive advantages impacting productivity, quality, and efficiency key perfor-
mance indicators (KPIs). Overall equipment efficiency (OEE) has emerged as the
target KPI for most manufacturing industries due to the fact that considers three
key indicators: availability, quality, and performance. This chapter describes how
different AI and ML solutions can enable a big step forward in industrial process
control, focusing on OEE impact illustrated by means of real use cases and
research project results.

Keywords: machine learning, supervised learning, unsupervised learning,
classification, regression, ensembles, artificial intelligence, data mining,
data-driven, industry 4.0, smart manufacturing, cyber-physical systems,
predictive analytics

1. Introduction

Industry 4.0 has emerged as the perfect scenario for boosting the application
of novel artificial intelligence (AI) and machine learning (ML) approaches to
industrial process monitoring and optimization. Artificial intelligence is a set of
techniques and methodologies aimed at allowing machines, especially computer
systems, to simulate human intelligence processes. Machine learning is a subset of
artificial intelligence, which provides a set of methodologies and strategies to allow
systems for improvement. ML relies in automatic learning procedures, which
generate knowledge from previous experiences (data).

One of the key elements on this new industrial revolution, aligned with the
disruptive capabilities that Al and ML provide, is the hatching of massive process
monitoring data, enabled by the cyber-physical systems (CPS) distributed along the
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manufacturing processes, the proliferation of hybrid IoT architectures supported by
polyglot data repositories, and big (small) data analytics capabilities. Industry 4.0
paradigm is data-driven, and the smart exploitation of this data can provide a large
set of competitive advantages impacting productivity, quality, and efficiency key
performance indicators (KPIs), which are of utmost importance in the current
competitive scenario. Moreover, the manufacturing companies are evolving to low
volume with high personalization manufacturing environments [1, 2], where their
competitiveness depends on the industries’ facilities, considering asset and resource
availability, but also in the optimal execution of production processes [3].

Therefore, there is an opportunity on improving the performance of
manufacturing processes taking as input those new streams of information; going
through analytical processes; creating new supporting models, tools, and services;
and benchmarking their recommendations and outcomes against classical
approaches. To that end, the overall equipment effectiveness (OEE) is aimed at
measuring types of production losses and indicating areas of process improvement
[4, 5], ideal to be used as a benchmarking KPI, and one of the main indicators used
in manufacturing execution systems (MES) [6, 7].

In the recent years, research projects are aiming to develop novel stand-alone
solutions covering the entire monitoring and control value chain: from the CPS for
retrieving the data, to wireless communication protocols, big data storage for trace-
ability and advanced artificial intelligence techniques for production control, opti-
mization, and maintenance.

The use of artificial intelligence algorithms is enabling a big step forward in
industrial process control and monitoring: from statistical process control (SPC)
and statistical quality control (SQC) methodologies, which require a high prior
knowledge of the process, to Al optimized process boundaries that provide valuable
insights of the monitored process. Industrial applications of Al have its particular
requirements. Not only prediction and forecasting capabilities are desired but also
increasing the process knowledge with the right selection of Al algorithms, provid-
ing a competitive edge over traditional approaches.

Al provides the right set of tools for automatic quality prediction and full part
traceability, process optimization, and preventive maintenance. These sets of bene-
fits are directly impacting into productivity KPIs such as OEE and breakdowns,
among others.

This chapter will describe the application of different Al and ML algorithms,
including classifiers, regressors, or ensembles such as random forest trees, gradient
boosting, or support vector machines, to some real-case industrial scenarios, such as
quality prediction or process characterization for plastic injection molding or iron
foundry, predictive maintenance for industrial water treatment processes, and
means of leveraging production data (quality control, time series, batch data, etc.)
at different granularity levels and its impact to OEE: from soft real-time to batch
analysis and how this can be translated to valuable production insights.

2. Overall equipment effectiveness as KPI

As introduced before, the current scenario for manufacturing industries can be
summarized as high demanding, very competitive, with dynamic market demand,
and last but not least, hyperconnected and digital. Low-volume and more personal-
ized parts or product work orders are replacing old high-volume ones without
personalization, and this implies that effectiveness may not only focus on specific
process optimization but also, for example, on improving changeover setup times,
reducing scrap, or improving quality. Therefore, there is a clear need on improving
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and optimizing all manufacturing processes to overcome this demanding situation
with effective response, also considering the efficient adaptation and usage of
production lines. Traditional approaches tended to focus on throughput and utili-
zation rate, but nowadays this is insufficient. The main reason relies on the impor-
tance of unconsidered context information, or even small details, which are making
a difference.

The overall equipment effectiveness indicates how good the equipment is being
used. OEE has emerged as the target KPI for most manufacturing industries due to
the fact that considers three key indicators:

* Availability: Percentage of time that an equipment can operate

* Quality: Percentage of good produced parts

* Performance: Percentage of maximum operation speed used

But before going deep into OEE calculation, we must first understand in which
phases of the manufacturing process Al can impact, so that we can relate all
together. To that end, please refer to Figure 1, where OEE components are sum-

marized, and Figure 2, where a standard manufacturing process is compared with
an Al-powered one.

Figure 1.
OEE components and focus.
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Figure 2.
OEE optimization using Al
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Focusing on Figure 2, let us introduce some simple examples of how Al impacts
in the manufacturing process:

* Setup: We can improve the time needed to set up or adapt the environment,
lines, and tools when a new incoming work order arrives, considering results
from previous similar experiences. As we are able to do it in less time, and in
a more effective way, we are impacting to the availability of the assets, and
consequently, improving the OEE.

* Process deviations: In a similar way, Al allows for quality prediction relying
on process parameters, which combined with real-time tuning of execution
parameters, results in better quality outcomes, and scrap reduction, again,
improving OEE.

* Maintenance: Predictive maintenance allows us to plan and provision with the
needed spare parts so that impact in production is minimized. With this
management we improve availability, and therefore, OEE is also improved.

In the text below, we define how the literature calculates the OEE, while in the
following sections, we’ll provide some real examples in which the OEE performance
indicator has improved thanks to Al

According to [8], the overall equipment effectiveness can be calculated
as follows:

OEE = Availability * Performance rate s Quality rate. (1)
where
* Availability

(available time — unplanned downtime)

(2)

Availability = available time
Availability time = total available time-planned downtime (3)

Planned downtime: excess capacity, planned breaks, planned maintenance,
communication break, and team meetings

* Unplanned downtime: breakdowns, setup and adjustment, late material
delivery, operator availability

* Quality rate

(total produced parts — defective parts)

Quality rate = total produced parts )
* Performance
Performance = (total product'zon parts [operating time) 5)
idle run rate
Operating time = Available time — unplanned downtime. (6)
Idle run rate = number of parts per minute. (7)



Al for Improving the Overall Equipment Efficiency in Manufacturing Industry
DOI: http://dx.doi.org/10.5772/intechopen.89967

Productivity Consumption
Parts/Labour Parts/Inputs
Direct Labour Indirect Labour Parts/Material Parts/Energy
Productivity Productivity

Figure 3.
Productivity indicators.

Other productivity indicators can also be very helpful when evaluating a
manufacturing process and benchmarking how AI and ML solutions can provide
tangible benefits (Figure 3).

Productivity indicators:

* Good produced parts/operator

* Good produced parts/total produced parts (scrap, setup, testing, etc.)

Consumption indicators:

* Material consumption (MC): weight of material consumed per time unit

kg\  part weightg 3600 sec 1kg
Mc (h)  cycle time sec Y 1000 ¢ (8)

* Specific energy consumption

The specific energy consumption (SEC) can be defined in terms of the amount
of power (P) input into the system, divided by the process rate (72):

sec=L 9)
m

3. Artificial intelligence for availability

While guarantying high OEE, availability is key. OEE considers availability loss,
which considers any event that stops the production plan for a significant amount of
time, including unplanned and planned stops. An availability of 100% means the
process is always running during planned production time.

There are other considerations which should be included in the availability
computation, such as the changeover times. Changeovers are a source of setup and
adjustment time, which is one of the main time loss reasons, and thus represent a
valuable opportunity for improvement. Changeover times are most commonly
improved (reduced) through the application of single-minute exchange of dies
(SMED), which relies on performing as many changeover steps as possible while
the equipment is running. In fact, these days equipment manufacturers tend to
provide an availability rate in the specifications of their equipment, considering,
among others, these changeovers.

But what can Al do for us? If we think in data processing and analytical capaci-
ties that can be run over information coming from equipment, we rapidly think in
predictive maintenance to anticipate problems or virtual sensors to simulate, when
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feasible, some defective or malfunctioning sensors. Let us see some examples of
this in the following subsections.

3.1 Virtual sensors

Virtual sensors (VS) are implemented with software to emulate real-world or
even newly artificially defined sensors and are commonly used to (i) compute extra
parameters derived from real sensors that are impossible to be measured, contrib-
uting to a better understanding of the whole environment, and (ii) simulate real
sensor outputs. In the scope of this chapter, the second functionality becomes useful
to mitigate system stops due to equipment failure or even planned maintenance,
increase the availability of complex systems, and therefore improve the OEE.

For example, in a water treatment facility, where a lot of processes are continu-
ously and simultaneously working to improve the quality of water, the decisions
taken to manage the global system depends directly on the observations obtained by
the sensors that are deployed along the premises. When any of those sensors is not
working, the system cannot operate correctly because sometimes those input values
are of utmost importance to determine which decision is correct.

In this case, a VS can be used to simulate and replace that lost sensor during the
downtime. For this purpose, the VS is implemented through machine learning
algorithms and is based on different inputs or sensors that are operating in the
different parts of the water treatment cycle in the system.

Following this procedure, we showcase a VS simulating a measurement of one of
the water quality parameters in a water treatment facility. In this case, this mea-
surement is of utmost importance in the system because, depending on its observa-
tions, the processes adapt their execution parameters to fit the required quality
requirements.

Therefore, we must overcome three main challenges, the combination of which
increases considerably the complexity of the problem to be solved using AI/ML
algorithms:

* The complexity of the processes: In water treatment facilities, physical and
biological processes are combined to clean the water and achieve the expected
levels of quality.

* The delayed responses: The water flow may be slow, so a change in the input
state will not be immediately reflected in the rest of the system.

* The bad quality of the signals: In this kind of environments, where the sensors
are in direct contact with dirty water, the observations usually contain
anomalous values.

We start implementing the needed filters and preprocessing steps to clean and
improve the data, but usually this is not enough, and ML algorithms cannot achieve the
desired performance. Consequently, extra efforts are needed to obtain better models.

This example is a regression problem, where the target is a continuous value,
and the predictors are composed of current and past values from other sensors
which are part of the same process.

During the first iterations of the analysis, one of the main tasks was to select the
optimal past values of each observation/sensor to be used as predictors. This process
was done through the analysis of the importance of the variables once a model has
been trained, selecting the N last values with the most importance. Also different
frequencies of lags were tested using the same approach.
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It is important to note that the target variable was not used to make next pre-
dictions, avoiding accumulated errors and allowing an infinite horizon of predic-
tions, since the only requirement was the observations of the other sensors.

Different ML algorithms were tested and compared, and Figure 4 showcases the
three ML models that have better performance:

* XGBoost: Extreme gradient boosting. Optimized distributed gradient boosting
library. Gradient boosting is a ML technique which produces a prediction
model in the form of an ensemble of weak prediction models. It builds the
model in a stage-wise fashion, training the weak models sequentially, each
trying to correct its predecessor, and it generalizes them by allowing
optimization of an arbitrary differentiable loss function [9].

* KNN: K-nearest neighbors. Nonparametric algorithm. Predictions are
computed based on the mean of the labels of its nearest neighbors [10].

* RF: Random forests. Ensemble of decision trees, where each tree is usually built
from a sample drawn with replacement (bagging method) from the training
set. If the sample is obtained without resampling, the method is called pasting.
When splitting each node during the construction of a tree, the best split is
found either from all input features or a random subset of size max_features
(RF algorithm hyperparameter) [11].

In order to compare the performance between model results, we are using the
following metrics:

* Mean squared error (MSE) measures average squared error of our predictions,
calculating the square difference between the predictions and the target and
then the average of those values:

1o )
MSE = NZ i _)’z')z (10)

i=1

* Mean absolute error (MAE) is calculated as an average of absolute differences
between the target values and the predictions:
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Figure 4.

Initial predictions.



New Trends in the Use of Artificial Intelligence for the Industry 4.0

1& )
MAE = N;Iyi ~ ¥, (11)

* Explained variance score (EVS) measures the proportion to which a
mathematical model accounts for the variation (represented as o2, s%, or Var

(X)) of a given data set:

EVS=1— M (12)
Var{y;}

The best performance is achieved by random forests followed by KNN (MSE,
0.69; MAE, 0.43; EVS, 0.86) and XGBoost (MSE, 0.81; MAE, 0.85; EVS, 0.98). In
all the cases, grid search [12] has been used to tune the hyperparameters.

The scorings seem to be acceptable, but analyzing one by one the predicted
values (Figure 5), unusual behaviors appear in the predictions. So, in order to try to
improve the outputs, an ensemble model is implemented combining the previous
algorithms and following the stacking methodology (Figure 6, [13]), where a new
ML algorithm (called blender or meta learner), in this case a ridge regressor [14],
takes the previous predictions as inputs and makes the final prediction, usually
better. The blender has been trained following the hold-out set approach.

Basically, the main idea is to, instead of taking the best model and use it to make
predictions, try to combine the predictions of completely different ML algorithms,
which are based on really different approaches and are good to operate in specific
conditions, into a new ensemble which combines the best of each one, is able to
operate in all the cases, and reduces the global error.

This process improves significantly the predictions (Figures 7 and 8), achieving
the following scores, MSE, 0.27; MAE, 0.40; EVS, 0.98, and resulting in a ML model
that is able to simulate the real sensor during downtimes, allowing the system to
continue working normally.

3.2 Maintenance

We define predictive maintenance as the set of techniques used to determine the
condition of equipment, allowing for a better and more personalized maintenance

16
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Figure 5.
Initial predictions detail.
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Final virtual sensor predictions’ detail.
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Drift over the time.

plan. This plan depends on the performance, among other indicators, of the specific
equipment (actual condition), instead of only relying on periodic maintenance
routines, and this enables spare parts optimization, better maintenance actuations
planning, and of course, OEE improvement due to its impact in availability, per-
formance, or even quality.

Continuing on the water treatment facilities case introduced previously, one of
the main problems faced in this environment is related to those sensors that are in
direct contact with dirty water.

Over the time, a continuous and incremental drift appears in the observations of
the sensors, thereby generating incorrect measurements. Since these measurements
are the base of the system which takes operational decisions, the sequent of the
taken actions will be incorrect, resulting in an unnecessary waste of resources or,
even worse, an immediate stop of the system to repair and calibrate the sensors.

This pattern can be easily identified in Figure 9, having an incremental drift
over the time until day 25, when the sensor was stopped during some hours for
maintenance. Once the sensor is turned on again, the real value of the observations
is shown, approximately 0.

Before the proposed approach, trying to prevent these problems, a set of pre-
ventive maintenances was defined, which consisted of manually taking measure-
ments to compare them in the laboratory with the values of the sensors. Despite
this, these actions were not enough, and the drift usually appeared before the
scheduled maintenance, making necessary a better approach: a predictive
maintenance-based approach.

10
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There are different ways to implement a ML predictive maintenance solution.
For example, it is possible to predict the remaining useful life of an equipment,
which is a regression problem. But in this case, it has been defined as a binary
classification problem, where the goal is to, given an observation (and the previous
values), predict if there will be an anomaly in the following 24 hours (estimated
minimum range of time to define a maintenance).

In the presented problem, the term anomaly refers to a sensor deviation or a
drift in the observations measured by it, due to the contact with dirty water, making
necessary a maintenance action in this specific sensor to clean or even replace it if
it is necessary.

As in other classification problems, the basic requirement is labeled data, in this
case, labeled anomalies. This was the main problem, there was a lot of historical
data, but the anomalies were not labeled so the first step consisted of an anomaly
detection problem.

Through unsupervised anomaly detection algorithms, such as:

* Isolation forest: Isolation forest algorithm isolates observations by randomly
selecting a feature and then randomly selecting a split value between the
maximum and minimum values of the selected feature. Since recursive
partitioning can be represented by a tree structure, the number of splittings
required to isolate a sample is equivalent to the path length from the root node
to the terminating node. This path length, averaged over a forest of such
random trees, is a measure of normality [15].

* Local outlier factor: Local outlier factor algorithm computes a score reflecting
the degree of abnormality of the observations. It measures the local density
deviation of a given data point with respect to its neighbors. The idea is to
detect the samples that have a substantially lower density than their
neighbors [16].

And thanks to an intensive data preprocessing steps such as data segmentation
or feature engineering (which made the task easier to detect this specific anomaly),
the historical dataset was labeled. Finally, a simple clustering algorithm was run to
discard different anomalies.

The result of the anomaly detection analysis is shown in Figure 10, where sensor
1is measuring a value different than 0 (anomaly), and therefore the system tries to
force a response increasing excessively the resource measured by sensor 2.

Finally, we face the predictive maintenance classification problem, where the
key was the definition of the target variable: a binary column indicating whether in

Sensor 1

Sensar 2

e Anomaly

mgN/L

00:00 12:00 00:00 12:00

Figure 10.
Anomaly detection results.

11



New Trends in the Use of Artificial Intelligence for the Industry 4.0

12000
o57
10000
2 8000
= - 6000
1 - 509 4991 - 4000
- 2000
S N B
Predicted label

X GBoost accuracy: 92,8%

X GBoost precision: 86,3%

XGBoost recall: 92,2%

X GBoost Fl-score: 89,1%

Figure 11.

Confusion matrix.

the next 24 hours an anomaly is detected or not. At this point, different ML
classification algorithms were tested, and the best performance was achieved by
XGBoost, obtaining the following classification results (Figure 11) in a test set.

In order to measure the algorithm performance in the classification task, we are
using confusion matrix and the following metrics:

* Confusion matrix: In a ML classification problem, a confusion matrix is a
specific table that simplifies the analysis of the performance of an algorithm.
Each column of the matrix represents the instances in a predicted class, while
each row represents the instance’s real class (or vice versa) [17].

* Accuracy: Classification metric that computes the fraction of correct

predictions:
1 nsamples*1
sccuracy(y,y) = - > 1(y, =) 13
samples  —o

* Precision: Classification metric that computes the fraction of relevant instances
among the retrieved instances. It is also called positive predictive value:
True Positive

o 14
precision True Positive + False Positive o

12
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* Recall: Classification metric that computes the fraction of relevant instances
that have been retrieved over the total amount of relevant instances. It is also
called positive predictive value:

recall True Positive (15)
ecall =
True Positive + False Negative

* Fl-score: Classification metric that computes a weighted harmonic mean of the
precision and recall. F1 score reaches its best value at 1 and worst score at 0.

(precision * recall)

F1 score = 2% =
(precision + recall)

(16)

As depicted in Figure 11, the final version of the model provides good results
while predicting anomalies with time enough to articulate the needed preventive
actions. Not only the accuracy is important, but we would also like to remark that
the false negative rate is low, that is, the algorithm performs very well in detecting
anomalies, and only a few of them are undetected.

3.3 Process setup

Process setup, especially during changeover operations, can affect the availabil-
ity indicator and thus represents an opportunity for manufacturing Al and ML
based solutions. New production trends based on a high degree of flexibility, cus-
tomization, and small batches require for an extra effort in terms of process setup
and scheduling. For instance, in plastic injection molding quite often due to pro-
duction flexibility and scheduling, a mold needs to be re-installed and set up for
production again in order to deliver a new production batch to the final customer.
This situation requires for a new tuning process involving an important waste of
time, material, and energy. This situation opens the opportunity for developing
supervised ML models to compare past production data with real-time data for
recommending tuning parameters and reach in a shorter time frame the optimal
process operation.

To this end, the real-time evolution of a key process parameter can be used as
training of the manufacturing process setup or configuration. By comparing the
actual real-time evolution within the manufacturing cycle versus the known opti-
mal (acquired from previous production runs), a set of recommendations can be
provided. This strategy can boost the process setup, providing recommendations to
reach the optimal targeted key parameter cycle evolution, following an iterative
method as depicted in Figure 12.

Following the plastic injection molding example, within the PREVIEW
project [18], a set of experimental trials were performed in order to create the
historical database that supports the Al system in charge of providing process
tuning recommendations. Within the Al solution, different algorithms were tested
for comparing new sensor data versus historical data to provide tuning recommen-
dations. Figure 13 shows a PREVIEW project result using random forest trees [19]
to provide tuning recommendations when the injection speed parameter was
changed to different operational points. As can be seen, for lower than optimal
injection speeds, the Al system based on RF recommends increasing the injection
speed, while for higher injection speeds recommends a reduction, driving always
the parameter toward the optimal operational window that leads to optimal cavity
pressure evolution within the manufacturing cycle.

13
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Process optimization recommendation. The PREVIEW project result.

4. Artificial intelligence for quality

It is a well-known problem that high added-value industrial and manufacturing
processes combining several operations (welding, milling, etc.) and thus heteroge-
neous data sources do not always reach their maximum performance potential due
to the lack of powerful and tailored solutions for data analysis toward the zero
defects manufacturing paradigm. Today’s artificial intelligence and machine learn-
ing based solutions are mature enough to boost production processes by means of
exploiting the process data generated thanks to the in-line sensors, workers’ feed-
back, reports, quality control, etc. Thus, developing a tailored predictive quality
solution based on artificial intelligence and machine learning has become a crucial
key element for impacting OEE to prevent the manufacturing of non-quality parts
and its exportation to the final client. Several research works have been carried out
for different manufacturing processes, including plastic injection molding, foundry,
milling, welding, etc. (e.g., see [20-24]) showing the potential benefits of applying
Al and ML to exploit process data.

14
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Continuous quality estimation at each step of the manufacturing process by
means of machine learning and artificial intelligence, applied on the in-line acquired
data, enables predictive warnings and alarms even before the target quality is
affected and thus quality indicator of OEE is degraded. Two different approaches
can be implemented when developing Al predictive quality tools: supervised versus
unsupervised solutions. Supervised solutions can provide a better accuracy when
predicting undesired quality deviations, but a properly tagged dataset is required.
Unsupervised methods have the benefit of not requiring the tagged dataset and are
typically used for anomaly detection, meaning strong quality deviations. Moreover,
supervised system results can be tracked down and analyzed to provide process
insights which can lead to knowledge discovery [25] solutions that help to address
the root cause of the undesired quality deviation and thus improve quality and,
therefore, OEE.

Focusing on supervised solutions, a proper dataset labeling is a key element. It is
highly recommended to perform a Design of Experiments (DOE) where quality
deviations are forced in order to obtain a more balanced dataset compared to the
typical production dataset where non-quality parts are rare. In the case of qualita-
tive quality labels (e.g., good, bad, type of defect, etc.), a classifier will be preferred,
while for quantitative quality indicators (e.g., weigh, tensile strength, etc.), a
regressor will be implemented.

Let us consider as illustrating example a plastic injection molding quality pre-
diction problem. The four-cavity mold used for the experimental trials can be seen
in Figure 14. Only one cavity was sensorized to obtain the pressure and tempera-
ture evolution of the melt during the production cycle. The machine pressure and
screw position were also acquired for each one of the 199 injected parts of the trial.
The injection cycle was 7.2 seconds and was sampled at 500 Hz. Thus, the dataset is
the time series evolution of the key parameters of the process.

The DOE was designed in order to obtain seven different part qualities: good,
short shot, shrinkage, flash, jetting, over-compaction, and flow lines. The different
qualities were obtained by means of varying the injection machine configuration.

A total of 199 parts were produced (Figure 15).

Depending on the data granularity (continuous, cycle, or batch), different
preprocessing techniques can be implemented to boost the performance of the later
machine learning classifier. For instance, entropy analysis and complexity reduction
algorithms such as principal component analysis (PCA) [27] can provide a substan-
tial advantage as seen in Figure 16, where the PCA projection of the screw position
sensor is plotted.

In order to compare the performance of different machine learning classifiers, a
benchmark based on cross-validation techniques was implemented, using a strati-
fied shuffle split [28] strategy to preserve the percentage of samples of each class

Machine Pressure

Filling Holding Pressure

Switchover

500 1000 1500 2000 2500 3000 3500 4000

Figure 14.
Mold cavity picture and example of acquired machine pressure. Experimental data provided by EURECAT [26].
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New Cycle
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Figure 15.
Supervised approach for quality prediction.

Figure 16.
3D PCA data projection using the raw data or a preprocessed data where the 10 time stamps with higher
entropy are selected. Each color represents a different part quality or defect.

(quality). This test can be run for each sensor or by applying data fusion and
combining all sensors in a single dataset (Figures 17 and 18).

As can be seen in Figure 19, support vector machines [29] with a linear kernel
show a low performance, while ensemble algorithms like random forest trees and
gradient boosting [30] present higher accuracy rates, especially when 50 estimators
or more are used.

When combining all sensor information by means of applying data fusion, the
quality prediction accuracy increases near to 100%, as can be seen in Figure 18.
This result and system allow for an in-cycle quality preventive alarm that can lead
to an important reduction of scrap rate and exported non-quality, which automat-
ically translate to a higher quality rate and a reduction of costs due to wasted raw
material and energy consumption while improving OEE.

Other manufacturing processes can have different sampling rates or even create
batch datasets where for each part a set of relevant values are recorded. Typically,
large batch datasets present a high degree of data heterogeneity, compiling sensor
values, reports, environmental data, etc. Moreover, part traceability may not be
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Figure 17.
Quality prediction mean accuracy for a 20-round cross-validation test using 70% for training and 30% of
samples for test, using only the cavity temperature sensor data.
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Figure 18.

Quality prediction mean accuracy for a 20-round cvoss-validation test using 70% for training and 30% of
samples for test, combining the available cavity and machine sensor data.
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Figure 19.
Batch quality prediction with and without feature engineering (FE) for a heterogeneous and class-unbalanced
dataset. Iron foundry case.
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guaranteed, and thus quality rates may refer to the entire batch. In these scenarios,
feature engineering [31] can provide a clear advantage for boosting the perfor-
mance of the ML and Al algorithms. Figure 19 shows the performance of KNN and
SVM classifiers for a foundry dataset with more than 250 different parameters
(chemical composition of the iron, climate, process data, sensor data, etc.) with and
without feature engineering.

The dataset had two main difficulties: the extreme unbalance between classes
(qualities) and the data heterogeneity. By applying feature engineering, the number
of parameters can be reduced, focusing on the relevant ones. Bagging [32] and cost
functions were used to face the class unbalance. Batch quality prediction based on
process data can help in reducing the exported non-quality while providing knowl-
edge discovery insights to find and correct the root causes of the undesired quality
deviation.

5. Artificial intelligence for performance

Performance indicators consider any factor that causes the manufacturing
process to run at lower speed than its maximum possible speed. For instance, slow
cycle time affects performance indicators. For this reason, it is key to know the ideal
cycle time, which is the fastest cycle time that can be achieved in optimal circum-
stances. Moreover, performance is also affected by idling time and minor stops.

Cycle time reduction is one of the main factors for improving productivity. A
cycle time reduction contributes to reaching the optimal production throughputs,
reduction of time to market, better scheduling, and a reduction of associated costs
in terms of labor, energy, and raw material when combined with quality prediction
and assessment. The reduction of cycle time has become a relevant topic both in
research and in practical applications. Neural networks and machine learning algo-
rithms can help to predict and optimize manufacturing cycle time in different
sectors (e.g., see [33, 34]).

Preventive alarms generated by predictive quality systems based on Al and ML
can prevent manufacturing at nonoptimal operation setups and thus prevent minor
stops. Minor stops can also be reduced thanks to preventive maintenance systems.
Case-based reasoning [35] systems can leverage past experiences to help
manufacturing processes run faster. For instance, a CBR system can provide helpful
recommendations for optimizing the cooling time based on the type of material and
the thickness of the part that is being manufactured. The CBR system provides the
most similar cases based on a defined similarity metric, and thus a previous cooling
times of well-known and optimized processes can be taken as reference. Illustrating
this case, the Des-MOLD project [36] developed an Al system based on CBR and
argumentation [37] to help plastic injectors share their experiences and benefit from
mold design and manufacturing process optimization [38].

6. Conclusions

Artificial intelligence and machine learning based solutions can provide a com-
petitive advantage in today’s manufacturing paradigm, redefined by the Industry
4.0 revolution and the massive data available thanks to CPS, virtual sensors, and
IIoT devices. Leveraging this data has become a very relevant topic both in research
and for practical applications due to its massive potential. Data-driven solutions are
becoming more and more popular due to its potential both in terms of prediction
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and to its capacity to provide process insights for enhancing process owner’s
expertise.

This chapter has focused on how the leverage of the available process data by
means of Al and ML solutions can impact into one of the most relevant
manufacturing indicators: overall equipment efficiency. OEE has three main com-
ponents: availability, quality, and performance. Each OEE component tackles a
different challenge and thus may require a different approach. Through different
experimental examples, each OEE component and how Al solutions can impact it
have been described. It has been shown how predictive maintenance and virtual
sensor solutions can help in reducing the undesired production breakdowns and
thus increase equipment availability. Predictive quality solutions based on super-
vised algorithms, for either real-time cycle data or batch data, have been described,
showing the importance of feature engineering for boosting prediction accuracy.
And finally, equipment performance focusing on cycle time has been addressed by
CBR for leveraging past experiences and providing process tuning types to run at
the highest throughputs.

OEE will be further improved thanks to the new Al trends and technologies
that are being researched right now, providing even more powerful and tailored
solutions. Availability and performance indicators could be greatly improved when
mature reinforced learning approaches are available at the production level, reduc-
ing setup times and optimizing cycle times thanks to the collaboration between
human expertise and Al systems. Image processing through deep learning and
convolutional neural networks can impact quality, especially for visual defects.
Collaborative human-AlI systems are envisaged as key for the next Industry 5.0.
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