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Chapter

Deficient Autophagy Contributes 
to the Development of Diabetic 
Retinopathy
Jacqueline M. Lopes de Faria and Marcella Neves Dátilo

Abstract

Autophagy is a self-degradation process essential to maintain intracellular 
homeostasis and cell survival, controlling elimination of pathogens, damage to 
organelles, and nutrient recycling to generate energy. Alterations in autophagic flux 
have been reported in the mechanisms of several diseases such as neurodegenerative 
diseases, cancer, diabetes mellitus, and its associated complications. Diabetic reti-
nopathy (DR) is a microvascular complication of diabetes, affecting nearly 30% of 
diabetic patients. Several pathways are triggered and repressed in the development 
of DR, and autophagy showed to be relevant in the pathogenesis of this devastating 
complication. In this chapter, autophagy’s involvement in the development and 
progression of DR will be discussed, mainly in retinal pigmented epithelial cells and 
retinal microvascular endothelial cells, as well as in Müller cells—the more promi-
nent retinal glial cell.

Keywords: retina, diabetic retinopathy, autophagy, ARPE-19, endothelial cell,  
Müller cell

1. Introduction

Autophagy (from Greek, meaning “self-eating”) refers to a highly conserved 
process in eukaryotic cells, which coordinates the degradation of intracellular com-
ponents and nutrient recycling. This process is essential for cellular homeostasis, 
survival, and differentiation. In basal conditions, the autophagic process happens 
in low levels to maintain cellular homeostasis. However, in such conditions as low 
levels of adenosine triphosphate (ATP) or depletion of essential amino acids and 
glucose, autophagic flux can increase to generate energy and raise basal levels. More 
recently, the understanding of this process has gained attention due to its pivotal 
role in cellular physiology and a variety of diseases from cancer, chronic degenera-
tive diseases, and immune diseases (Table 1).

Autophagy is a primary cell response to stress and can be induced by starvation, 
endoplasmic reticulum (ER) stress, hypoxia, cytotoxicity, and infection (Figure 1). 
Sensation, initiation, and regulation of the autophagy–lysosomal pathway is con-
trolled by the heterotrimeric serine/threonine kinase AMP (AMPK) and rapamycin 
complex 1 (mTORC1), either triggering or repressing autophagy and mitophagy. 
Unc-51-like kinase 1 (ULK1) is a primary initiating protein, as is mTORC1-
supressed transcription factor EB (TFEB), which coordinates the synthesis of 
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Figure 1. 
Several cellular sensors regulate autophagic flux to maintain homeostasis.

lysosomes and other essential proteins maintaining the autophagic flux [9–12]. 
In addition, sirtuin-1—a class III deacetylase dependent on nicotinamide adenine 
dinucleotide (NAD+)—becomes a positive autophagy regulator, since it may also be 
considered a cellular sensor [13].

This process is mainly regulated at a post-translational level, increasing mRNA 
expression of autophagy genes [14]. Under stress conditions, TFEB is translocated 
from cytosol to the nucleus, activating transcription of ATG genes and coordinating 
upregulation of the entire autophagy–lysosomal pathway [15].

Autophagy can be constitutive or inducible, rapidly adjusting to altera-
tions within the internal and external environment of the cells. Autophagy 
serves as a housekeeping system, demonstrated by animal models deficient in 

Table 1. 
In this table, some examples of genetic diseases associated with autophagic impairment [1–8].
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autophagy-related genes (ATG). For example, deletion of specific neurons of ATG7 
or 5 genes leads to postnatal neurodegeneration [16, 17].

Intrinsically, cellular sensors detect changes in levels of glucose, cytosolic Ca++, reac-
tive oxygen species (ROS), and metabolic intermediates. Therefore, a decrease in glucose 
availability or impairment of mitochondrial respiration-compromising ATP production 
leads to an increase in the AMP/ADP ratio, activating the AMPK α subunit [10].

An example of extrinsic sensing occurs via drug-targetable mechanisms at the 
plasma membrane level. Tyrosine kinase receptors converge on mTOR, AMPK, or 
Beclin-1-Vps complex by modulating autophagy following growth factors [18, 19]. 
Even G-protein-coupled receptors (GPCRs) control autophagy via intracellular 
pathways that similarly modulate AMPK and mTOR [20–22].

This discussion includes a short overview of the more common types of 
autophagy and will highlight the role of autophagy in retinal diseases, with special 
attention to diabetic retinopathy.

2. Types of autophagy

There are three forms of autophagy previously described in the literature: 
macroautophagy, chaperone-mediated autophagy, and microautophagy (Figure 2).

2.1 Macroautophagy

Usually known as autophagy, this intracellular pathway includes cytosolic 
components such as proteins, lipids, organelles, and parts of the nucleus [23, 24]. 
Autophagy was first described by Christian du Duve 50 years ago and has been 
highly preserved across the species. From beginning to end, the whole process is 
controlled by the ATG protein family, and more than 35 genes have been identified 
to orchestrate the process [25].

Autophagosome formation is the hallmark of this process. The well-coordinated 
process begins with an initiation phase, when ULK1 kinase forms a complex with 
ATG13, ATG10, and FIP200 (known as RB1CC1) at a specific cell site located in the 
perivacuolar region known as the phagophore assembly site (PAS). ULK1 kinase 
activity triggers the formation of the phosphoinositide 3-kinase (PI3K) complex, 
which favors the formation of phosphatidylinositol 3-phosphate, initiating the 
nucleation phase [26]. Ubiquitin-like conjugation systems are then activated, 
catalyzed by ATG7. ATG12 is conjugated to ATG5, then phosphatidylethanolamine 
to microtubule-associated protein 1A/1B-light chain 3 (LC3) through ATG7 kinase, 
forming an autophagosome bound to LC3 (also called LC3-II) [27, 28]. The late 
stage of autophagy is controlled by molecules that regulate maturation of the 
autophagosome, fusion with lysosomes, acidification of the inside compartment of 
the autophagosome components, and recycling of metabolites from the lysosomal 
compartment. This coordinated process—including a sequence of protein–protein 
and protein–lipid interaction—is a dynamic process, where the autophagosome for-
mation, fusion to the lysosome, and digestion of the inside components occur in less 
than 10 minutes. Therefore, any sort of autophagy dysfunction (such as blockage of 
lysosomal fusion or lysosomal function impairment) may lead to accumulation of 
harmful damaged organelles and protein aggregates inside the cell [29] (Figure 2).

2.2 Chaperone-mediated autophagy

In chaperone-mediated autophagy, there is no reorganization of the lysosomal 
membrane. This selective autophagy is only described in mammals [30], which 



The Eye and Foot in Diabetes

4

mediates delivery of specific proteins to the lysosome. The distinction occurs because 
the cytosolic proteins need to be degraded by the presence of a pentapeptide amino acid 
sequence, KFERQ. This sequence permits recognition of the target protein by a family 
of chaperones and co-chaperones: the heat shock cognate, 70-kDa (Hsc70)—the most 
abundant in the family. After recognition of the KFERQ sequence, Hsc70 presents the 
unfolded proteins to the lysosome, one by one, where they are recognized by the trans-
membrane domain of lysosome-associated membrane protein type 2A (LAMP2-A). 
After this, the multimerization of LAMP2-A occurs, allowing transportation of the 
substrate into the lysosome for degradation. At the end of this process, the LAMP2-A 
complex is disassembled, and the chaperone Hsp70 is released to start a new cycle [31].

2.3 Microautophagy

Microautophagy is not well described in mammalian cells. However, recent 
evidence has shown that there is recognition and internalization of small cytoplas-
matic components in late endosomes. This type of autophagy requires the chaper-
one Hsc70. However, the microautophagy process is independent of the unfolding 
of KFERQ and the multimerization of LAMP2-A [32, 33].

2.4 Role of autophagy in disease development

Since the primary function of autophagy is to eliminate harmful components 
from cells (aggregated proteins, damaged organelles, and pathogens), malfunction-
ing of this mechanism implicit in diseases—such as Huntington’s and Parkinson’s 
diseases [34, 35]—results in protein accumulation.

Figure 2. 
Types of autophagy. (1) Macroautophagy: initiation of autophagy through isolation membrane, extension 
of membrane, and closure forming the autophagosome. Finally, the autophagosome merges with lysosome. 
Lysosomal hydrolases digest the contents to recycling nutrients. (2) Chaperone-mediated autophagy: 
identification of KFERQ-motif by Hsc70. Transportation of damage protein to lysosome. Recognition and 
multimerization of LAMP-2. Damage proteins are translocated to inside of the lysosome to suffer the action of 
lysosomal hydrolases. (3) Microautophagy: recognition and internalization of cytoplasmatic component.
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In physiological conditions, autophagy is involved in cellular homeostasis, as 
demonstrated in heart diseases, as seen in heart failure and ischemia–reperfu-
sion injuries [36]. In the pancreas, autophagy is required to maintain function 
of β cells, revealing significance in the pathogenesis of diabetes. Alterations in 
autophagy have also been described in a more complex model in cancer research: 
it can suppress tumors but also helps the tumor adapt to metabolic stress in its late 
stages [37].

3. Diabetic retinopathy

Diabetes mellitus is a public health issue, estimated to affect about 500 million 
people by 2035 [38]. Nearly 30% of patients are likely to suffer from retinal micro-
vascular complications and 10% may experience visual threatening due to macular 
edema or proliferative diabetic retinopathy [39, 40].

Multiple mechanisms are triggered under hyperglycemic conditions (hexos-
amine and polyol pathways [41], synthesis de novo of diacylglycerol-PKC [42, 43], 
low grade oxidative stress [44–46], inflammation [47–51], and advanced glycation 
end products [52, 53]). Although vascular changes are presumed to be the hallmarks 
of DR, abnormalities in retinal function are detected in patients with diabetes who 
have good visual acuity [54–59].

The characteristics of retinal neurodegeneration are apoptosis of neuro cells and 
dysfunction of glial cells—mainly Müller cells [29, 50, 60]. In microvascular disease 
of diabetic retinopathy, both inner and outer blood retinal barrier break down [61].

3.1 Autophagy in diabetic retinopathy

Since their pioneering studies, Remé et al. —describing the presence of active 
autophagy in photoreceptors during hibernation with a decreased number of 
mitochondria and organelles compared to animals in non-hibernating conditions—
observed an increased number of autophagosomes [62]. These data show the pivotal 
role of autophagy in the retina, degrading cellular components (such as mitochon-
dria) during hibernation.

Implications of autophagy in retinal ganglion cells (RGCs) attracted interest as 
a potential tool for neuroprotection in glaucoma. The first evidence of the cyto-
protective role of autophagy in RGCs was shown by Rodríguez-Muela et al. using 
autophagy-deficient mice, which displayed increased axonal damage following 
optic nerve transection (ONT) models of optic neuropathy [63–65].

3.2  Autophagy in blood retinal barriers and implications on diabetic 
retinopathy

The main function of the blood-retina barrier (BRB) is maintenance of retinal 
homeostasis, regulating the transport of blood stream molecules to provide an 
appropriate supply for the neuroretina and to protect neural tissue against harmful 
agents present in the blood. The BRB is formed by two types of barriers: the inner 
blood-retina barrier (iBRB) and the outer blood-retina barrier (oBRB) [66].

Both outer and inner retinal barriers are affected by the toxic metabolic effects 
of hyperglycemia [67]. Alterations in the iBRB are more studied than the oBRB 
among the mechanisms of development and progression of DR [68–70]. The 
appropriated function of autophagy flux is important for maintenance of cellular 
viability and confers stress tolerance in retinal cells under adverse conditions such 
as DR [71].
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Retinal endothelial cells of microcirculation of the retina form the iBRB. This 
barrier selectively allows passage of molecules from systemic circulation to retinal 
tissue. As a constituent of this barrier, there are tight junctions and adherens junc-
tions such as zonula occludens-1 (ZO-1), occludin, VE-cadherin, and N-cadherin 
[72]. Endothelial cells are warped by pericytes, which are highly specialized. 
Pericytes play an essential role in the structure and stability of the iBRB, coordinat-
ing angiogenesis and vascular remodeling [73, 74].

Few articles have highlighted the autophagic process in retinal endothelial cells 
under diabetic conditions [75, 76]. Exposure to high glucose leads to an increase in 
retinal endothelial cell apoptosis, and this mechanism is mediated by the enhance-
ment of ROS production. This phenomenon is correlated with a reduction in the 
AMPK pathway [76], which is well described as a direct activator of ULK-1 in the 
autophagy process [77]. Reestablishing the level of AMPK using specific activa-
tors—such as AICAR or antioxidant treatment—is effective in the protection of 
endothelial retinal cells from damage caused by diabetic conditions [75, 76]. A 
recent study from Niu et al. described the importance of the protective properties 
of metformin on retinal endothelial cells and human umbilical vascular endothelial 
cells (HUVECs) via autophagy in diabetic conditions. In this work, the authors 
showed that there was an increased LC3 puncta formation, which is an indicative of 
autophagy, in retinal vascular endothelium from db/db (diabetic) mice compared 
with control (non-diabetic) mice. This is indicative that metformin protects the 
retinal microvascular cells by diminishing LC3 formation. To further understand 
this mechanism, HUVECs were exposed to high levels of glucose and treated with 
metformin, resulting in a clear increase of LC3 formation. In HUVECs transfected 
with sh-PRKAA1/2 (AMP catalytic subunit), the protective effect of metformin was 
abrogated, indicating that metformin acts via AMPK activation [78] and improving 
autophagy in these cells.

The oBRB is a monolayer formed by retinal pigment epithelial cell layer that 
separates the neuro retina from choriocapillaris. Impairment of this barrier is 
implicated in diabetic retinopathy development [79–81]. The major functions of the 
oBRB are to provide glucose, fatty acids, and retinol to photoreceptors from chorio-
capillaris and reisomerise all-trans-retinal in 11-cis-retinal after photon absorption 
of the photoreceptor [66, 82, 83]. Therefore, any disturbance in this structure may 
have detrimental effects on the retina. A number of sight-threatening diseases 
display RPR dysfunction, such as age-related macular degeneration, proliferative 
vitreoretinopathy, and diabetic retinopathy [84].

It is well described in the literature that human retinal pigmented epithelial 
(RPE) immortalized cells (ARPE-19) exposed to high concentrations of glucose 
present molecular changes, including a decrease of proliferation, an increase in 
oxidative stress mediated by ROS production, and augmented lipid droplets and 
inflammation [85–88]. These alterations can activate or repress the autophagic flux 
in RPE cells. Studies have shown that, until 48 hours of exposure to high glucose 
levels, ARPE-19 cells present an increase in lipid droplets, which can contribute 
to ROS production [71, 85, 89]. This increase in ROS production can initiate 
autophagy, enhancing the numbers of autophagosomes, increasing conversion of 
LC3-I to LC3-II, and decreasing levels of p62/SQSTM1 as a defense mechanism 
against damage caused by high glucose. However, Chen et al. found that an increase 
in autophagic flux promoted by high glucose cannot be maintained long-term. After 
7 days in high glucose, ARPE-19 presented impairment in the degradation of p62/
SQSTM1 and an increase in apoptotic cells. These findings indicated that autophagy 
was the first defense against oxidative stress in high-glucose conditions. In the long-
term, this protective pathway became saturated and inefficient, thus contributing 
to RPE degeneration in DR [87].
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Zhang et al. have shown that high glucose concentrations can attenuate 
the PINK1 and parkin pathways involved in controlling cellular mitophagy. 
Downregulation of mitophagy can lead to an increase in cellular stress levels 
because the biogenesis of mitochondria becomes compromised [90].

The role of autophagy in retinal diabetic complications is not simply a matter of 
inhibiting its initiation or progression. Inhibition of autophagy in ARPE-19 during 
its initial phase with 3-methyladenine (3-MA) or during the fusion of autophago-
some and lysosome using bafilomycin aggravates oxidative stress and exacerbates 
secretion of the pro-inflammatory interleukin-1β promoted by high glucose [88]. 
The appropriated autophagic process is important as a mechanism of cell homeosta-
sis in diabetic conditions.

3.3  Autophagy in Müller glial cells and implications in diabetic retinopathy 
pathogenesis

Müller cells are the predominant glial cell in the retina. Its unique morphology 
allows the Müller cell to directly interact with neighboring neural and vascular 
cells, expanding through the entire retina from the inner limiting membrane to the 
photoreceptor layer. Müller cells are closely related with vitreous, blood vessels, and 
sub retinal space. Each Müller cell interacts with one cone and 10 rods [91]. This 
configuration of Müller cells inside the retina explains the diversity of its function, 
responsible for the metabolic, functional, and structural support of the retina [92].

There are several functions attributed to Müller cells, such as the release of 
trophic factors [93, 94], neurotransmitter recycling [95], and phagocytosis of exter-
nal photoreceptor segments [96, 97]. Müller cells, depending upon the stimulus 
(trauma, vascular, or metabolic), may react with phenotype changes called gliosis, 
which consist in adaptive morphological, biochemical, and physiological altera-
tions. Among the more interesting biochemical changes in Müller cells are increased 
vascular endothelial growth factor (VEGF) [98] and glial fibrillary acidic protein 
(GFAP) production, both with pro-angiogenic and pro-inflammatory effects. 
Massive VEGF release is present in the proliferative stages of DR and diabetic macu-
lar edema, representing a major therapeutic target for pharmacological treatment of 
these devastating complications.

There are few studies showing the effects of high glucose on autophagy in retinal 
Müller cells. Devi et al. described the implications of autophagy dysfunction in 
the mechanisms of DR [99]. In their study, Müller cells exposed to high glucose 
conditions for 5 days displayed an increase of autophagosome and mitophagosome 
in the cytosol, suggesting high glucose conditions activated the autophagy process. 
Despite activation of the protective process (autophagy), they observed an associa-
tion with an increased proapoptotic caspase-3, leading to programmed cell death. 
This scenario elucidates that diabetic conditions induce activation of autophagy 
followed by dysfunction, leading to cellular death.

In the previously published work addressing the mechanism by which Müller 
cells exposed to high glucose release high amounts of VEFG and trigger increased 
apoptosis, it was shown that the autophagic process was defective in Müller cells 
among diabetic conditions. In cells exposed to high glucose, autophagy  markers—
both early Beclin and late LC3-I and LC3-II—were increased, but p62/SQSTM1 
accumulated in the cytosol compartment of Müller cells, accompanied by an 
increased apoptotic rate. To further understand how p62/SQSTM1 could modulate 
the autophagy and apoptosis in Müller cells exposed to high glucose, p62/SQSTM1 
was suppressed. In this condition, there was less endoplasmic reticulum stress, 
lowering the interaction with caspase-8 and, by extension, less apoptosis. The pres-
ence of rapamycin, an mTOR blocker, triggered the formation of autophagosome 
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and ameliorated the degradation of p62/SQSTM1. Rapamycin showed to improve 
proteolytic activity of the lysosome, reducing the release of VEGF. Corresponding 
findings were also demonstrated in models using diabetic animals. In the retinas 
of diabetic rats, there was a significant increase in p62/SQSTM1 accumulation, 
particularly in cells located in the inner nuclear layer [29]. Lysosomal impairment 
and autophagic flux dysfunction are early indicators of the pathogenesis of DR.

4. Conclusion

Diabetic retinopathy is a neurodegenerative disease presenting vascular 
changes in its late stages. Multiple factors are associated with the development 
and progression of DR. Recently, better understanding at cellular and molecular 
levels of its process has been identified through the pathways and intracellular 
signaling involved in cells exposed to diabetic conditions. This has allowed identi-
fication of new therapeutic approaches. Recent concepts of this disease have been 
analyzed here, with special focus on the process of autophagy using experimental 
models in different retinal cells targeted by hyperglycemia in the developmental 
stages of the disease.
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