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Chapter

Nanosatellites and Applications 
to Commercial and Scientific 
Missions
Adriano Camps

Abstract

In the past two decades, a silent revolution has taken place in the space 
domain, leading to what today is known as “New Space.” We have passed from a 
selected group of countries, space agencies, and big industries building, launch-
ing, and operating satellites and other spacecrafts, of a scenario in which many 
universities and research institutes can do it. The key of this was the definition 
of the “CubeSat” standard, back to 1999. In 2013, it all took off on the commer-
cial Earth Observation sector with the first launches from two companies that 
are now running 100+ CubeSat constellations for optical imaging or weather 
prediction, with very low revisit times. Today, the same revolution is taking 
place in the fields of Telecommunications, and Astronomical Scientific mis-
sions. In this chapter, the evolution of the space sector is briefly revised until the 
arrival of the CubeSats. Then, the CubeSat intrinsic limitations are discussed 
as they are key to understand the development and current situation of the 
CubeSat sector. NASA and ESA strategies are also presented. The chapter con-
cludes with a summary of the technology roadmap to enable the next generation 
of CubeSat-based missions, including satellite constellations or federations, 
formation flying, synthetic apertures…

Keywords: satellites, CubeSats, mission, earth observation, astronomy,  
planetary exploration, enabling technologies

1. Introduction

1.1 From the sputnik to the CubeSats

At the beginning of the space age, all satellites were “small.” Sputnik 1 was the 
first artificial Earth satellite (Figure 1a) [1]. It was launched by the Soviet Union 
from Baikonur Cosmodrome on October 4, 1957, into an elliptical low Earth orbit 
(LEO) with an inclination of 65°. Sputnik 1 was a 58-cm-diameter metal sphere, 
weighing approximately 84 kg, with four radio antennas transmitting at 20.005 and 
40.002 MHz. Tracking and studying Sputnik 1 signals from Earth provided valu-
able information on upper atmosphere density, and the propagation of radio signals 
provided information on the ionosphere. Sputnik did not have solar panels, so the 
mission ended after 3 weeks when batteries died.
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Explorer 1 was the first US satellite (Figure 1b) [2], and the third one after 
Sputnik 1 and 2. It was launched from Cape Canaveral, Florida, on January 31, 
1958. Explorer 1 was 205 cm tall and 15 cm in diameter, weighing nearly 14 kg. It 
was the first spacecraft to detect the Van Allen radiation belts. Explorer 1 did not 
have solar panels either, so after 4 months the mission ended when batteries were 
exhausted.

Vanguard 1 was the fourth artificial Earth satellite (Figure 1c) [3]. It was 
launched by the USA from Cape Canaveral on March 17, 1958, into a 654 by 3969 km 
elliptical orbit with an inclination of 34.25°. Vanguard 1 was a 16.5-cm-diameter 
aluminum sphere, weighing just 1.47 kg, and it was the first satellite with six solar 
cells powering two beacons at 108 and 108.03 MHz, which were used to measure the 
total electron content.

During the first two decades of the space age, each satellite had its own design. 
They were the art pieces of the space craftsmen. Standard spacecraft busses were 
practically unknown until the end of the 1970s. In the early 1980s, microsatellites 
emerged and adopted a radically different design approach to reduce costs, focusing 
on available and existing technologies and using properly qualified commercial 
off-the-shelf (COTS) components.

For many years, satellite mass increased as illustrated in Table 1. However, 
except for some military, astronomy, and specific communication applications, it 
seems that the era of massive satellites is over.

The “small satellite mission philosophy” represents a design-to-cost approach, 
with strict cost and schedule constraints, often combined with a single mission 
objective in order to reduce complexity. Figure 2 from [14] summarizes the stan-
dardized definition of satellites according to their weight: picosatellites (0.1–1 kg), 
nanosatellites (1–10 kg), microsatellites (10–100 kg), and mini-satellites or small/
medium satellites (100–1000 kg).

In the field of Earth observation (EO), this has led to smaller target-focused mis-
sions which, with reduced spacecraft and launch costs (shared rides), are enabling 
massive (>100) satellite constellations of nano- and microsatellites with reduced 
revisit times, unthinkable just a few years ago.

In the field of satellite communications, there are plans as well to deploy mas-
sive constellations of LEO satellites to provide worldwide Internet coverage, IoT 
services, and machine-to-machine (M2M) communications.

It is anticipated that enhanced inter-satellite communication capabilities (LEO-
ground, LEO-LEO, LEO-MEO, and LEO-GEO) will also improve the performance 
of EO systems [15]. All this is leading to the evolution of the space segment from 
monolithic to distributed and federated satellite systems [16], aiming at establishing 
win-win collaborations between satellites to improve their mission performance by 
using the unused onboard resources.

Figure 1. 
Pictures of (a) sputnik 1 [4], (b) explorer 1 [5], and (c) vanguard 1 [6].
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1.2 The CubeSat standard

The so-called CubeSat standard was conceived in 1999 by Profs. Jordi Puig-Suari 
of California Polytechnic State University (CalPoly) and Bob Twiggs of Stanford 
University to allow graduate students to conceive, design, implement, test, and 
operate in space a complete spacecraft in a “reasonable” amount of time (i.e., 
the duration of their studies). CubeSats are small satellite multiples of 1 U (1 U: 
10 cm × 10 cm × 11.35 cm, weighing less than 1.33 kg), including all the basic sub-
systems as large satellites but using COTS components. The CubeSat “standard” only 
defines the mechanical external interfaces, i.e., those referring to the orbital deployer. 
Originally, it was never meant to be a standard, however, because of its simplicity, it 
soon became a “de facto” standard. As Prof. Twiggs said in an interview to Spaceflight 
Now in 2014: “It all started as a university education program satellite. It was kind of 
funny. I didn’t think that people would criticize it as much as they did, but we got a lot of 
feedback (…). Another thing that was kind of funny we had no interest from NASA or any 
of the military organizations. It just wasn’t anything they were interested in, so it was all 
funded without any funding from those aerospace organizations.” The first six CubeSats 
were launched on a Russian Eurockot on June 30th, 2003. Then, after more than a 
decade in which the concept silently matured in university labs, space agencies got 
interested and showed that CubeSat-based mission reliability could be improved by 
proper engineering. In 2013, it all took off on the commercial Earth Observation sec-
tor with the first launches from two companies that are now running 100+ CubeSats 
constellations for optical imaging or weather prediction, with very low revisit times. 
Today, many of the initial CubeSat limitations (most notably size, available power, 
and down-link bandwidth) are being overcome, and the same revolution is starting to 
take place in the fields of telecommunications, and astronomical scientific missions.

Spacecraft Agency application Mass Duration

KH-11 Kennen (a.k.a. 
CRYSTAL, EECS, 1010) [7]

US NRO/optical imaging 19,600 kg 1976–present

Proton [8] USSR/astronomy 17,000 kg 1965–1969

Compton Gamma Ray Obs. [9] US NASA/astronomy 16,329 kg 1991–2000

Lacrosse [10] US NRO/SAR 14,500–16,000 kg 1988–2005

Hubble Space Telescope [11] US NASA/astronomy 11,110 kg 1990–present

ENVISAT [12] ESA/Earth observation 8211 kg 2002–2012

Telstar 19 V [13] Canada/communications 7075 kg 2018–present

Table 1. 
Heaviest spacecrafts (excluding space stations and manned orbiters).

Figure 2. 
Satellite classification [14].
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The current CubeSat Design Specification defines the envelopes for 1 U, 1.5 U, 
2 U, 3 U and 3 U+, and 6 U form factors (see, e.g., CubeSat Design Specification Rev. 
13 or 6 U CubeSat Design Specification in [17], Figure 3), and the standardization 
of 12 U and 16 U is in progress, although some companies have produced standards 
up to 27 U [18]. On the other side, smaller picosatellites, the so-called PocketQubes, 
about 1/8 the size of a CubeSat, have also been standardized [19].

Probably, what has had the most significant impact in the popularization of 
the CubeSat standard has been the capability to separate the interface between the 
spacecraft and the poly-picosatellite orbital deployer (P-POD) and between the dis-
penser and the rocket itself. There are two different classes of PODs. The first type 
is the classical one with four rails in the corners [17], and the second one is with 
tables [18]. Note however that modern deployers from ISIS and NanoRacks allow 
larger deployables, wider solar panels, and thinner rails as compared to original 
P-POD, e.g., increased extruded height up to 9 mm and up to 2 kg per 1 U.

As of June 2019, 64 countries have launched nanosatellites or CubeSats. The total 
number of nanosatellites launched is 1186, from which 1088 are CubeSats. Most of 
them (273) have been launched from the International Space Station at ~400 km 
orbital height with an inclination of 51.6° and the rest at low Earth orbits (LEO) 
typically at 500 km sun-synchronous orbit (SSO) with an inclination of 97.5° (217 
CubeSats) and 580 km height with 97.8° inclination (80 CubeSats). So far, only two 
(MarCO-1 and MarCO-2) have performed interplanetary missions.

1.3 Current status

Figure 4 shows the number of nanosatellites launched per year (a) and organi-
zation, either companies, universities, space agencies, etc., or (b) form factor from 
picosats, 0.25 up to 16 U.

As it can be appreciated, until 2013 most CubeSats were launched by universities 
and research institutes, and most of them were 1 U or 2 U. However, in 2013 the 
first 3 U CubeSats from the Planet Labs Inc. [22] and Spire Global Inc. [23] were 
launched. That was the beginning of today’s revolution in EO, and—as of June 10, 
2019—these two companies had launched the largest commercial constellations 
ever with 355 and 103 CubeSats, respectively. The following ones have launched 
at most seven CubeSats. Therefore, 3 U CubeSats are dominating the scene, and 
they will over the next decade, followed by far by the 1 U, 2 U, and 6 U form factors 
(Figure 5). However, it is expected that the next wave of growth will be based on 
6 U and 12 U CubeSats, which offer the right balance between very capable payloads 
and limited manufacturing and launch costs.

Table 2 (extracted from the database in [21]) shows the main companies that 
have launched CubeSats, the number of launched and planned CubeSats, the year 
of the first launch, the form factor, the application field, and some technical details. 
The rows marked in light blue correspond to EO optical imaging, in light green to EO 

Figure 3. 
CubeSat form factors from 1 U to 12 U [20].
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passive microwaves applications, in dark green to EO active microwaves applications, 
and in light orange typically to IoT and M2M communications. In the next sections, 
we will focus on the EO applications but keeping in mind that future advances in 
satellite communication networks will also improve the performance of EO systems 
and enable new ones as well as distributed ones (e.g., large synthetic apertures).

The interested reader is encouraged to consult [21] for the most updated infor-
mation as these numbers can change rapidly. Note that the number of CubeSats that 
can be launched in a single rocket can be very high. The current record is held by 
the Indian rocket PSLV-C37 that, on February 15, 2017, launched Cartosat-2D and 
103 CubeSats, from which 88 are from the Planet Labs Inc. and 8 are from the Spire 
Global Inc. The interested reader is invited to see the deployment of these satellites 
from the onboard camera at [24].

Figure 4. 
The number of nanosatellites launched per year and (a) organization or (b) form factor [21].
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Organization Launched/

planned size

First 

launch

Form 

factor

Field Technical and comments

Planet Labs 355/150 2013 3 U Earth 
observation

29 MP sensor taking 
images with 3.7 m ground 
resolution and swath of 
24.6 km × 16.4 km from 

475 km altitude

Spire 103/150 2013 3 U Weather, 
AIS, ADS-B, 
earthquake

Measure change in GPS signal 
after passing atmosphere 

to calculate precise profiles 
for temperature, pressure, 

and humidity. Investigating 
earthquake (ELF) detection

AprizeSat 12/12 2002 Microsat IoT/M2M Low-cost satellite data 
services for monitoring the 

fuel level and oil and gas 
pipelines and mobile tracking 

of shipping containers, 
railcars, and trailers

GeoOptics 7/N/A 2017 6 U Weather Using GPS radio occultation 
for weather data

Swarm 

Technologies

7/150 2018 0.25 U, 
1 U

IoT/M2M World’s smallest two-way 
communication satellites

Commsat 7/72 2018 Microsat, 
6 U, 3 U

IoT/M2M, 
AIS

Ladybeetle 1 is 100 kg and 
3 CubeSats of 6 U and 3 of 

3 U. Plans 4 more in 2019 and 
complete 72 satellites in 2022

Astro Digital 6/25 2014 6 U, 16 U Earth 
observation

6 U has 22 m resolution in 
RGB and NIR. 16 U has 2.5 m 
resolution in RGB, red edge, 
and NIR with 70 MP sensor

Fleet Space 4/100 2018 3 U, 12 U, 
1.5 U

IoT/M2M Main constellation potentially 
with 12 U CubeSats

Sky and Space 

Global

3/200 2017 8 U, 6 U, 
3 U

IoT/M2M Communication service 
(voice, data, and M2M). 

Plans to use inter-satellite 
links

Figure 5. 
The number of CubeSats by form factor [21].
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Organization Launched/

planned size

First 

launch

Form 

factor

Field Technical and comments

NanoAvionics 2/72 2017 6 U, 12 U IoT/M2M Global IoT constellation-as-
a-service system aimed at 
IoT/M2M communication 

providers

Helios Wire 2/30 2017 6 U, 16 U IoT/M2M Uses 30 MHz of S-band 
spectrum to receive tiny data 

packages from billions of 
sensors

Kepler 

Communications

2/140 2018 3 U, 6 U IoT/M2M, 
Internet

IoT/M2M data 
communication network. 
Monthly fee based on the 

data amount. Hope to achieve 
rates of 1–40 Mbps

Analytical Space 1/N/A 2018 6 U IoT/M2M, 
orbital data 

relay, optical 
comms.

In-orbit relays receiving radio 
and downlink to ground 

with laser communication 
enabling more data downlink 

from satellites

Hiber 2/48 2018 6 U IoT/M2M Sends small packets of 
data (140 characters, 

accompanied by time stamp, 
identifier, and location)

Guodian Gaoke 2/38 2018 6 U IoT/M2M Reliable and economical 
satellite IoT services and 

industry solutions for our 
customers

Astrocast 2/80 2018 3 U IoT/M2M Targeting L-band. Inter-
satellite links. NanoSpace 

propulsion. Further 80 
satellites in orbit by 2022

AISTech 2/150 2018 2 U, 6 U IoT/M2M, 
ADS-B, AIS, 
IR imaging

Two-way comms., thermal 
imaging to detect forest fires, 

aviation tracking (ADS-B)

ICEYE 2/18 2018 Microsat SAR 21-launch agreement with 
Vector Space Systems. 

10-platform agreement with 
York Space Systems

Harris Corp. 1/12 2018 6 U Weather Immediate access to 3D wind 
data sets from Harris-owned 

HyperCubes

SIRION 1/N/A 2018 CubeSat IoT/M2M IoT/M2M constellation. 
Partnered closely with Helios 
Wire. Sharing spectrum and 

satellites

Reaktor Space 1/36 2018 6 U, 2 U Earth 
observation, 

hyperspectral

Hyperspectral constellation 
for smart agriculture with 
100’s of spectral bands and 

20 m resolution

Myriota 1/50 2018 CubeSat IoT/M2M Run unique, patented 
software which provides 

reliable, direct-to-satellite 
Internet of Things (IoT) 

connectivity
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2. Science opportunities

As illustrated in Table 2, by 2010 the maturity achieved by CubeSats and 
dispensers/launchers, on one side, and by some EO technologies (high-resolution 
multispectral imagery and GNSS-RO), on the other side, made possible that a 
number of companies developed applications based on commercial constella-
tions. Today, thanks to an intense technology R&D, the situation is completely 
different.

The reasons for this have been threefold. On one side, due to their small size, 
it has been difficult to include deployable solar panels so as to increase the electri-
cal power generated, and, on the other side, it has been difficult to include large 
antenna reflectors and to transmit enough RF power so as to have a satisfactory 
space-to-Earth link budget. The third reason was the poor pointing accuracy that 
now has significantly improved thanks to miniaturized star trackers and reaction 
wheels. So far, these reasons have kept active optical (LIDAR) and active microwave 
sensors (RADAR) away from CubeSats, although it has to be stated that synthetic 
aperture radars (SAR) have been recently boarded in microsatellite platforms suc-
cessfully (ICEYE, Table 2).

For spaceborne EO applications, frequency bands are restricted to those in 
which the atmosphere exhibits a high transmissivity, that is, the microwave and 
millimeter-wave parts of the radio spectrum and the long-wave infrared (LWIR), 
near infrared (NIR), and visible (VIS) parts of the spectrum, as illustrated in 
Figure 6.

For astronomical observations, ground-based observations are also limited 
to Earth’s atmospheric windows in the radio and optical parts of the spectrum 
(Figure 6). Therefore, to explore the remaining parts of the EM spectrum, space-
based observatories are required.

Organization Launched/

planned size

First 

launch

Form 

factor

Field Technical and comments

LaserFleet 1/192 2018 CubeSat Internet, 
optical 
comms.

Provide reliable 1 Gbps 
communication rates to 

aircraft at altitude. Higher 
effective data rate at a lower 
cost than the best-in-class 

Ku/Ka/V

ADASpace 1/192 2018 Microsat 
CubeSat

Earth 
observation

Establish a global, minute-
level updated Earth image 
data network consisting of 

192 satellites

Orbital Micro 

Systems

1/40 2019 3 U Weather Weather constellation utilizes 
microwave technology to 
capture temperature and 
moisture measurements, 

refreshed and delivered every 
15 minutes

Lacuna Space 1/32 2019 3 U, 6 U IoT/M2M IoT/M2M constellation. 
Selected Open Cosmos to 
build 3 U demonstrator

Blue for constellations for optical EO, light green for passive microwave EO, dark green for active microwave EO, and 
orange for IoT and M2M communications.

Table 2. 
The main existing and planned CubeSats and microsat commercial constellations.
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In any case, either for EO or astronomical observations, the lower cost of indi-
vidual CubeSat-based missions allows having more units, which reduces the revisit 
time at a given cost. This offers a number of new science opportunities [26]:

• Earth science:

 ○ Multipoint high temporal resolution of Earth processes

 ○ Mitigation of data gaps

 ○ Continuous monitoring

• Astrophysics:

 ○ Space telescopes allow access to energies across the whole electromagnetic 
spectrum avoiding large gaps in the radio, far IR, and the entire high-energy 
range (UV to γ-rays).

 ○ Feasibility to conduct time domain programs, which are very challenging 
with flagship missions such as the Hubble Space Telescope and James Webb 
Space Telescope.

 ○ Heliophysics, e.g., measurement of plasma processes in the magnetosphere-
ionosphere system.

 ○ Planetary science: in situ investigation of planetary surfaces or atmospheres.

 ○ Astronomy and astrophysics: low-frequency radio science and the search for 
extrasolar planets.

• Biological and physical sciences, e.g., survival and adaptation of organisms to space

2.1 NASA science and technology strategy using CubeSats

Since the CubeSat standard was proposed in 1999, it took about a decade for NASA to 
start the Educational Launch of Nanosatellites (ELaNa) initiative in 2010. Partnerships 
were established with universities in the USA to design and launch CubeSats through 
NASA’s CubeSat Launch Initiative (CSLI). Since then, 85 CubeSat missions have flown 
on 25 ELaNa calls, and 34 more CubeSats are manifested in 4 more calls. While it 
provides NASA with valuable opportunities to test emerging technologies that may 
be useful in future space missions, university students get involved in all phases of the 
mission, from the instrument and satellite design to its launch and monitoring.

Figure 6. 
Electromagnetic spectrum with different bands indicated [25].
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As early as 2012, NASA’s Science Mission Directorate (SMD) technology programs 
began to accommodate the use of CubeSats for validation of new science instruments 
and strategically promoted the use of small spacecraft to advance its science portfolio.

On one side, the Earth Science Technology Office (ESTO), which is responsible 
for identifying and developing technologies in support of future Earth Science 
Division missions, manages three major observation technology programs that 
solicit new awards on a 2–3-year selection cycle, as shown in Table 3 [27].

And on the other side, following the outcomes of [28] in 2014, the Planetary 
Science Division (PSD) has also made significant strides toward accommodating 
small satellites for exploration of the solar system and for astrophysics research. 
Table 4 [27] summarizes the three main planetary science technology programs.

The result of these continued investments is summarized in Table 5, where a 
number of EO techniques that were infeasible in 2012 [29] were all feasible 5 years 
later [30], many of them demonstrated by CubeSat missions, some of them com-
mercial, and some even operational constellations. CubeSat-based astronomy 
missions will be discussed later.

Figure 7 illustrates some of these NASA CubeSat-based EO missions. They 
follow the 3 U or 6 U form factor and include deployable solar panels for higher 
electrical power generation capabilities. RainCube (Figure 7c) also includes a 
0.5-m-diameter deployable Ka band that stows in 1.5 U. This antenna has a gain of 
42.6 dBi, and it was optimized for the radar frequency of 35.75 GHz. References are 
provided for more information on the cited missions.

Earth science program Approx. funding Description

Instrument Incubator 
(IIP)

$28 M/year Nurtures the development and assessment of 
innovative remote sensing concepts in ground, 
aircraft, or engineering model demonstrations (early 
to mid-stage development)

Advanced Components 
(ACT)

$5 M/year Enables the research, development, and 
demonstration of component- and subsystem-level 
technologies to reduce the risk, cost, size, mass, and 
development time of missions and infrastructure

In-Space Validation 
of Earth Science 
Technologies (InVEST)

$5 M/year Advances the readiness of existing Earth science-
related technology and reduces risks to future 
missions through space flight validation using 
CubeSats

Table 3. 
Earth science technology programs relevant to small satellites [27].

Planetary science program Approx. funding Description

Planetary Instrument Concepts 
for the Advancement of Solar 
System Observations (PICASSO)

$4 M/year Supports the development of spacecraft-based 
instrument components and systems that show 
promise for future planetary missions. The 
program supports early-stage technologies

Maturation of Instruments 
for Solar System Exploration 
(MatISSE)

$6 M/year Supports the advanced development of 
spacecraft-based instruments that may be 
proposed for future planetary missions that 
are at the middle stages of technology readiness

Development and Advancement 
of Lunar Instruments (DALI)

$5 M/year Supports the development of science 
instruments for small lunar landers and 
orbital assets that are at the middle stages of 
technology readiness

Table 4. 
Planetary science technology programs relevant to small satellites [27].
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2.2 ESA science and technology strategy using CubeSats

On the educational side, the ESA launched in February 2008 the first Call for 
CubeSat Proposals to universities in ESA member and cooperating states. Seven 
student-built CubeSats were launched onboard the Vega maiden flight on February 
13, 2012. Since then, 12 more CubeSats have been enrolled in the first and second 
editions of the “Fly Your Satellite!” program.

Since 2013, the ESA has invested more than 16 M€ as part of the General 
Support Technology Program (GSTP) FLY Element [34], in 12 CubeSat IOD mis-
sions [35, 36]. As part of ESA’s Systems Department Project Office of the Systems 

Technology 2012 technology review 

by Selva and Krejci 

2017 technology review 

by Freeman et al.

Justification

Atmospheric chemistry 
instruments

Problematic Feasible PICASSO, IR sounders

Atmospheric temperature 
and humidity sounders

Feasible Feasible —

Cloud profile and rain radars Infeasible Feasible JPL RainCube demo

Earth radiation budget 
radiometers

Feasible Feasible SERB, RAVAN

Gravity instruments Feasible Feasible No demo mission

Hi-res optical imagers Infeasible Feasible Planet Labs.

Imaging microwave radars Infeasible Problematic Ka-Band 12 U design

Imaging multispectral 
radiometers (Vis/IR)

Problematic Feasible AstroDigital

Imaging multispectral 
radiometers (μW)

Problematic Feasible TEMPEST

Lidars Infeasible Problematic DIAL laser occultation

Lightning imagers Feasible Feasible —

Magnetic field Feasible Feasible InSPIRE

Multiple direction/
polarization radiometers

Problematic Feasible HARP Polarimeter

Ocean color instruments Feasible Feasible SeaHawk

Precision orbit Feasible Feasible CanX-4 and CanX-5

Radar altimeters Infeasible Feasible Bistatic LEO-GEO/
MEO

Scatterometers Infeasible Feasible CYGNSS (GNSS-R)

In red: commercial companies.

Table 5. 
EO technologies for CubeSat-based missions [29, 30].

Figure 7. 
Artist’s view of (a) TEMPEST [31], (b) RAVAN [32], and (c) RainCube missions [33].
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Department, Directorate of Technical and Engineering Quality, in April 2019, the 
CubeSat Systems Unit was created.

In addition to the work conducted by this unit, there are a number of other 
CubeSat-related initiatives in ESA:

• The Directorate of Telecommunications and Integrated Applications is developing 
a pioneer series of CubeSat missions, to test novel telecommunication technologies.

• The Directorate of Operations has OPS-SAT [37] ready to fly, an IOD test-bed 
for innovative mission control software.

• The Directorate of Human and Robotic Exploration is considering a CubeSat 
mission to test out a key capability for Mars sample return optical detection 
and navigation to a sample container from the orbit.

• The Science Directorate is also adapting some CubeSat technologies for opera-
tion in the deep space environment as well as studying the potential use of 
CubeSats in support of planetary science missions.

• The Directorate of Earth Observation will fly FSSCat [38, 39], a double 6 U 
CubeSat mission for tandem observation of the polar regions and for soil 
moisture mapping using the FMPL-3 (UPC, ES), a combined L-band micro-
wave radiometer and GNSS-Reflectometer using a software-defined radio, and 
HyperScout-2 (Cosine, NL), a VNIR and TIR hyperspectral imager enhanced 
with artificial intelligence for cloud detection (PhiSat-1).

The first ESA CubeSat projects are listed in Table 6. In addition to these mis-
sions, numerous studies have focused on the applications of CubeSat missions and 

Figure 8. 
Artist’s view of (a) GOMX-3 [35] and (b) GOMX-4 [36] nanosatellites in space (credits GomSpace) and  
(c) FSSCat mission [38, 39].
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miniaturized payloads, including remote sensing with cooperative nanosatellites, 
asteroid impact missions, lunar CubeSats, astrobiology/astrochemistry experiment 
CubeSats, asteroid observer missions, etc.

Organization Mission Launch Form 

factor

Field Technical and comments

GomSpace (DK) GOMX-3 2015 3 U Tech demo ADS-B, GEO Satcom 
signal monitoring, X-band 
transmitter (Figure 8a)

GomSpace (DK) GOMX-4B 2018 2 × 6 U Tech demo 
Earth 

observation

Inter-satellite link and 
propulsion while in tandem 

with GOMX-4A (GomSpace, 
Ministry of Defense, DK), 

star tracker
HyperScout compact 

hyperspectral VNIR imager 
(Cosine, NL) (Figure 8b)

VKI (BE) Qarman 2019 3 U Tech demo Demonstrates reentry 
technologies, novel 

heatshield materials, new 
passive aerodynamic drag 
stabilization system, and 
telemetry transmission 

during reentry via data relay 
satellites in low Earth orbit

RMI (BE)

KU Leuven (BE)

SIMBA 2019 3 U Earth 
observation

Total solar irradiance and 
Earth radiation budget

BIRA-IASB (BE)

VTT (FI)

Clyde Space 

(UK)

PICASSO 2019 3 U Atmosphere 
and ionosphere

Stratospheric ozone 
distribution, mesospheric 
temperature profile, and 

ionospheric electron density

C3S and MTA 

EK (HU)

ICL (UK)

Astronika (PO)

RadCube 2019 3 U Tech demo
Space weather

3 U platform
In situ space radiation and 

magnetic field in LEO

RUAG (AU)

TU Graz (AU) 

Seibersdorf 

Labor GmbH 

(AU)

PRETTY — 3 U Earth 
observation

GNSS-R at low grazing 
angles, radiation dosimeter

ESA OPS-SAT 2019 3 U Tech demo Experimentation with 
onboard and ground 

software by offering a 
safe and reconfigurable 

environment

UPC (ES)

Golbriak (EE)

Deimos Eng 

(PT)

Tyvak Intl. (IT)

Cosine (NL)

FSSCat 2019 2 × 6 U Tech demo
Earth 

observation

RF and O-ISL, federated 
satellite experiment

3Cat-5/A: Microwave 
radiometer and GNSS-R 

(UPC, ES)
3Cat-5/B: HyperScout-2 

VNIR + TIR hyperspectral 
imager (Cosine, NL) 

(Figure 8c)

In blue from the CubeSat Systems Unit, Directorate of Technical and Engineering Quality; in orange from the 
Directorate of Operations; and in green from the Directorate of Earth Observation (2017 ESA S^3 Challenge, 
Copernicus Masters Competition).

Table 6. 
The first ESA CubeSat-based missions.
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3. Astronomy and interplanetary missions using CubeSats

As highlighted in Sections 1.3 and 2.1, the majority of the CubeSats orbiting 
today are devoted to Earth observation, notably from two commercial companies, 
followed by communications. In the coming years, these two categories will still 
dominate. Although the largest increase will occur in communication satellites, 
the growth in scientific (non-EO) missions will not be negligible (from 10 to 20%, 
Figure 9) considering that the predicted number of satellites to be launched is going 
to multiply by more than a factor of 3 (see Figure 4).

In particular, until 2017 there were only 5 astronomy missions, and in the 
field interplanetary missions, until 2018 only 14 nano−/microsatellites had been 
launched to destinations outside the LEO. Beyond-the-Earth orbit is the domain 
of civil agencies who, for the sake of reliability, have been historically reluctant to 
invest in small satellites. However, things may be changing, since only in 2018 four 
nano−/microsatellites made their way beyond the Earth orbit, which is more than 
those in the previous 5 years all together, and 35 more are expected to be launched 
in the coming 5 years. Naturally, most of them target the moon, but a non-negligible 
fraction will be devoted to interplanetary missions (Figure 10).

As in other fields, at the beginning all the astronomy or heliophysics missions were 
conducted by universities, and it was not until 2017 that the first NASA JPL mission 
(ASTERIA) was launched. Achieving state-of-the-art astronomy with CubeSats has 
become possible due to advances in precision pointing, communications technology, 
and deployables, among others (Tables 5.1 and 5.2 of [40]). Table 7, distilled from [21], 
shows the main astronomy and beyond-the-Earth past and planned missions. It also 
shows that the majority of these missions are based on the 6 U form factor, which is the 
smallest one capable to accommodate all the advanced attitude determination and con-
trol systems (ADCS), larger deployable solar panels and antennas, as well as telescope 
optics. It is also remarkable that so far there are no funded CubeSat missions in the far 
IR because the thermal stability and detector cooling require cryo-coolers for CubeSats 
that have yet to be developed for astrophysics due to power and space limitations [41].

It is worth noting that the large number of CubeSats to be launched to the Moon 
in 2020 corresponds to the Artemis-1 mission (Figure 11), formerly known as 
Exploration Mission-1. The first mission for NASA’s Orion rocket and the European 
Service Module will send the spacecraft beyond the moon and back. Thirteen 
low-cost CubeSat missions were competitively selected as secondary payloads 
on the Artemis-1 test flight, all of them having the 6 U form factor. The selected 
CubeSats are Lunar Flashlight, Lunar South Pole, Near-Earth Asteroid Scout, 

Figure 9. 
Satellite application trends (1–50 kg): (a) 2014–2018 and (b) 2019–2023 (adapted from [14]).
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Figure 10. 
CubeSats launched beyond the earth orbit: 14 from 2003 to 2018 and 35 planed from 2019 to 2023 (adapted 
from [14]).

Organization Mission Launch Form 

factor

Technical and comments

Morehead State 

University

Kentucky Space

CXBN 2012 2 U • Cosmic X-ray background (CXRB) 
in the 30–50 keV range

University of 

Colorado

CSSWE 2012 3 U • Measures the directional differential 
flux of solar energetic protons 
(SEPs) and Earth’s radiation belt 
electrons

Austria

Canada

Poland

BRITE 2013
2014

8 U 
(2 × 2 × 2)

• BRITE Target Explorer 
Constellation: BRITE-Toronto, 
BRITE-Heweliusz, UniBRITE, 
BRITE-Austria, BRITE- 
Lem, BRITE-Montreal

• Conducts photometric observa-
tions of some of the brightest 
stars in the sky to examine their 
variability. Observations will have 
a precision at least 10x better than 
achievable from ground-based 
observations

University of 

Colorado at Boulder

MinXSS 2015 3 U • Provides spectral observations of 
the solar X-rays near the maximum 
of solar cycle 24 from 0.6 keV 
(20 Å) to 25 keV (0.5 Å)

JPL (USA)

MIT (USA)

ASTERIA 2017 6 U • Detects exoplanetary transits across 
bright stars

• Pointing accuracy of ±0.003° 
(1σ) for 2 axes and ± 0.007° (1σ) 
for the third axis, with 0.5″ rms 
over 20 min, pointing repeatabil-
ity of 0.001″ rms from orbit to  
orbit

• ±0.01 K level temperature stability 
of the imaging detector

ERC, CNRS, ESEP 

Lab, PSL Université 

Paris, Fondation 

MERAC, CNES, 

CCERES and Obs. 

de Paris – LESIA

PicSat 2018 3 U • To observe in visible light the 
potential transit of the

• directly imaged giant planet β 
Pictoris b and perhaps even its 
moons and debris
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Organization Mission Launch Form 

factor

Technical and comments

University of Iowa HaloSat 2018 6 U • Measurement of soft X-ray emission 
from the hot halo of the Milky 
Way galaxy to resolve the missing 
baryon problem. Measure O VII and 
O VIII line emission in 400 fields 
(FOV ~ 10°) over 90% of the sky. 
Study of solar wind charge exchange 
emission to remove uncertainty 
on the oxygen line emission 
measurements

• First NASA-funded astronomy 
mission

Spacety (China) Tongchuan-1 2018 6 U • Detects signals from gamma-ray 
bursts, to identify and locate the 
electromagnetic counterparts to 
gravitational waves

University of 

Colorado Boulder

MinXSS-2 2018 3 U • As MinXSS

University of 

Colorado

CSIM 2018 6 U • Observes the solar spectral 
irradiance

DARPA SHFT-1 2018 3 U • Collects radio-frequency signals in 
the HF (5–30 MHz) band to  
study the galactic background emis-
sions, the HF signals from Jupiter, 
and the signals from terrestrial 
transmitters after having passed 
through the Earth’s ionosphere

NASA MarCO-1/
MarCO-2

2018 6 U • Data relay to send data back to Earth 
during InSight’s entry, descent 
and landing operations at Mars. 
Technology capability demonstra-
tion of communications relay system

University of Hawaii 

at Manoa

NEUTRON-1 2019* 3 U • Measures low-energy neutron flux 
in LEO environment

Boston University CuPID 2019* 6 U • Miniaturized soft X-ray imaging 
telescope

University of 

Colorado Boulder

CUTE 2020 6 U • To conduct a survey of exoplanet 
transit spectroscopy in the near 
UV of a dozen short-period, large 
planets orbiting F,G, and K stars 
to constrain stellar variability and 
measure mass loss rates

• Second NASA-funded astronomy 
mission

Isaware (FI) XFM Cube 2020 3 U • Measuring X-ray fluxes

Lockheed Martin LunIR 2020 6 U • Lunar flyby to collect spectroscopy 
and thermography (MWIR sensor) 
for surface characterization, remote 
sensing, and site selection

Arizona State 

University

LunaH-Map 2020 6 U • High-resolution mapping of hydro-
gen content of the entire south pole 
of the moon, including permanently 
shadowed regions up to a meter 
beneath the lunar surface
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BioSentinel (carrying the first living creatures into deep space since 1972), SkyFire, 
Lunar IceCube, CubeSat for Solar Particles (CuSP), Lunar Polar Hydrogen Mapper 
(LunaH-Map), EQUULEUS, OMOTENASHI, ArgoMoon, Cislunar Explorers, Earth 
Escape Explorer (CU-E3), and Team Miles.

Talking about interplanetary missions, on May 5, 2018, NASA launched a sta-
tionary lander called InSight to Mars. InSight landed on Mars on November 26, 2018. 
Riding along with InSight were two CubeSats—the first of this kind of spacecraft 
ever to fly to deep space [42]. Both MarCO-A and MarCO-B succeeded in a flyby of 
Mars, relaying data to Earth from InSight as it landed on Mars. Figure 12 shows an 
artist view of the MarCOs with the reflectarray used for communication purposes.

In addition to the “classical” astronomy, lunar and Martian missions cited 
above, CubeSats are nowadays finding their way to other bodies of the solar sys-
tem, and there are proposals [43] to send them to Venus (CUVE mission), Deimos 
and Phobos asteroids (PRISM and PROME missions), comets (PrOVE mission), 
or Jupiter (ExCSITE mission, [44]). Figure 13 from [44] illustrates the LEO and 
beyond-LEO CubeSat exploration initiatives.

Organization Mission Launch Form 

factor

Technical and comments

NASA JPL Lunar Flashlight 2020 6 U • Illuminates with lasers in four 
different bands the permanently 
shadowed regions and detect 
water ice absorption bands in the 
near-infrared

Morehead State 

University

Lunar IceCube 2020 6 U • Prospects for water ice and other 
lunar volatiles as a function of 
time of day, latitude, and regolith 
composition/mineralogy from a 
low-perigee lunar orbit flying only 
100 km (62 miles) above the lunar 
surface

Arizona State 

University (USA)

SPARCS 2021 6 U • Monitoring in the far (153–171 nm) 
and near UV (258–308 nm) of low-
mass stars (0.2–0.6 Mʘ); the most 
dominant hosts of exoplanets

• Each star observed for at least one 
stellar rotation (4–45 days)

• Third NASA-funded astronomy 
mission

NASA’s Goddard 

Space Flight Center

BurstCube 2021 6 U • Detection of gamma ray transients 
in the 10–1000 keV energy range. 
Valuable capability to catch the pre-
dicted counterparts of gravitational 
wave sources

• Fourth NASA-funded astronomy 
mission

ESA

Luxembourg Space 

Agency (LU)

GomSpace (DK)

M-ARGO 2023 12 U • Demonstrating asteroid rendezvous 
and identifying in situ resources 
with multispectral imager and laser 
altimeter

ESA HERA 
CUBESAT

N/A 2x6 U • Observing asteroid and deflection 
assessment

Table 7. 
Non-comprehensive list of astronomy and beyond-the-earth CubeSat-based missions.
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Figure 11. 
Overview of the mission plan for Artemis-1: CubeSats will be deployed at steps A, B, C, and D [https://www.
nasa.gov/image-feature/artemis-1-map].

Figure 12. 
Artist view of MarCO-A and MarCO-B [42].

Figure 13. 
Solar system exploration with CubeSats and nanosats [44].
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4. Conclusions and way forward

Since its conception in 1999, CubeSats have produced a “disruptive innova-
tion”: from simple applications at the bottom of a market (mostly educational), 
they have relentlessly moved up, eventually displacing established medium-size 
competing satellites. However, CubeSats cannot displace all the large space mis-
sions as physics laws cannot be changed, i.e., large apertures and focal lengths are 
required to collect faint signals and achieve large angular resolution. However, 
CubeSats are finding their own niche in many Earth observation, astronomical, 
and communications applications where short revisit times or even continuous 
monitoring is required.

Early CubeSats typically had short lifetimes once in orbit (a few months), but 
with increased ground testing and added redundancies, lifetimes have grown 
significantly, up to 4–5 years in some cases.

Despite all these outstanding improvements, in order to exploit the full potential 
of CubeSats, many technologies still need to be developed. Table 8 summarizes the 
enabling technologies required for different science applications, indicating in red 
the most challenging technologies and applications, notably increased communica-
tions performance, reliability, thermal stability, and calibration accuracy, to form 
constellations or formation flying satellite topologies to create large interferometers 
and distributed apertures.

Science discipline Enabling technology Example application

Solar and space 
physics

Propulsion Constellation deployment and maintenance, 
formation flying

Sub-arcsecond attitude control High-resolution solar imaging

Communications Missions beyond low Earth orbit

Miniature field and plasma 
sensors

In situ measurements of upper atmosphere 
plasmas

Earth science Propulsion Constellations for high-temporal resolution 
observations and orbit maintenance

Miniaturized sensors Stable, repeatable, and calibrated datasets

Communications High data rates

Planetary science Propulsion Orbit insertion

Comms&Comms Infrastructure Direct/indirect to Earth communications

Radiation-tolerant electronics Enhanced reliability in planetary 
magnetospheres, long flights

Deployables Deployable solar panel enhanced power 
generation

Deployable mirrors and antennas

Astronomy and 
astrophysics

Propulsion Constellations for interferometry, 
distributed apertures

Sub-arcsecond attitude control High-resolution imaging

Communications High data rate

Deployables Increased aperture and thermal control

Miniaturized sensors UV and X-ray imaging

Physical and 
biological

Thermal control Stable payload environment

Table 8. 
CubeSat-enabling technologies and potential applications for each science discipline (adapted from [40]).
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In the field of Earth observation, future developments in nanosat sensors will 
likely occur:

• In the field of passive microwave sensors:

 ○ Miniature microwave and millimeter-wave radiometers for weather 
applications, such as the MiniRad which is onboard the Global 
Environmental Monitoring System (GEMS) constellation from Orbital 
Micro Systems [45], or

 ○ GNSS-R instruments with real-time processing for target detection/identifi-
cation [46] or—as larger downlink bandwidths are available—with raw data 
acquisition and on-ground processing to optimize the processing according 
to the target, as planned in FMPL-3, the evolution of the FMPL-2 on board 
FSSCat [38, 39].

• In the field of passive VNIR/TIR hyperspectral imagers, imagers will include 
a larger number of bands but will include advanced image compression 
algorithms to minimize the amount of information to be downloaded and will 
incorporate artificial intelligence to download only the information extracted 
instead of the raw data.

Also, both their calibration will have to be refined so as to improve the quality of 
the scientific data.

Due to power and antenna size requirements, active microwave sensors (e.g., 
radar altimeters and SARs) will likely remain in domain of mini- and microsats 
(< 100 kg, e.g., ICEYE constellation [47]), and it is unlikely that active optical 
sensor technology (i.e., lidars) develops in small satellites in the midterm.

In the field of astronomy, and in particular heliophysics, NASA has also been 
taking the lead. In 2017 NASA selected nine proposals under its Heliophysics Small 
Explorers Program [48]: (1) the Mechanisms of Energetic Mass Ejection Explorer 
(MEME-X), (2) the Focusing Optics X-ray Solar Imager (FOXSI), (3) the Multi-Slit 
Solar Explorer (MUSE), (4) the Tandem Reconnection and Cusp Electrodynamics 
Reconnaissance Satellites (TRACERS), (5) the Polarimeter to Unify the Corona and 
Heliosphere (PUNCH), (6) the Atmospheric Waves Experiment (AWE), (7) the US 
Contributions to the THOR mission (THOR-US), (8) the Coronal Spectrographic 
Imager in the Extreme ultraviolet (COSIE), and (9) the Sun Radio Interferometer 
Space Experiment (SunRISE) mission concept, which is a space-based sparse array, 
composed of formation flying of six SmallSats designed to localize the radio emis-
sion associated with coronal mass ejections (CMEs) from the sun [49].

More recently, in August 2019, NASA selected two proposals to demonstrate 
SmallSat technologies to study interplanetary space [50]: (1) Science-Enabling 
Technologies for Heliophysics (SETH) will demonstrate two technologies, an opti-
cal communications technology and experiment to detect solar energetic neutral 
atoms as well as an array of waves and other particles that erupt from our sun, and 
(2) Solar Cruiser, which will deploy a nearly 18,000 square foot solar sail and a 
coronagraph instrument that would enable simultaneous measurements of the sun’s 
magnetic field structure and velocity of coronal mass ejections or CMEs.

As a final thought, quoting Prof. Puig-Suari, “Before cubesats, we were so 
conservative nobody was willing to try anything out of the ordinary. When we 
did, we discovered some of the things everybody said would not work, did work. 
The fundamental change was that there was a mechanism to go try to those things. 
Some will work and some will not, but it allows us to try them and that was very 
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infrequent before cubesats arrived. That was really important. That was the big 
change.” And this is just the beginning of a new way to do Earth observation, 
astronomy, and satellite communications much more, in a different and more effi-
cient way than it was done in the past decades. What will the future bring? Nobody 
knows, but certainly the future is being shaped today with these novel technologies, 
and only our imagination will set the limits.
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