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Chapter

Kinetic Equations of Granular
Media
Viktor Gerasimenko

Abstract

Approaches to the rigorous derivation of a priori kinetic equations, namely, the
Enskog-type and Boltzmann-type kinetic equations, describing granular media
from the dynamics of inelastically colliding particles are reviewed. We also consider
the problem of potential possibilities inherent in describing the evolution of the
states of a system of many hard spheres with inelastic collisions by means of
a one-particle distribution function.

Keywords: granular media, inelastic collision, Boltzmann equation,
Enskog equation

1. Introduction

It is well known that the properties of granular media (sand, powders, cements,
seeds, etc.) have been extensively studied, in the last decades, by means of experi-
ments, computer simulations, and analytical methods, and a huge amount of phys-
ical literature on this topic has been published (for pointers to physical literature,
see in [1–6]).

Granular media are systems of many particles that attract considerable interest
not only because of their numerous applications but also as systems whose collec-
tive behavior differs from the statistical behavior of ordinary media, i.e., typical
macroscopic properties of media, for example, gases. In particular, the most spec-
tacular effects include with the phenomena of collapse or cooling effect at the
kinetic scale or clustering at the hydrodynamical scale, spontaneous loss of homo-
geneity, modification of Fourier’s law and non-Maxwellian equilibrium kinetic
distributions [1–3].

In modern works [4–6], it is assumed that the microscopic dynamics of granular
media is dissipative, and it is described by a system of many hard spheres with
inelastic collisions. The purpose of this chapter is to review some advances in the
mathematical understanding of kinetic equations of systems with inelastic
collisions.

As is known [7], the collective behavior of many-particle systems can be effec-
tively described by means of a one-particle distribution function governed by the
kinetic equation derived from underlying dynamics in a suitable scaling limit. At
present the considerable advance is observed in a problem of the rigorous deriva-
tion of the Boltzmann kinetic equation for a system of hard spheres in the
Boltzmann–Grad scaling limit [7–10]. At the same time, many recent papers [5, 11]
(and see references therein) consider the Boltzmann-type and the Enskog-type

1



kinetic equations for inelastically interacting hard spheres, modelling the behavior
of granular gases, as the original evolution equations and the rigorous derivation
of such kinetic equations remain still an open problem [12, 13].

Hereinafter, an approach will be formulated, which makes it possible to rigor-
ously justify the kinetic equations previously introduced a priori for the description
of granular media, namely, the Enskog-type and Boltzmann-type kinetic equations.
In addition, we will consider the problem of potential possibilities inherent in
describing the evolution of the states of a system of many hard spheres with
inelastic collisions by means of a one-particle distribution function.

2. Dynamics of hard spheres with inelastic collisions

As mentioned above, the microscopic dynamics of granular media is described
by a system of many hard spheres with inelastic collisions. We consider a system of
a non-fixed, i.e., arbitrary, but finite average number of identical particles of a unit
mass with the diameter σ >0, interacting as hard spheres with inelastic collisions.

Every particle is characterized by the phase coordinates: qi, pi
� �

� xi ∈
3 �


3, i≥ 1:
Let Cγ be the space of sequences b ¼ b0, b1, … , bn, …ð Þ of bounded continuous

functions bn ∈Cn defined on the phase space of n hard spheres that are symmetric
with respect to the permutations of the arguments x1, … , xn, equal to zero on the set

of forbidden configurations n ≐ f q1, … , qn
� �

∈
3nkqi � qj∣< σ for at least one pair

i, jð Þ : i 6¼ j∈ 1, … , nð Þg and equipped with the norm: ∥b∥Cγ
¼ max n≥0

γn

n! ∥bn∥Cn
¼

max n≥0
γn

n! supx1,… ,xn
∣bn x1, … , xnð Þ∣. We denote the set of continuously differentia-

ble functions with compact supports by Cn,0 ⊂Cn.
We introduce the semigroup of operators Sn tð Þ, t≥0, that describes dynamics of

n hard spheres. It is defined by means of the phase trajectories of a hard sphere

system with inelastic collisions almost everywhere on the phase space 3n �


3nnn

� �
, namely, outside the set 0

n of the zero Lebesgue measure, as fol-
lows [14]:

Sn tð Þbnð Þ x1, … , xnð Þ � Sn t, 1, … , nð Þbn x1, … , xnð Þ≐

bn X1 tð Þ, … ,Xn tð Þð Þ, if x1, … , xnð Þ∈ 
3nnn

� �
� 

3n,

0, if q1, … , qn
� �

∈n,

8
<

:
(1)

where the function Xi tð Þ � Xi t, x1, … , xnð Þ is a phase trajectory of ith particle

constructed in [7] and the set 0
n consists from phase space points-specified initial

data x1, … , xn that generate multiple collisions during the evolution.
On the space Cn one-parameter mapping (1) is a bounded ∗ -weak continuous

semigroup of operators, and ∥Sn tð Þ∥Cn
< 1.

The infinitesimal generator Ln of the semigroup of operators (1) is defined in the
sense of a ∗ -weak convergence of the space Cn, and it has the structure Ln ¼Pn

j¼1L jð Þ þ
Pn

j1 < j2¼1Lint j1, j2
� �

, , and the operators L jð Þ and Lint j1, j2
� �

are defined

by formulas:

L jð Þ≐ pj,
∂

∂qj

* +

, (2)

2
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and

Lint j1, j2
� �

bs ≐ σ2
ð


2
þ

dη η, pj1
� pj2

� �D E
ðbs x1, … , x ∗

j1
, … , x ∗

j2
, … , xs

� �
�

bs x1, … , xsð ÞÞδ qj1
� qj2

þ ση

� �
,

(3)

respectively. In (2) and (3) the following notations are used: x ∗
j � qj, p

∗
j

� �
, the

symbol �, �h i means a scalar product, δ is the Dirac measure,


2
þ ≐ η∈

3j ηj j ¼ 1, η, pj1
� pj2

� �D E
≥0

n o
, and the post-collision momenta are

determined by the expressions:

p ∗
j1
¼ pj1

� 1� εð Þη η, pj1
� pj2

� �D E
,

p ∗
j2
¼ pj2

þ 1� εð Þη η, pj1
� pj2

� �D E
,

(4)

where ε ¼ 1�e
2 ∈ 0, 1

2

� �
and e∈ 0, 1ð � is a restitution coefficient [6].

Let L1
α ¼ ⊕∞

n¼0α
nL1

n be the space of sequences f ¼ f 0, f 1, … , f n, …
� �

of integrable

functions f n x1, … , xnð Þ defined on the phase space of n hard spheres that are
symmetric with respect to the permutations of the arguments x1, … , xn, equal to
zero on the set of forbidden configurations n and equipped with the norm:
∥f∥L1

α
¼
P∞

n¼0α
n
Ð
dx1 … dxn∣f n x1, … , xnð Þ∣, where α> 1 is a real number. We denote

by L1
0 ⊂L1

α the everywhere dense set in L1
α of finite sequences of continuously

differentiable functions with compact supports.
On the space of integrable functions, the semigroup of operators S ∗

n tð Þ, t≥0,
adjoint to semigroup of operators (1) in the sense of the continuous linear func-
tional is defined (the functional of mean values of observables):

b, fð Þ ¼
X∞

n¼0

1

n!

ð


3�

3ð Þ
n
dx1 … dxnbn x1, … , xnð Þf n x1, … , xnð Þ:

The adjoint semigroup of operators is defined by the Duhamel equation:

S ∗
n t, 1, … , nð Þ

¼
Yn

i¼1

S ∗
1 t, ið Þ þ

ðt

0

dτ
Yn

i¼1

S ∗
1 t� τ, ið Þ

Xn

j1 < j2¼1

L ∗
int j1, j2
� �

S ∗
n τ, 1, … , nð Þ,

(5)

where for t≥0 the operator L ∗
int j1, j2
� �

is determined by the formula

L ∗
int j1, j2
� �

f s ≐ σ2
ð


2
þ

dη η, pj1
� pj2

� �D E� 1

1� 2εð Þ2
f nðx1, … , x⋄j1 , … ,

x⋄j2 , … , xnÞδ qj1
� qj2

þ ση

� �
� f n x1, … , xnð Þδ qj1

� qj2
� ση

� ��
:

(6)

In (6) the notations similar to formula (3) are used, x⋄j � qj, p
⋄
j

� �
, and the pre-

collision momenta (solutions of equations (4)) are determined as follows:
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p⋄j1
¼ pj1

�
1� ε

1� 2ε
η η, pj1

� pj2

� �D E
,

p⋄j2
¼ pj2

þ
1� ε

1� 2ε
η η, pj1

� pj2

� �D E
:

(7)

Hence an infinitesimal generator of the adjoint semigroup of operators S ∗
n tð Þ is

defined on L1
0,n as the operator, L

∗
n ¼

Pn
j¼1L

∗ jð Þ þ
Pn

j1 < j2¼1L
∗
int j1, j2
� �

, where the

operator adjoint to free motion operator (2) L ∗ jð Þ≐ � pj,
∂

∂qj

D E
was introduced.

On the space L1
n the one-parameter mapping defined by Eq. (5) is a bounded

strong continuous semigroup of operators.

3. The dual hierarchy of evolution equations for observables

It is well known [7] that many-particle systems are described by means of states
and observables. The functional for mean value of observables determines a duality
of states and observables, and, as a consequence, there exist two equivalent
approaches to describing the evolution of systems of many particles. Traditionally,
the evolution is described in terms of the evolution of states by means of the BBGKY
hierarchy for marginal distribution functions. An equivalent approach to describing
evolution is based on marginal observables governed by the dual BBGKY hierarchy.
In the same framework, the evolution of particles with the dissipative interaction,
namely, hard spheres with inelastic collisions, is described [14].

Within the framework of observables, the evolution of a system of hard spheres
is described by the sequences B tð Þ ¼ B0,B1 t, x1ð Þ, … ,Bs t, x1, … , xsð Þ, …ð Þ∈Cγ of the
marginal observables Bs t, x1, … , xsð Þ defined on the phase space of s≥ 1 hard spheres
that are symmetric with respect to the permutations of the arguments x1, … , xn,
equal to zero on the set s, and for t≥0 they are governed by the Cauchy problem
of the weak formulation of the dual BBGKY hierarchy [14]:

∂

∂t
Bs t, x1, … , xsð Þ ¼

Xs

j¼1

L jð ÞBs tð Þ þ
Xs

j1 < j2¼1

Lint j1, j2
� �

Bs tð Þ

0

@

1

A x1, … , xsð Þ

þ
Xs

j1 6¼j2¼1

Lint j1, j2
� �

Bs�1 tð Þ
� �

x1, … , xj1�1, xj1þ1, … , xs
� �

, (8)

Bs t, x1, … , xsð Þjt¼0 ¼ B0
s x1, … , xsð Þ, s≥ 1, (9)

where on the set Cs,0 ⊂Cs the free motion operator L jð Þ and the operator of

inelastic collisions Lint j1, j2
� �

are defined by formulas (2) and (3), respectively. We
refer to recurrence evolution equation (8) as the dual BBGKY hierarchy for hard
spheres with inelastic collisions.

The solution B tð Þ ¼ B0,B1 t, x1ð Þ, … ,Bs t, x1, … , xsð Þ, …ð Þ of the Cauchy problem
(8),(9) is determined by the expansions [10]:

Bs t, x1, … , xsð Þ ¼
Xs�1

n¼0

1

n!

Xs

j1 6¼… 6¼jn¼1

A1þn t, YnZf g,Zð ÞB0
s�n

x1, … , xj1�1, xj1þ1, … , xjn�1, xjnþ1, … , xs
� �

,

(10)

where the 1þ nð Þth-order cumulant of semigroups of operators (1) of hard
spheres with inelastic collisions is defined by the formula
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A1þn t, YnXf g,Xð Þ≐
X

P: YnXf g,Xð Þ¼∪iXi

�1ð Þ∣P∣�1 jPj�1ð Þ!
Y

Xi ⊂P

S∣θ Xið Þ∣ t, θ Xið Þð Þ, (11)

and Y � 1, … , sð Þ,Z � j1, … , jn
� �

⊂Y, YnZf g is the set consisting of one element

YnZ ¼ 1, … , j1 � 1, j1 þ 1, … , jn � 1, jn þ 1, … , s
� �

, i.e., this set is a connected subset
of the partition P such that ∣P∣ ¼ 1; the mapping θ �ð Þ is a declusterization operator
defined by the formula: θ YnZf gð Þ ¼ YnZ.

We note that one component sequences of marginal observables correspond to

observables of certain structure, namely, the marginal observable B 1ð Þ ¼
0, b1 x1ð Þ, 0, …ð Þ corresponds to the additive-type observable, and the marginal

observable B kð Þ ¼ 0, … , 0, bk x1,ðð … , xkÞ, 0, … Þ corresponds to the k-ary-type
observable. If as initial data (9) we consider the marginal observable of additive
type, then the decomposition structure of solution (10) is simplified and takes
the form

B 1ð Þ
s t, x1, … , xsð Þ ¼ As t, 1, … , sð Þ

Xs

j¼1

b1 xj
� �

, s≥ 1:

On the space Cγ for abstract initial-value problem (8) and (9), the following

statement is true. If B 0ð Þ ¼ B0,B
0
1 , … ,B0

s , …
� �

∈C0
γ ⊂Cγ is finite sequence of infi-

nitely differentiable functions with compact supports, then the sequence of func-
tions (10) is a classical solution, and for arbitrary initial data B 0ð Þ∈Cγ, it is a
generalized solution.

We remark that expansion (10) can be also represented in the form of the weak
formulation of the perturbation (iteration) series as a result of the applying of
analogs of the Duhamel equation to cumulants of semigroups of operators (11).

The mean value of the marginal observable B tð Þ ¼ B0,B1 tð Þ, … ,Bs tð Þ, …ð Þ∈ Cγ in

initial state specified by a sequence of marginal distribution functions F 0ð Þ ¼

1,F0
1 , … ,F0

s , …
� �

∈L1
α ¼ ⊕∞

s¼0α
sL1

s is determined by the following functional:

B tð Þ, F 0ð Þð Þ ¼
X∞

s¼0

1

s!

ð


3�

3ð Þ
s
dx1 … dxsBs t, x1, … , xsð ÞF0

s x1, … , xsð Þ: (12)

In particular, functional (12) of mean values of the additive-type marginal

observables B 1ð Þ 0ð Þ ¼ 0,B 1ð Þ
1 0, x1ð Þ, 0, …

� �
takes the form:

B 1ð Þ tð Þ, F 0ð Þ
� �

¼ B 1ð Þ 0ð Þ, F tð Þ
� �

¼

ð


3�

3
dx1B

1ð Þ
1 0, x1ð ÞF1 t, x1ð Þ,

where the one-particle marginal distribution function F1 t, x1ð Þ is determined by
the series expansion [10]

F1 t, x1ð Þ ¼
X∞

n¼0

1

n!

ð


3�

3ð Þ
n
dx2 … dxnþ1A

∗
1þn tð ÞF0

1þn x1, … , xnþ1ð Þ,

and the generating operator A ∗
1þn tð Þ of this series is the 1þ nð Þth-order cumulant

of adjoint semigroups of hard spheres with inelastic collisions. In the general case
for mean values of marginal observables, the following equality is true:

5

Kinetic Equations of Granular Media
DOI: http://dx.doi.org/10.5772/intechopen.90027



B tð Þ,F 0ð Þð Þ ¼ B 0ð Þ, F tð Þð Þ,

where the sequence F tð Þ ¼ 1,F1 tð Þ, … , Fs tð Þ, …ð Þ is a solution of the Cauchy
problem of the BBGKY hierarchy of hard spheres with inelastic collisions [14]. The
last equality signifies the equivalence of two pictures of the description of the
evolution of hard spheres by means of the BBGKY hierarchy [7] and the dual
BBGKY hierarchy (8).

Hereinafter we consider initial states of hard spheres specified by a one-particle
marginal distribution function, namely,

F cð Þ
s x1, … , xsð Þ ¼

Ys

i¼1

F0
1 xið ÞX


3sns

, s≥ 1, (13)

where X


3sns
� X s q1, … , qs

� �
is a characteristic function of allowed configura-

tions 3sns of s hard spheres and F0
1 ∈L1


3 � 

3
� �

. Initial data (13) is intrinsic for
the kinetic description of many-particle systems because in this case all possible
states are described by means of a one-particle marginal distribution function.

4. The non-Markovian Enskog kinetic equation

In the case of initial states (13), the dual picture of the evolution to the picture of
the evolution by means of observables of a system of hard spheres with inelastic
collisions governed by the dual BBGKY hierarchy (8) for marginal observables is
the evolution of states described by means of the non-Markovian Enskog kinetic
equation and a sequence of explicitly defined functionals of a solution of such
kinetic equation.

Indeed, in view of the fact that the initial state is completely specified by a one-
particle marginal distribution function on allowed configurations (13), for mean
value functional (12), the following representation holds [14, 15]:

B tð Þ,F cð Þ
� �

¼ B 0ð Þ,F tjF1 tð Þð Þð Þ,

where F cð Þ ¼ 1,F cð Þ
1 , … ,F cð Þ

s , …
� �

is the sequence of initial marginal distribution

functions (13) and the sequence F tjF1 tð Þð Þ ¼ 1,F1 tð Þ,F2 tjF1 tð Þð Þ, … ,Fs tjF1 tð Þð Þð Þ is a
sequence of the marginal functionals of the state Fs t, x1, … , xsjF1 tð Þð Þ represented by
the series expansions over the products with respect to the one-particle marginal
distribution function F1 tð Þ:

Fs t, x1, … , xsjF1 tð Þð Þ≐
X∞

n¼0

1

n!

ð


3�

3ð Þ
n
dxsþ1 … dxsþnV1þn t, Yf g,XnYð Þ

Ysþn

i¼1

F1 t, xið Þ, s≥ 2:

(14)

In series (14) we used the notations Y � 1, … , sð Þ,X � 1, … , sþ nð Þ, and the
nþ 1ð Þth-order generating operator V1þn tð Þ, n≥0 is defined as follows [15]:

V1þn t, Yf g,XnYð Þ≐
Xn

k¼0

�1ð Þk
Xn

m1¼1

…
Xn�m1�…�mk�1

mk¼1

n!

n�m1 � … �mkð Þ!
�

bA1þn�m1�…�mk
t, Yf g, sþ 1, … , sþ n�m1 � … �mkð Þ

Yk

j¼1

Xmj

k
j
2¼0

…

6
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Pk
j
n�m1�…�mjþs�1

k
j
n�m1�…�m jþs¼0

Qsþn�m1�…�mj

ij¼1

1

k
j
n�m1�…�mjþsþ1�ij

� k
j
n�m1�…�mjþsþ2�ij

� �
!

�

bA
1þk

j
n�m1�…�mjþsþ1�ij

�k
j
n�m1�…�mjþsþ2�ij

t, ij, sþ n�m1 � … �mj þ 1þ
�

k
j
sþn�m1�…�mjþ2�i j

, … , sþ n�m1 � … �mj þ k
j
sþn�m1�…�m jþ1�ij

Þ,

where it means that k
j
1 � mj, k

j
n�m1�…�mjþsþ1 � 0, and we denote the 1þ nð Þth-

order scattering cumulant by the operator bA1þn tð Þ:

bA1þn t, Yf g,XnYð Þ≐A
∗
1þn t, Yf g,XnYð ÞX


3 sþnð Þnsþn

Ysþn

i¼1

A
∗
1 t, ið Þ�1,

and the operator A ∗
1þn tð Þ is the 1þ nð Þth-order cumulant of adjoint semigroups

of hard spheres with inelastic collisions.
We emphasize that in fact functionals (14) characterize the correlations gener-

ated by dynamics of a hard sphere system with inelastic collisions.
The second element of the sequence F tjF1 tð Þð Þ, i.e., the one-particle marginal

distribution function F1 tð Þ, is determined by the following series expansion:

F1 t, x1ð Þ ¼
X∞

n¼0

1

n!

ð


3�

3ð Þ
n
dx2 … dxnþ1A

∗
1þn tð ÞX


3 1þnð Þn1þn

Ynþ1

i¼1

F0
1 xið Þ, (15)

where the generating operator A ∗
1þn tð Þ � A

∗
1þn t, 1, … , nþ 1ð Þ is the 1þ nð Þth-

order cumulant of adjoint semigroups of hard spheres with inelastic collisions.
For t≥0 the one-particle marginal distribution function (15) is a solution of the

following Cauchy problem of the non-Markovian Enskog kinetic equation [14, 15]:

∂

∂t
F1 t, q1, p1
� �

¼ � p1,
∂

∂q1

	 

F1 t, q1, p1
� �

þσ2
ð


3�

2
þ

dp2dη η, p1 � p2
� �� � 1

1� 2εð Þ2
F2 t, q1, p

⋄
1 , q1 � ση, p⋄2jF1 tð Þ

� �
 

�F2 t, q1, p1, q1 þ ση, p2jF1 tð Þ
� �

Þ, (16)

F1 tð Þjt¼0 ¼ F0
1 , (17)

where the collision integral is determined by the marginal functional of the state
(14) in the case of s ¼ 2, and the expressions p⋄1 and p⋄2 are the pre-collision
momenta of hard spheres with inelastic collisions (7), i.e., solutions of Eq. (4).

We note that the structure of collision integral of the non-Markovian Enskog
equation for granular gases (16) is such that the first term of its expansion is the
collision integral of the Boltzmann–Enskog kinetic equation and the next terms
describe all possible correlations which are created by hard sphere dynamics with
inelastic collisions and by the propagation of initial correlations connected with the
forbidden configurations.

We remark also that based on the non-Markovian Enskog equation (16), we can
formulate the Markovian Enskog kinetic equation with inelastic collisions [14].

For the abstract Cauchy problem of the non-Markovian Enskog kinetic equation
(16), (17) in the space of integrable functions , the following statement is true [14].
A global in time solution of the Cauchy problem of the non-Markovian Enskog
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equation (16) is determined by function (15). For small densities and

F0
1 ∈L1

0 
3 � 

3
� �

, function (15) is a strong solution, and for an arbitrary initial data

F0
1 ∈L1


3 � 

3
� �

, it is a weak solution.

Thus, if initial state is specified by a one-particle marginal distribution function
on allowed configurations, then the evolution, describing by marginal observables
governed by the dual BBGKY hierarchy (8), can be also described by means of the
non-Markovian kinetic equation (16) and a sequence of marginal functionals of the
state (14). In other words, for mentioned initial states, the evolution of all possible
states of a hard sphere system with inelastic collisions at arbitrary moment of time
can be described by means of a one-particle distribution function without any
approximations.

5. The Boltzmann kinetic equation for granular gases

It is known [7, 8] the Boltzmann kinetic equation describes the evolution of
many hard spheres in the Boltzmann–Grad (or low-density) approximation. In this
section the possible approaches to the rigorous derivation of the Boltzmann kinetic
equation from dynamics of hard spheres with inelastic collisions are outlined.

One approach to deriving the Boltzmann kinetic equation for hard spheres with
inelastic collisions, which was developed in [10] for a system of hard spheres with
elastic collisions, is based on constructing the Boltzmann–Grad asymptotic behavior
of marginal observables governed by the dual BBGKY hierarchy (8). A such scaling
limit is governed by the set of recurrence evolution equations, namely, by the dual
Boltzmann hierarchy for hard spheres with inelastic collisions [14]. Then for initial
states specified by a one-particle distribution function (13), the evolution of
additive-type marginal observables governed by the dual Boltzmann hierarchy is
equivalent to a solution of the Boltzmann kinetic equation for granular gases [12],
and the evolution of nonadditive-type marginal observables is equivalent to the
property of the propagation of initial chaos for states [10].

One more approach to the description of the kinetic evolution of hard spheres
with inelastic collisions is based on the non-Markovian generalization of the Enskog
equation (16).

Let the dimensionless one-particle distribution function Fϵ,0
1 , specifying initial

state (13), satisfy the condition, ∣Fϵ,0
1 x1ð Þ∣ ≤ ce�

β

2p
2
1 , where ϵ>0 is a scaling parameter

(the ratio of the diameter σ >0 to the mean free path of hard spheres), β>0 is a
parameter, and c<∞ is some constant, and there exists the following limit in the

sense of a weak convergence: w� lim ϵ!0 ϵ
2Fϵ,0

1 x1ð Þ � f 01 x1ð Þ
� �

¼ 0. Then for finite
time interval the Boltzmann–Grad limit of dimensionless solution (15) of the
Cauchy problem of the non-Markovian Enskog kinetic equation (16) and (17) exists
in the same sense, namely, w� lim

ϵ!0
ϵ
2F1 t, x1ð Þ � f 1 t, x1ð Þ

� �
¼ 0, where the limit

one-particle distribution function is a weak solution of the Cauchy problem of the
Boltzmann kinetic equation for granular gases [6, 12]:

∂

∂t
f 1 t, x1ð Þ ¼ � p1,

∂

∂q1

	 

f 1 t, x1ð Þ

þ

ð


3�

2
þ

dp2dη η, p1 � p2
� �� � 1

1� 2εð Þ2
f 1 t, q1, p

⋄
1

� �
f 1 t, q1, p

⋄
2

� �
� f 1 t, x1ð Þf 1 t, q1, p2

� �
 !

,

(18)

f 1 t, x1ð Þ



t¼0

¼ f 01 x1ð Þ, (19)
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where the momenta p⋄1 and p⋄2 are pre-collision momenta of hard spheres with
inelastic collisions (7).

As noted above, all possible correlations of a system of hard spheres with inelas-
tic collisions are described by marginal functionals of the state (14). Taking into
consideration the fact of the existence of the Boltzmann–Grad scaling limit of a
solution of the non-Markovian Enskog kinetic equation (16), for marginal func-
tionals of the state (14), the following statement holds:

w� lim
ϵ!0

ϵ
2sFs t, x1, … , xsjF1 tð Þð Þ �

Ys

j¼1

f 1 t, xj
� �

 !

¼ 0,

where the limit one-particle distribution function f 1 tð Þ is governed by the
Boltzmann kinetic equation for granular gases (18). This property of marginal
functionals of the state (14) means the propagation of the initial chaos [7].

It should be emphasized that the Boltzmann–Grad asymptotics of a solution of
the non-Markovian Enskog equation (16) in a multidimensional space are analogous
of the Boltzmann–Grad asymptotic behavior of a hard sphere system with the
elastic collisions [10]. Such asymptotic behavior is governed by the Boltzmann
equation for a granular gas (18), and the asymptotics of marginal functionals of the
state (14) are the product of its solution (this property is interpreted as the propa-
gation of the initial chaos).

6. One-dimensional granular gases

As is known, the evolution of a one-dimensional system of hard spheres with
elastic collisions is trivial (free motion or Knudsen flow) in the Boltzmann–Grad
scaling limit [7], but, as it was taken notice in paper [16], in this approximation the
kinetics of inelastically interacting hard spheres (rods) is not trivial, and it is
governed by the Boltzmann kinetic equation for one-dimensional granular gases
[16–19]. Below the approach to the rigorous derivation of Boltzmann-type equation
for one-dimensional granular gases will be outlined. It should be emphasized that a
system of many hard rods with inelastic collisions displays the basic properties of
granular gases inasmuch as under the inelastic collisions only the normal compo-
nent of relative velocities dissipates in a multidimensional case.

In case of a one-dimensional granular gas for t≥0 in dimensionless form, the
Cauchy problem (16),(17) takes the form [20]:

∂

∂t
F1 t, q1, p1
� �

¼ �p1
∂

∂q1
F1 t, q1, p1
� �

þ

ð∞

0
dPP

1

1� 2εð Þ2
F2 t, q1, p

⋄
1 p1,P
� �

, q1 � ϵ, p⋄2 p1,P
� �

jF1 tð Þ
� �

�

 

F2 t, q1, p1, q1 � ϵ, p1 þ PjF1 tð Þ
� ��

þ (20)

ð∞

0
dPP

1

1� 2εð Þ2
F2 t, q1, ~p

⋄
1 p1,P
� �

, q1 þ ϵ, ~p⋄2 p1,P
� �

jF1 tð Þ
� �

�

 

F2 t, q1, p1, q1 þ ϵ, p1 � PjF1 tð Þ
� ��

,

F1 tð Þjt¼0 ¼ Fϵ,0
1 , (21)
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where ϵ>0 is a scaling parameter (the ratio of a hard sphere diameter (the
length) σ >0 to the mean free path), the collision integral is determined by marginal
functional (14) of the state F1 tð Þ in the case of s ¼ 2, and the expressions:

p⋄1 p1,P
� �

¼ p1 � Pþ
ε

2ε� 1
P,

p⋄2 p1,P
� �

¼ p1 �
ε

2ε� 1
P

and

~p⋄1 p1,P
� �

¼ p1 þ P�
ε

2ε� 1
P,

~p⋄2 p1,P
� �

¼ p1 þ
ε

2ε� 1
P,

are transformed pre-collision momenta in a one-dimensional space.
If initial one-particle marginal distribution functions satisfy the following con-

dition: ∣Fϵ,0
1 x1ð Þ∣ ≤Ce�

β

2p
2
1 , where β>0 is a parameter, C<∞ is some constant, then

every term of the series

Fϵ

1 t, x1ð Þ ¼
X∞

n¼0

1

n!

ð

�ð Þn
dx2 … dxnþ1A

∗
1þn tð Þ

Ynþ1

i¼1

Fϵ,0
1 xið ÞX


1þnð Þn1þn

, (22)

exists, for finite time interval function (23) is the uniformly convergent series
with respect to x1 from arbitrary compact, and it is determined a weak solution of
the Cauchy problem of the non-Markovian Enskog equation (20), (22). Let in the
sense of a weak convergence there exist the following limit:

w� lim
ϵ!0

Fϵ,0
1 x1ð Þ � f 01 x1ð Þ

� �
¼ 0,

then for finite time interval there exists the Boltzmann–Grad limit of solution
(23) of the Cauchy problem of the non-Markovian Enskog equation for one-
dimensional granular gas (20) in the sense of a weak convergence:

w� lim
ϵ!0

Fϵ

1 t, x1ð Þ � f 1 t, x1ð Þ
� �

¼ 0, (23)

where the limit one-particle marginal distribution function is defined by uni-
formly convergent arbitrary compact set series:

f 1 t, x1ð Þ ¼
X∞

n¼0

1

n!

ð

�ð Þn
dx2 … dxnþ1A

0
1þn tð Þ

Ynþ1

i¼1

f 01 xið Þ, (24)

and the generating operator A0
1þn tð Þ � A

0
1þn t, 1, … , nþ 1ð Þ is the nþ 1ð Þth-order

cumulant of adjoint semigroups S ∗ ,0
n tð Þ of point particles with inelastic collisions. An

infinitesimal generator of the semigroup of operators S ∗ ,0
n tð Þ is defined as the operator:

L ∗ ,0
n f n

� �
x1, … , xnð Þ ¼ �

Xn

j¼1

pj
∂

∂qj
f n x1, … , xnð Þ

þ
Xn

j1 < j2¼1

∣pj2
� pj1

∣
1

1� 2εð Þ2
f n x1, … , x⋄j1 , … , x⋄j2 , … , xn
� �

�

 

f n x1, … , xnð ÞÞδ qj1
� qj2

� �
,
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where x⋄j � qj, p
⋄
j

� �
and the pre-collision momenta p⋄j1

, p⋄j2
are determined by the

following expressions:

p⋄j1
¼ pj2

þ
ε

2ε� 1
pj1

� pj2

� �
,

p⋄j2
¼ pj1

�
ε

2ε� 1
pj1

� pj2

� �
:

For t≥0 the limit one-particle distribution function represented by series (25) is
a weak solution of the Cauchy problem of the Boltzmann-type kinetic equation of
point particles with inelastic collisions [20]

∂

∂t
f 1 t, q, pð Þ ¼ �p

∂

∂q
f 1 t, q, pð Þ þ

ðþ∞

�∞

dp1 ∣p� p1∣

�
1

1� 2εð Þ2
f 1 t, q, p⋄ð Þ f 1ðt, q, p

⋄
1Þ � f 1ðt, q, pÞ f 1ðt, q, p1Þ

 !

þ
X∞

n¼1

I
nð Þ
0 :

(25)

In kinetic equation (26) the remainder
P∞

n¼1I
nð Þ
0 of the collision integral is

determined by the expressions

I
nð Þ
0 �

1

n!

ð∞

0
dPP

ð

�ð Þn
dq3dp3 … dqnþ2dpnþ2V1þn tð Þ

1

1� 2εð Þ2
f 1 t, q, p⋄1 p,Pð Þ
� �

 

� f 1 t, q, p⋄2 p,Pð Þ
� �

� f 1 t, q, pð Þf 1 t, q, pþ Pð ÞÞ
Ynþ2

i¼3

f 1 t, qi, pi
� �

þ

ð∞

0
dPP

ð

�ð Þn
dq3dp3 … dqnþ2dpnþ2V1þn tð Þ

1

1� 2εð Þ2
f 1 t, q, ~p⋄1 p,Pð Þ
� �

 

� f 1 t, q, ~p⋄2 p,Pð Þ
� �

� f 1 t, q, pð Þf 1 t, q, p� Pð ÞÞ
Ynþ2

i¼3

F1 t, qi, pi
� �

,

where the generating operators V1þn tð Þ � V1þn t, 1, 2f g, 3, … , nþ 2ð Þ, n≥0, are
represented by expansions (15) with respect to the cumulants of semigroups of
scattering operators of point hard rods with inelastic collisions in a one-dimensional
space:

bS
0

n t, 1, … , nð Þ≐ S ∗ ,0
n t, 1, … , sð Þ

Yn

i¼1

S ∗ ,0
1 t, ið Þ�1

: (26)

In fact, the series expansions for the collision integral of the non-Markovian
Enskog equation for a granular gas or solution (23) are represented as the power

series over the density so that the terms I nð Þ
0 , n≥ 1, of the collision integral in kinetic

equation (18) are corrections with respect to the density to the Boltzmann collision
integral for one-dimensional granular gases stated in [17, 21].

Since the scattering operator of point hard rods is an identity operator in the
approximation of elastic collisions, namely, in the limit ε ! 0, the collision integral
of the Boltzmann kinetic equation (26) in a one-dimensional space is identical to
zero. In the quasi-elastic limit [21], the limit one-particle distribution function (25)

lim
ε!0

εf 1 t, q, vð Þ ¼ f 0 t, q, vð Þ,
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satisfies the nonlinear friction kinetic equation for granular gases of the follow-
ing form [16, 21]:

∂

∂t
f 0 t, q, vð Þ ¼ �v

∂

∂q
f 0 t, q, vð Þ þ

∂

∂v

ð∞

�∞

dv1 ∣v1 � v∣ v1 � vð Þ f 0 t, q, v1ð Þf 0 t, q, vð Þ:

Taking into consideration result (24) on the Boltzmann–Grad asymptotic
behavior of the non-Markovian Enskog equation (16), for marginal functionals of
the state (14) in a one-dimensional space, the following statement is true [20]:

w� lim
ϵ!0

Fs t, x1, … , xsjF
ϵ

1 tð Þ
� �

� f s t, x1, … , xsj f 1 tð Þ
� �� �

¼ 0, s≥ 2,

where the limit marginal functionals f s tj f 1 tð Þ
� �

, s≥ 2, with respect to limit one-

particle distribution function (25) are determined by the series expansions with the
structure similar to series (14) and the generating operators represented by expan-
sions (15) over the cumulants of semigroups of scattering operators (27) of point
hard rods with inelastic collisions in a one-dimensional space.

As mentioned above, in the case of a system of hard rods with elastic collisions,
the limit marginal functionals of the state are the product of the limit one-particle
distribution functions, describing the free motion of point hard rods.

Thus, the Boltzmann–Grad asymptotic behavior of solution (23) of the non-
Markovian Enskog equation (20) is governed by the Boltzmann kinetic equation for
a one-dimensional granular gas (18). Moreover, the limit marginal functionals of
the state are represented by the appropriate series with respect to limit one-particle
distribution function (25) that describe the propagation of initial chaos in one-
dimensional granular gases.

7. Conclusions

In this chapter the origin of the kinetic description of the evolution of observ-
ables of a system of hard spheres with inelastic collisions was considered.

It was established that for initial states (13) specified by a one-particle distribution
function, solution (10) of the Cauchy problem of the dual BBGKY hierarchy (8) and
(9) and a solution of the Cauchy problem of the non-Markovian Enskog equation
(16) and (17) together with marginal functionals of the state (14), give two equiva-
lent approaches to the description of the evolution of states of a hard sphere system
with inelastic collisions. In fact, the rigorous justification of the Enskog kinetic equa-
tion for granular gases (16) is a consequence of the validity of equality (14).

We note that the developed approach is also related to the problem of a rigorous
derivation of the non-Markovian kinetic-type equations from underlying many-
particle dynamics which make it possible to describe the memory effects of granular
gases.

One more advantage also is that the considered approach gives the possibility to
construct the kinetic equations in scaling limits, involving correlations at initial time
which can characterize the condensed states of a hard sphere system with inelastic
collisions [10].

Finally, it should be emphasized that the developed approach to the derivation
of the Boltzmann equation for granular gases from the dynamics governed by the
non-Markovian Enskog kinetic equation (16) also allows us to construct higher-
order corrections to the collision integral compared to the Boltzmann–Grad
approximation.
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