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Chapter

Parameter Identification,
Modeling and Testing of Li-Ion
Batteries Used in Electric Vehicles

Mircea Ruba, Raul Nemes, Sorina Ciornei and Claudia Martis

Abstract

The chapter focuses on presenting a detailed step-by-step workflow for theoret-
ical and practical approach of Li-ion battery electric parameter identification. Cor-
rect and precise information about the electric parameters of the batteries allows
defining several types of simulation approaches. Increasing the complexity of these
approaches requires more and more identified parameters and by this more com-
plicated hardware to fulfill the identification process itself. However, the level of
complexity must be justified by the need of accuracy as well as the compromise of
labor, simulation power and time. In this chapter, several simulation complexity
levels are presented via theory and then tested via simulations compared with actual
measurements. A proper and well-done analysis of these models helps the future
reader to decide whether he will use a complex model, function of the need of
accuracy, simulation power and time. The compromise will be highlighted by
comparing the error of different approaches compared to actual laboratory
measurements. Over all, the chapter will be a gathered guideline for identification,
modeling and testing of batteries, ready to be implemented both in simulation
and in practical experiments.

Keywords: battery, parameter identification, simulation and modeling,
model complexity benchmark

1. Introduction

Nowadays, the interest of research in the field of batteries, both from the
electrical and chemical perspectives, gained a lot of field. Many R&Ds from both
industry and academia are engaged in developing design, simulation, hardware
testing and performance analysis solutions to better the existing batteries. Electrifi-
cation of transport, both in the area of heavy-duty and light solutions, requires
higher and higher performances of the batteries. This influences directly the auton-
omy of the vehicle reflecting directly the owner’s comfort and trust in investing in
such new vehicles. The research invested in batteries for increasing more power
density into each cell comes with a lot of effort, it is time consuming and returns in
higher costs. Nevertheless, thermal stability of the batteries is a very delicate issue,
knowing unfortunate events that occurred when batteries caused fires and human
injury as well.
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The evolution of technology both in engineering and software, reduced the time
to market and proper evolution of the batteries, increasing performances whilst
diminishing the development costs. Solutions to study batteries are included in a
large variety of software; models are already preprogramed into hardware power
emulators, ready for use. However, those are often closed-source tools with access
only to replace the battery parameters, many times with linear ones. It was proven
in many studies that the main electrical parameters of the batteries are far from
being linear. Even more, it is known that aging, cell temperature and ambient
temperature are extremely aggressive in changing the battery parameters.

Hence, many times custom-made battery electric models are more than a good
solution to run studies where the designer can add or dismiss many factors and
parameters that are varying with several external influences. In the same time,
designing such models simplifies the transition from off-line analysis to real-time
applications. The latter tool is not always at the disposal of the designer due to
platforms that are dedicated exclusively to computer-based simulators.

On the other hand, performing proper parameter identification of existing cell,
to validate their theoretical design, can be quite challenging. There are many
published papers that reflect these methods that some are quite simple and lucrative
solutions, while others are complex and require expensive setup and a lot of data
post-processing.

The present chapter will engage this issue of parameter identification for Li-ion
battery cells and present the main used simulation models, and benchmarking of
these models will give the reader a certain definition of the advantages and draw-
backs of some models versus others. The chapter does not include information
regarding the battery control strategies or battery management topics, remaining
focused only on the above-mentioned subjects to be presented in detail. Also
parameter variations due to large temperature variations or other stress factors were
not taken into discussion as these variations can be recorded using the presented
methods while imposing such external factors to the subjected battery cells.

In the authors’ opinion, there are two main directions of judging the complexity
of a model. If considering industrial work, engaging models with lower complexity
and good accuracy, is a lucrative solution to reach the desired target not forgetting
to decrease the time to market. On the other hand, in academia-based research,
more complex models with very high accuracy is the key to prove the designer’s
skill, to prove the model’s benefit and to push to reach a used solution on the large
scale. The latter comes with the drawback of high complexity that demands
large time consumption and a lot of involved labor.

In the present chapter, such a comparison will prove the above-mentioned
aspects while comparing two types of different simulation models for the same

type of battery.

2. Battery analysis models

As the batteries are electrochemical entities, there are several directions when
approaching and building a simulation model to perform its behavioral analysis.
The model can be designed from the chemical or electrical point of view or can be
a hybrid mixture between them. Moreover, the battery temperature, as critical
parameter, is often analyzed using a thermal model as add-on to the
above-mentioned ones.

In the literature, an electrochemical approach is the pseudo-two-dimensional
model developed by Doyle [1], which proved to be able to predict quite well the
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dynamics of Li-ion batteries. The main disadvantage of such a model is the high
computational required time.

The authors will approach only the electrical simulation models for batteries due
to their electrical engineering education. However, research on batteries should
always be considered as a multidisciplinary domain, gathering researchers educated
in chemical, electrical and thermal sciences in order to be able to perform a com-
plete and realistic battery cell model.

In the literature, there are several approaches for the electrical simulation of
battery cells [2-6]; mainly all are based on electric circuit models (ECM). Function
of the battery chemistry, of the required model accuracy and of the designer, there
are available simple circuits such as the Thevenin approach [7], complex ones, such
as the impedance based spectroscopy approach [8] and middle range circuits such
as the first and second order electric circuits [9-12]. The above-mentioned catego-
ries range their accuracy from satisfactory to highly precise.

The present chapter will approach the first- and second-order electric circuit-
based modeling, detailing aspects such as model design, parameter identification
and accuracy testing.

When using the expression that classifies these models into first and second
order, these are referred to the number of parallel resistance-capacitance groups
used to describe the battery.

In Figure 1 (left and right), the generic electric circuits for the first- and second-
order models, respectively, are depicted. Both have the first resistance in common
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Figure 1.
The ECM for the first-order (top) and second-ovder (bottom) approaches.
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(R), this being referred to as the internal series resistor that is responsible with the
ohmic considered resistance of the battery cell. In Figure 1 (left), in the first-order
approach, the RC parallel group has the role of replicating the dynamic transient
of the voltage inside the cell. Its components stand for the polarization resistance
(Rp) and the polarization capacitance (C;,). The internal voltage source, denoted
with (V,.), represents the open circuit voltage of the Li-ion cell function of its
state of charge (SOC).

Now in order to model the first-order ECM, first one has to apply Kirchhoff’s
law on the circuit, composed of tree voltage drops: the open circuit one, the RC
parallel group and the series resistance one, explained in Eq. (1).

Vbat = Voc — Uy — Rs 'Ibat (1)

In Eq. (1), the current drained from the battery (or supplied to it, in case of
charging) is denoted with (I,). The voltage drop of the parallel RC connection is
simple to be expressed like a derivative:

du1 B 1

1
— = U1+ = Ipa (2)
dt R, -G, Cp “

The open circuit voltage (V,.) represented function of the SOC of the cell is in
fact a recorder data from actual cells; however, details about that will be explained
later on in the following pages.

Comparing the two circuits depicted in Figure 1, one can conclude that in fact,
the second-order model includes the first-order one having in addition a second RC
parallel group. However, the concept is not straightforward. In the first-order
model, the entire polarization dynamics are handled using one RC group. For the
second-order model, this dynamical process is replicated using two such RC groups
as it can be seen in Figure 1. The series resistance and the open circuit voltage
components are the same as for the first-order model, while the (R;C;) and (R,C,)
groups denote the activation polarization and the concentration polarization,
respectively.

Hence, based on this circuit, the second-order model based again on Kirchhoff’s
law can be described using Eq. (3).

Vbat = Voc — Uy — Uy — Rs 'Ihat

—_— = — — U _—

dt Ry -C ! Cy bay (3)
d 1 1

n U+ - Ibat

dt R, -G C,

The analytical approach for the first- and second-order models described in
Egs. (1)-(3) are exposed as pure electric equations. However, it is known that the
parameters used in this model, such as resistance, capacitances, open circuit volt-
age, or state of charge, must be identified from actual battery cells. Hence, in order
to create a link between the analytical battery models and the identification process,
both for the first- and second-order models, another approach can be engaged. This
drives more forward the mathematical perspective of modeling dynamic signal
variations. Using the exponential mathematical function, the models from the
above-mentioned equations can be reorganized as follows:

¢ For the first-order model,

Viar =ko — k1 - exp(—a -t) (4)
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where the terms (ko), (k;) and (a) can be identified from the above equations as
coefficients

kO - Voc - Rs : Ibut
B ®
Ibat Rl : C'1

¢ For the second-order model

Viar =ko —k1- exp(—a-t) —ky- exp(—b -t) (6)
where again by the same identification result the coefficients

kO - Voc - Rs 'Ihat

R4 R
fy — L ky = 2
! Ibat ? Ibat (7)
1 1
a = b =
Ri-Cy R, -G,

It is important to understand that using this second approach for both the
models, one can simply link the battery characteristics to its parameters in order to
be able to describe the complete model judging the correct interpretation of the
measured values during the parameter identification process.

3. Battery parameter identification

The process of identifying the parameters that are then able to cope with the
analytical model to describe the cell’s behavior requires a preliminary hardware
setup dedicated for such applications. There are several possibilities to build such
a test bench. For the present study, the authors built a test bench based on a
programmable electronic load and a programmable electronic supply, as depicted
in Figure 2.

PC (LabView)

PXle-1071 (FPGA 7841R)
s

Programmable DC Electronic
chargin Power suppl
EINE s PPy

Shielded
/O Connector

Cell under test

Programmable DC Electronic
Load

Figure 2.
The test bench for battery parameter identification process and testing.
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The used battery to model is a LG (LGABD11865) battery with a rated capacity
of 3000 mAh, 3.75 V rated, 4.2 V maximum over charge voltage, 2.7 V minimum
discharge voltage, 0.5-1 A charging current and 0.2-0.5 A discharging current.

For the identification process, the battery was connected to a programmable
load (EA-EL 9400-150 0-400 V 0-150A 7200 W). From a host computer, the
battery was discharged at 1C from 100% state of charge (SOC) till it reached the
cut-off voltage. The flowchart of the identification process is depicted in Figure 3.
Preliminarily, the battery is charged to 100% SOC using a commercial charger. It is
left then to relax for 24 h. Afterwards, it is connected to the programmable elec-
tronic load that is controlled by the host computer, used also to stream the Vy,,; and
Ia¢ to data files, all versus the elapsed time.

The process starts by applying a 1C negative current pulse for a period of 60 s,
by this starting the decay of the battery voltage as it is discharged. After the 60 s
pulse, the cell is left in relaxation for 180 s. Before performing a new current pulse
of 60 s, the battery voltage is compared to the lowest threshold (Vi) of 2.7 V. If the
voltage is larger than 2.7 V, the pulse is applied for another 60 s followed by 180 s
relaxation period. If the voltage is less than 2.7 V, the process stops as the battery is
considered fully discharged.

Through the entire process, while Vy,, is larger than V, the data is recorded
and streamed to external files, with a sampling of 10 sample/s.

The resulted variation of the voltage function of the discharge current is
depicted in Figure 4, where the 60 s length pulses of —3 A were followed by a
relaxation period of 180 s. With such recorded data, one can proceed with the
identification process for both first- and second-order model parameters.

Charge the cell till SOC 100%

L
Relax the cell for 24h
+
Connect the cell to e-load
v
IS Vibat < Virs o
YES o ‘ NO
© Apply
S <= discharge
L pulses 60s
= ¥
>B < Relax
£ 180s
g
i ‘
\ 2 |
If YES, STOP process

Data postprocessing

Figure 3.
The flowchart for the battery identification process data recording.
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Figure 4.
The battery voltage (top) and the discharge current (bottom).

The data recorded into the external files is afterwards processed for the actual
parameter identification of the Li-ion cell. Section 3.1 details all the necessary
information for a clear hands-on methodology of data post-processing for parame-
ter identification.

3.1 Open circuit voltage and series resistance identification

Independent for what type of circuit the designer wishes to build, first or second
order, there are some parameters that are mandatory to be identified for both
approaches. These parameters are the open circuit voltage (V,.) and the series
resistance (R;). To understand their identification and role in the battery behavior,
from Figure 4, the period according to one discharge current and one relaxation
time is zoomed in Figure 4. All the identification steps will be explained with regard
to this figure.

In Figure 4 it can be seen that (V,.), corresponding to each pulse, is in fact the
open circuit voltage measured just prior to the current pulse that will discharge the
battery. This value is measured from SOC 100% till 10% and recorded as V. = f
(SOC), as depicted in Figure 6.

The second parameter, the series resistance (R;) that creates the large visible
voltage drop when applying the discharge current, can be quite easily computed.
Knowing the V. at the start of each discharge pulse and measuring the (V) voltage
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Figure 5.
The detailed voltage variation for the battery parameter identification (first-order model).
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Figure 6.
The open circuit voltage for the entire discharge cycle.

(from Figure 5) and knowing the value as well of the pulsed current applied make it
easy to compute the (R;) resistance based on Ohm’s law (see Eq. (8)):

Vo =V
Ro=—%_"*1 (8)
Ipar

From this point on, the post-processing of the acquired data to identify the
parameters for the first- and second-order models will by slightly different. To be
able to clearly understand each process, these will be treated separately with both
equations and explanations, coped with the represented parameters from Figure 5.

3.1.1 First-order pavameter identification

Going back to Egs. (1) and (2), one can see that the open circuit voltage together
with the series resistances was already identified as a general parameter for all
battery models. What remains to be calculated are the polarization resistance (Ry,)
and polarization capacitance (Cp). In Figure 5, it can be seen that for each discharge
current pulse, the lowest value of the voltage is marked with (V3). Based on Ohm’s
law, coped with the discharge current, one can simply compute the value of the
polarization resistance as in Eq. (9).

Vo - Vs

R
I bat

4

9)

On the other hand, the value of the (V3) voltage function of time is influenced
by the polarization capacitance of the battery (C,). Therefore, knowing the value of
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the polarization resistance and the time length of the current pulse (), it is
straightforward to compute the capacitance as in Eq. (10).

t=R,-C, (10)

Generally, these computations are done during the discharging periods; how-
ever, these are valid to be computed for the relaxation time as well. Normally, the
voltage variation gradient both in discharge and relaxation periods should be the
same, and this justifies the previous explanation. As the entire data recorder when
proceeding with the battery identification process is a function of the SOC, the
calculated parameters will be as well a plotted function of the SOC. In Figure 6, for
the first-order model, the open circuit voltage, the series and polarization resis-
tances and the polarization capacitance for the entire range of battery discharge are
plotted. It can be observed that the series resistance has a generally constant value
over the entire period, while the polarization one increases when the SOC is over
90%. In the same manner, the polarization capacitance as 3 regions, one between
0 and 40% SOC where is it quite constant, then between 40% and 80%, a region
with larger values and decreases a lot when the cell’s SOC goes for the fully
charged value.

3.1.2 Second-order parameter identification

In order to quantify the parameters for the second order, the same zoomed plot
from Figure 5 is used again, but this time, the approach is slightly different. In
Figure 7, the parameters to be identified are detailed in the voltage variation. The
open circuit voltage and the series resistance quantification remains the same as
detailed in the first paragraphs of Section 3.1. The remaining parameters to be
calculated are linked to the model expressed in Egs. (6) and (7). The reason of using
exponential expressions instead of derivative ones is justified by the fact that the
two RC groups of the second-order ECM are difficult to be separated. Hence, the
shape of the voltage during the relaxation time (or the discharge time) is directly
described by these two RC groups connected in series.

Actually, in the exponential voltage variation, one can observe that visually
there is a period of fast variation and then a second one, of slow variation. It is
impossible to define clearly these periods and to admit that one group is responsible
for one period and the other one for the second period. Hence, the identification
process includes both groups altogether. The reason of describing the battery model
with exponential variations is justified in fact by the method of calculating these
four parameters (R;, Ry, C; and C;). This method is handled using a curve fitting
procedure, based on the measured voltage shape. Using the fit function
programmed in MATLAB Coder and applied for each relaxation period over the
entire discharge cycle of the battery will return preliminary values for the four
parameters, corresponding to each period. In order to give the reader a clear step-
by-step procedure of handling this identification process, the authors considered
that it is more lucrative to detail this post-processing phase of the identification:

First, record all the transient regimes for each relaxation time into a matrix.

Apply the curve fitting procedure for each of the recorded variations based on

Eq. (6).

Save the resulting constants (kO, k1, k2, a, b) into another matrix.

Compute for each set of constants the values for Ry, R,, C; and C,.
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Figure 7.
The detailed voltage variation for the battery parameter identification (second-ovder model).

As general settings for the fit function, the best approach is to use nonlinear least
squares, bounded by upper and lower values that are mandatory to be positive and
realistic. The results of the fitting process will return the battery parameters that fit
quite well with the measured voltage variation when reconstructing it based on the
computed data. However, higher accuracy can be reached if one applies an optimi-
zation procedure of the fitted parameters to the actual measured voltage shape.

In Figure 8 (top), the actual measured voltage (Vygas) with blue and the
voltage variation obtained using Eq. (6) with the fitted parameters (Vgrrr) with
black are depicted. It is noticeable that there is some difference between the two
characteristics, as well as in Figure 8 (bottom), with black; the difference between
the two is highlighted in black, following the variation of (errgrrr).

On the other hand, if one applies an optimizer to fit more accurately with the
battery parameters, the results reveal a highly precise characteristic that superim-
poses quite well on the measured one. In Figure 8 (top), with red, the voltage
variation using optimized parameters is plotted (Vopr), while in Figure 8 (bottom),
the (erropr) is much smaller than the one obtained without optimization.

For the optimization process, the authors used a tool offered by MATLAB
Simulink, called Control and Estimation Tool Manager. The benefit of using the tool
provided by MATLAB Simulink is that the user does not have to have mathematical
skills to implement optimization algorithms, investing his time and effort directly in
using those existing for optimizing his model in development. This tool uses the
model of the battery designed in MATLAB Simulink with the fitted parameters and
varies them until the smallest error between the measured voltage variation and the
model output is reached. This optimization is carried out for each relaxation time, as
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it was done for the preliminary fitting process. The resulted data are recorded into a
matrix and will result in the battery parameter function of the SOC of the battery.
In Figure 9 (top left), the main window of the Control and Estimation Tool
Manager is depicted. There are several already implemented optimization algo-
rithms that can be chosen, setting the number of iterations, the tolerance and the
search method for each of them. One example is highlighted in Figure 9 (top right)
that shows the variations of the parameters carried out by the optimizer to reach the
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Figure 8.
Comparison of the fitted and optimized parameters influence (second-order model).
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The MATLAB Simulink Control and Estimation Tool Manager.
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closest battery model output voltage variation compared to the measured one. The
final comparative result is depicted in Figure 9 (bottom), proving a closely com-
plete overlap between the measured and the simulated curves, obtained for the new
optimized battery parameters.

In Figure 8-bottom, comparing the results of the fitted and optimized models it
is clear that in case of the latter, only 10 mV of error is reached while the fitted one
yells for maximum of 70 mV error. Indeed, the labor and computation time for
obtaining the optimized parameters is larger; however, if one requires high preci-
sion, it is the compromise that needs to be considered.

4. Battery model benchmarking

In the previous chapters, first- and second-order battery models with their
equivalent circuits, parameter identification process and post-processing computa-
tions were presented. It is logical that the first-order battery model is the simplest
one, yelling for simple parameter identification, simple modeling and simple data
post-processing. However, undoubtable the accuracy of the first-order model is
comparatively lower than the accuracy of the second-order model, especially by its
nature that lacks components to describe the exponential transient of the battery
voltage. It’s been proved however [10] that such first-order models can be used to
create fast, reliable and realistic simulation programs. In order to increase the level
of scientific impact of the proposed chapter, the discussion of benchmarking bat-
tery models will continue focusing only on second-order models. However, in the
literature, the main differences of the first- and second-order battery models were
already detailed up to an extent. The added value of this chapter to the actual status
of research is a different approach that focuses on the second-order battery model
complexity and compromises when building the simulation programs.

It is known that nowadays, the simulators designed to emphasize phenomena
especially in electrical engineering are more and more constructed using real-time
platforms. By this, simulation sampling and accuracy of the results compared to
those measured are mitigated seriously.

However, considering the large amount of data that needs to be recorded into
matrixes for all the battery parameters becomes challenging when creating real-
time simulation programs. Generally, such data becomes core in lookup tables
(LUT). Loading LUT on a real-time processor becomes difficult as it requires space
and decreases the sampling speed of the processor. For example, using field-
programmable gate arrays (FPGAs) becomes even more complicated in this
approach, as those require add-on external flash memory, and by this the system
becomes quite complicated as the interaction of the memory and the FPGA needs
also to be additionally programmed.

Normally, a battery model architecture for the second-order model would
require 6 LUTs as follows: one for the (V,.), one for the ohmic resistance (R;) and
four others for (R4, Ry, C; and GC,).

Using an architecture as the one depicted in Figure 10 leads to high-accuracy,
realistic results but also large memory necessity, long simulation time and non-
realistic sampling time. Hence, such design models are not at all justified to be
implemented into real-time processors.

However, there is another approach that can be used in the case of real-time
applications. Analyzing the parameter variations from Figure 11, although these are
for the first-order circuit, the following statement is valid for the second-order
circuit as well. It can be seen that around a SOC of 60%, these parameters are quite
constant. Sudden variations are recorded only around 10% and 100% of SOC.
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Figure 11.

The Ry, the R, and the C,, functions of the SOC for the first-order model.

Hence, an approach that can simplify the modeling of a second-order circuit is to
use instead of LUTs for each parameter constant values for the parameters recorded

at a SOC of 60%.

In Figure 12, the reduction of the model complexity of the second-order battery
can be observed. Instead of 6 LUTs, only one remains, namely, the (V,.) function of
the SOC. The rest of the parameters are constants, as mentioned before.

As it can be seen, the model is highly simple right now, and it contains only one
LUT. The variation of the (V,.) depicted in Figure 6 that is identical for both the
first- and the second-order models can be in fact described instead of a LUT with a
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polynomial function. With this the model, it becomes even more simple, without
any LUT. In Figure 13, the results for the three different approaches, the fitted one,
the optimized one and the one based on constants, all versus the measured one, are
plotted. For all, the difference between the measured quantity and the one obtained
from the three models is depicted in Figure 13 (bottom). Still, the largest error is
returned by the fitted values, while the smallest error is given by using LUTs with
optimized values. However, it is interesting to observe that when using constant
values, fetched at a SOC of 60%, the error is more than satisfactory. It has to be
mentioned that the constant values were fetched out of the optimized data at the
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Figure 12.
The second-order battery model based on constants.
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Figure 13.
The compavison of the three different modeling approaches for second-order ECM.
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SOC of 60%. The results detailed in Figure 13 and the explanations regarding this
approach prove that one can simply build a second-order battery model that can
perform simulations on a real-time processor, even a FPGA.

4.1 Experimental validation of the proposed models

As already stated, the focus of the chapter is around the second-order Li-ion
battery modeling; hence, the proof of correct approach will be engaged still on
second-order modeling compared to actual measurements.
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Figure 14.
The measured vs. fitted parameters voltage (top), their difference (middle) and the SOC (bottom,).
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The measured vs. optimized parameters voltage (top), their difference (bottom,).

The simplest method of experimentally validating the analysis is to compare the
measured discharge characteristic of the battery for the complete cycle with the
results obtained from each modeling method.

In Figure 14, the validation of the model with fitted parameters is accomplished
versus the actual measured battery voltage. To have a transparent comparison, the
instantaneous error over the entire discharge range is computed. Generally the error
is less than 100 mV and increases to larger values especially when the SOC is less
than 20%. In Figure 15, the measured voltage is compared to the one obtained from
simulations using the optimized parameters. Here, the error is consistently smaller
than in the previous case, reaching 100 mV only when the battery is completely
discharged. The SOC depicted in Figure 14 is valid for Figures 15 and 16 as well.
The last analyzed model is the one where the LUTs are replaced with constant
values fetched at a SOC of 60% (Figure 16). Analyzing the error one can state that
this is larger than for the model with optimized values in LUTs but smaller than for
the one with fitted values in LUTs.

The accuracy of the model based on constants is more than satisfactory and
proves that designing such model can run both on computer and real-time platform
simulators, reaching high accuracy and realistic behavior.
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The measured vs. constant parameters voltage (top), their diffevence (bottom,).

5. Conclusions

The research conducted on battery modeling and simulation that is now a hot
topic in many research facilities both in academia and industry sectors requires
precision, accuracy and transparency but at the same time demands reaching all
these with the assumption of simplicity. There are many publications that reach
impressive accuracy when modeling battery cells but with the cost of high com-
plexity and large data manipulation inside the model. When speaking about pure
scientific impact, such models are more than beneficial to those involved in their
development. However, when coping with industry applications, the precision is as
important as is the simplicity. Hence, using the general architecture of high preci-
sion models and manipulating their parameters to avoid data overflow and keep the
accuracy in satisfactory boundaries become a lucrative solution.

The authors proved in this chapter that one can reach with wise interpretation
such solutions that are simple to use, are simple to design and offer the possibility to
simulate quite close to the real behavior a Li-ion battery cell.
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