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Chapter

Uncertainty Analysis Techniques
Applied to Rotating Machines
Fabian Andres Lara-Molina, Arinan De Piemonte Dourado,
Aldemir Ap. Cavalini Jr and Valder Steffen Jr

Abstract

This chapter presents the modeling procedure, numerical application, and
experimental validation of uncertain quantification techniques applied to flexible
rotor systems. The uncertainty modeling is based both on the stochastic and fuzzy
approaches. The stochastic approach creates a representative model for the flexible
rotor system by using the stochastic finite element method. In this case, the uncer-
tain parameters of the rotating machine are characterized by homogeneous Gauss-
ian random fields expressed in a spectral form by using the Karhunen-Loève (KL)
expansion. The fuzzy approach uses the fuzzy finite element method, which is
based on the α-level optimization. A comparative study regarding the numerical
and experimental results obtained from a flexible rotor test rig is analyzed for the
stochastic and fuzzy approaches.

Keywords: rotordynamics, uncertainty, fuzziness, randomness, experimental
validation

1. Introduction

Rotating machines are unavoidably subjected to uncertainties that affect their
parameters and, consequently, their dynamic behavior. Thus, mathematical models
that encompass variability and randomness are required for the analysis and design
of rotating machines instead of using deterministic models.

Uncertain dynamic responses of flexible rotors have been analyzed by applying
two main approaches, namely, stochastic and fuzzy. Thus, the uncertainty analysis
has been applied in flexible rotors by using the polynomial chaos theory [1], as
modeled by considering Gaussian homogeneous stochastic fields discretized by
Karhunen-Loève expansion [2] or through the fuzzy approach [3, 4]. These
methods are well-established tools that may present limitations and drawbacks
depending on the application conveyed.

In this context, this chapter presents two different approaches to model uncer-
tain parameters and to simulate the uncertain dynamic responses of rotating
machines. In this way, the stochastic and fuzzy approaches are applied to different
parameters of a flexible rotor. The procedure used to obtain the stochastic model of
the rotor is based on the stochastic finite element method. Moreover, the fuzzy
finite element model of the rotor system is formulated according to the fuzzy
approach. Then, the corresponding numerical method used to compute the fuzzy
dynamic responses of the rotating machine is described. A comparative study
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between the stochastic and fuzzy approaches along with the validation of the
obtained results by using experimental data is presented.

2. Rotor system model

The deterministic model of a flexible rotor based on the finite element method
(FE model) is obtained in this section by following the formulation previously
presented in [5]. The rotor system is composed of a flexible shaft, rigid discs, and
bearings. Figure 1 shows the finite element used to represent the shaft. In this case,
the finite element has two nodes and four degrees of freedom (DOFs) per node. The
DOFs are associated with the nodal displacements along the x and z directions
(defined by u and w, respectively) and the rotations around the x and z directions
(θ = ∂w/∂y and ψ = ∂u/∂y, respectively).

In this contribution, the FE model of the shaft was obtained based on the Euler-
Bernoulli and Timoshenko beam theories. The displacement field along the finite
element is represented by a cubic interpolation function. Therefore, u(y, t) = N(y)
ue(t), where N(y) is a matrix containing shape interpolation functions and
ue(t) = [ui wi θi ψi]

T (i = 1, 2) is the vector of DOFs.
The strain and kinetic energies of the shaft finite element are defined according

to analytical equations derived from the variational principle. Therefore, the mass
and stiffness elementary matrices of the shaft are given by

Me
s ¼

ð

L

y¼0

NT
mi yð ÞNmi yð Þdy

Ge
s ¼

ð

L

y¼0

NT
g yð ÞNg yð Þdy

Ke
s ¼

ð

L

y¼0

BT yð ÞEB yð Þdy

(1)

where Ms
e (Ne � Ne) is the elementary mass matrix of the shaft element, Gs

e

(Ne � Ne) is the gyroscopic matrix, Ks
e (Ne � Ne) is the stiffness matrix, and E is the

isotropic matrix that contains the elastic properties of the material. B(y) is the
matrix composed of differential operators that characterize the strain–displacement

Figure 1.
Finite element of the shaft [2].
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relationship. Nmi
T and Ng

T represent the shape interpolation functions associated
with the mass and inertia matrices, respectively. Ne = 8 is the number of DOFs
considered in the shaft finite element.

Rigid discs are introduced in the global FE model of the shaft by considering
their corresponding kinetic energy. Thus, Md

e (Nd � Nd) and Gd
e (Nd � Nd) are the

mass and gyroscopic matrices associated with each disc (Nd = y is the number of
DOFs considered for the disc). Moreover, the bearings are modeled by using linear
stiffness and damping coefficients that are introduced conveniently in the stiffness
and damping matrices of the shaft FE model, respectively [6].

Eq. (2) presents the differential equation that characterizes the dynamic behav-
ior of rotating machines (FE model with N DOFs), which is obtained by assembling
the elementary finite element matrices of the shaft:

M€q tð Þ þ CþΩG½ � _q tð Þ þ Kq tð Þ ¼ F tð Þ (2)

where M = Ms + Md (N � N) and K=Ks + Kb (N � N) are the global mass and
stiffness matrices of the rotor model, respectively. Kb is the matrix containing the
stiffness coefficients of the bearings. C = Cb + Cp (N � N) is the damping matrix
that considers the damping coefficients of the bearings (matrix Cb) and the pro-
portional damping Cp = αM + βK (α and β are the so-called proportional coeffi-
cients). G = Gs + Gd (NxN) is the gyroscopic matrix. q(t) (N � 1) and F(t) (N � 1)
are the vectors of DOFs and external loads, respectively. Ω is the rotation speed of
the shaft. More details about the formulation of the rotor FE model adopted in the
present contribution can be found in [5].

3. Stochastic modeling

Among the various methods used to model uncertainties, the stochastic finite
element method (SFEM) has been widely applied to complex engineering systems
of industrial applications. SFEM presents well-established mathematical funda-
ments and suitable experimental validation [7]. Some details about the formulation
of the SFEM are presented next.

3.1 Stochastic modeling of flexible shafts

The Karhunen-Loève (KL) expansion is used to model the random fields as a
spectral representation. Consequently, a random field is represented as a spatial
expansion of a random variable that fluctuates randomly. For instance, uncer-
tainties affecting Young’s modulus of the shaft can be evaluated by using the KL
expansion. A one-dimensional random field H(y, θ) can be defined as [8]

H y, θð Þ ¼ E yð Þ þ
X

nKL

r¼1

ffiffiffiffi

λr
p

f r yð Þξr θð Þ (3)

where fr(y) and λr are the eigenfunctions and eigenvalues of the covariance
function C(y1, y2), respectively. nKL is the number of terms used in the KL expan-
sion.

In this work, the exponential covariance is adopted, which is defined as
C(y1, y2) = e(�|y₁�y₂|/Lc), where (y1, y2) ∈ [0, L] and Lc represent the correlation
length. ξr(θ) denotes the random variables that are orthonormal with respect to the
functions fr(y). The KL expansion is used to model the stochastic finite element
matrices of the flexible shaft, as given by Eq. (4):
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Me
s θð Þ ¼ Ms þ

X

nKL

r¼1

M
e
srξr θð Þ

Ke
s θð Þ ¼ Ks þ

X

nKL

r¼1

K
e
srξr θð Þ

Ge
s θð Þ ¼ Gs þ

X

nKL

r¼1

G
e
srξr θð Þ

(4)

where Ms, Ks, and Gs are the deterministic elementary mass, stiffness, and
gyroscopic matrices of the shaft, respectively. The stochastic matrices are obtained
by solving the following expressions:

M
e
sr ¼

ð

L

y¼0

ffiffiffiffi

λr
p

f r yð ÞNT
mi yð ÞNmi yð Þdy

K
e
sr ¼

ð

L

y¼0

ffiffiffiffi

λr
p

f r yð ÞBT yð ÞEB yð Þdy

G
e
sr ¼

ð

L

y¼0

ffiffiffiffi

λr
p

f r yð ÞNT
g yð ÞNg yð Þdy

(5)

in which E is the mechanical property matrix that contains the parameters Es, As,
and Is (Young’s modulus, cross-sectional area, and inertia moment of the shaft,
respectively).

3.2 Stochastic modeling of bearings’ parameters

The uncertainties associated with bearings’ stiffness and damping coefficients
of rotating machines can be evaluated by using the following relations:
k(θ) = ko + koδkξ(θ) and d(θ) = do + doδdξ(θ), respectively. In this case, ko and do are
the mean values of the stiffness and damping coefficients of the bearings, respec-
tively. δk and δd are the corresponding dispersion levels. ξ(θ) represents the sto-
chastic distribution. The stochastic model of the rotor is solved by using the Monte
Carlo simulation (MCS) in combination with Latin hypercube sampling [9].

3.3 Numerical results

In this section, SFEM is applied to the FE model as given by Figure 2. The
rotating machine is composed of a horizontal flexible shaft discretized into 20
Euler-Bernoulli’s beam elements, three asymmetric bearings (B1, B2, and B3), and
two rigid discs (D1 and D2). The physical and geometrical characteristics used in the
FE model of the rotor system are given in [2].

In this case, the uncertain random fields associated with Young’s modulus of the
shaft are modeled as homogeneous Gaussian stochastic fields, which are
represented in the spectral form by using the Karhunen-Loève expansion. The
uncertainty variables associated with the stiffness and damping coefficients of the
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bearings are modeled as random variables. This modeling process considers the
frequency- and time-domain vibration responses of the rotating machine in terms
of their working envelopes (frequency response functions (FRFs) and orbits).

Initially, the convergence of the stochastic model is verified by changing the
number of terms used in the KL expansion and the number of samples considered in
MCS (nKL and ns, respectively). The convergence analysis was performed based on
the root-mean-square (RMS) value as given by Eq. (6):

RMS ¼
1

ns

X

ns

j¼1

H j ω,Ω, θð Þ �H j ω,ΩÞð j2
�

�

i1
2

"

(6)

where H(ω, Ω) is the FRF obtained by using the deterministic FE model of the
rotor and H(ω, Ω, θ) is the corresponding FRF of the stochastic model associated
with independent realizations θ. In this case, ω is the frequency.

The deterministic and stochastic FRFs were obtained by considering the shaft at
rest (Ω ¼ 0) from impacts performed along the x direction of the disc D1 and
measures obtained at the same position and direction. Two scenarios were evaluated
to achieve convergence for nKL and ns, as given by Table 1. In both cases, the
correlation length LC was assumed as being equal to the length of the shaft ele-
ments.

Figures 3a and b present the upper and lower limits of the RMS envelopes
obtained by considering the scenarios (a) and (b) of Table 1, respectively. Note that
convergence is achieved for nKL = 10 and ns = 70.

Figure 4a and b show the FRF and orbit, respectively, obtained by using the
deterministic (mean) and stochastic FE models of the rotor system. The uncertain
envelopes were determined by applying a 5% dispersion level both in Young’s
modulus of the shaft (Es) and in the stiffness and damping coefficients of the
bearings (kxx, kzz, dxx, and dzz; see Figure 2). The results show the influence of the
uncertain parameters on the dynamic behavior of the flexible rotor, which are
highlighted by the dispersion of the uncertain envelopes around the curves of the
deterministic FRF and orbit (mean model) (Figures 3 and 4).

Figure 2.
Numerical model of the flexible rotor system [2].

Scenario nKL ns

(a) 1 ≤ nKL ≤ 50 100

(b) 10 1 ≤ ns ≤ 250

Table 1.
Parameters of convergence analysis simulation.
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4. Fuzzy dynamic analysis

The fuzzy dynamic analysis computes the uncertain dynamic responses of
rotating machines by modeling the uncertain parameters as fuzzy variables or fuzzy
fields. The fuzzy dynamic analysis is based on the α-level optimization, which was
introduced by [10]. In the α-level approach, an optimization problem should be
solved to compute the fuzzy responses of the system as presented next.

4.1 Fuzzy variables

Figure 5 presents the definition of fuzzy sets. Considering X as a universal set
whose elements are defined by x, subset A (A ∈ X) is defined by the membership
function μA: X ! {0, 1}, where μA is a membership function with real value and
continuous interval. Each element belongs (for μA = 1) or does not belong to the
classical set A (see Figure 5a). Moreover, a fuzzy set Ã is defined by the member-
ship function μA: X ! [0, 1]. The membership function μA(x) defines how com-
patible the element x is with respect to the fuzzy set Ã. Thus, μA(x) close to 1
indicates high pertinence of x to Ã.

Figure 4.
Stochastic responses: (a) FRF and (b) orbits [2].

Figure 3.
Convergence simulation: (a) nKL and (b) ns [2].
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Fuzzy variables are represented by using intervals weighted by the membership
function, namely, α-levels. According to the α-level representation, Ã is defined as

~A ¼ x, μA xð Þð Þjx∈Xf g (7)

where 0 ≤ μA(x) ≤ 1.
Moreover, according to Figure 5b

~Aαk ¼ x∈X, μA xð Þ≥ αkf g (8)

If the fuzzy set is convex, each α-level subset Aαk corresponds to the interval
[xαkl, xαku], where

xαkl ¼ min x∈X, μA xð Þ≥ αk½ �

xαku ¼ max x∈X, μA xð Þ≥ αk½ �

(9)

4.2 Fuzzy dynamic analysis

The fuzzy dynamic analysis is a numerical method used to map a fuzzy input ~x
onto a fuzzy output ~z τð Þ by using deterministic models, as given by Eq. (2). Thus,
the fuzzy finite element method is defined by combining fuzzy parameters (uncer-
tain information) with a deterministic model based on the classic FE method.

Figure 6 shows that the fuzzy dynamic analysis is composed of two main
steps. The first step consists in discretizing the input fuzzy parameter according
to the α-level representation presented in Eq. (8) and Figure 5b. Thus, each
fuzzy parameter of the vector ~x ¼ ~x1, … , ~xnð Þ is represented by an interval
Xiαk = [xiαkl, xiαku], where αk  [0, 1]. Therefore, the subspace crisp Xαk is defined as
Xαk = (X1αk, … Xnαk) ∈ 

n.
In the second step, an optimization problem is performed. This optimization

process maximizes and minimizes the value of the output for the mapping model
M : z ¼ f xð Þ and over the subspace crisp at each evaluated value τ. Thus,

zαkl ¼ min
x∈Xαk

f x, τð Þ

zαku ¼ max
x∈Xαk

f x, τð Þ
(10)

where zαkl and zαku are the lower and upper limits of the interval zαk = [zαkl, zαku]
corresponding to the α-level αk.

Figure 5.
Fuzzy set: (a) definition and (b) α-level representation [11].
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The complete set of the intervals zαk for αk ∈ [0, 1] forms the fuzzy resulting
variable ~z τð Þ evaluated at τ.

The fuzzy analysis of either a transient time-domain response or a frequency
response function demands the solution of a large number of α-level optimization
processes, i.e., one α-level optimization at each considered time or frequency step.
In the present contribution, the optimization associated with the α-levels is solved
by using the differential evolution optimization algorithm [12].

4.3 Numerical results

The numerical results for the fuzzy analysis are also obtained by using the rotor
FE model presented in Figure 2. In this case, Young’s modulus ES of the shaft and
the stiffness and damping coefficients of the bearings (B1, B2, and B3) were consid-
ered as fuzzy triangular numbers (uncertain parameters). In this case, a 5% disper-
sion level was applied around the deterministic value of Young’s modulus and a 15%
dispersion level around the deterministic values of the stiffness and damping coef-
ficients of the bearings. The fuzzy response of the rotor system was assessed at three
different α-levels: 0, 0.5, and 1.0. Figure 7a and b shows the FRF and orbit obtained
by applying the fuzzy uncertain analysis technique, respectively.

The fuzzy responses both on the time and frequency domains show that the fuzzy
uncertainty parameters produce a significant variation of the lower and upper curves
of the fuzzy envelope. Note that the results obtained in the present analysis are similar
to the ones presented in Figure 4, for which the stochastic approach was applied.

Figure 6.
α-Level optimization.
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5. Comparative study of uncertainty quantification techniques

The uncertainty analysis of dynamic systems has been previously studied by
applying techniques based both on stochastic and fuzzy approaches. The fuzzy
approach has demonstrated to be more appropriate in the cases of applications for
which there is no knowledge regarding the stochastic process that governs the
uncertainties themselves.

In the present study, the uncertainties that affect the dynamic response of a
flexible rotor system are modeled by using both stochastic and fuzzy approaches.
These methodologies have been compared by evaluating the dynamic responses
obtained by numerical simulations regarding the frequency responses and time-
domain responses. The numerical and experimental results of this section have been
obtained from the flexible rotor test rig depicted in Figure 8.

The corresponding FE model was discretized in 33 finite elements, as given by
Figure 8b. This rotating machine is composed of a flexible steel shaft of 860 length
and 17 mm diameter (E = 205 GPa, ρ = 7850 kg/m3, υ = 0.29); two ball bearings
(B1 and B2); located at nodes #4 and #31, respectively; and two rigid discs D1

(located at node #13) and D2 (at node #23). Displacement sensors are placed at
nodes #8 (S8X and S8Z) and #28 (S28X and S28Z) to measure the shaft vibration
responses. An electric DC motor drives the shaft.

Figure 7.
Fuzzy responses: (a) FRF and (b) orbit [3].

Figure 8.
Experimental rotor: (a) test rig and (b) FE model [13].
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A representative FE model of the rotating machine was obtained by applying a
model updating procedure. The differential evolution optimization approach was
used to identify the unknown parameters of the FE model, namely, coefficients α
and β (proportional damping), the stiffness and damping coefficients of the bear-
ings, and the angular stiffness kROT introduced by the coupling between the electric
motor and the shaft (orthogonal to plane XZ at node #1). Further information about
the model updating procedure can be found in [8].

Figure 9 shows the simulated Bode diagram obtained by using the parameters
identified by the considered optimization procedure. The experimental diagram is
added to the figure for comparison purposes. The similarity between the numerical
and experimental Bode diagrams demonstrates the representativeness of the
obtained FE model.

5.1 Frequency-domain analysis

In the present analysis, the uncertain envelope of the FRF was obtained by
considering Young’s modulus of the shaft as uncertain information. Regarding the
stochastic approach, uncertain Young’s modulus is modeled as a Gaussian random
field with nominal value Es = 205 GPa and a 15% dispersion level. The convergence
analysis was carried out to evaluate the number of terms retained in the truncated
KL expansion (nKL) and the number of samples for MCS (nS). The RMS conver-
gence analysis for the realizations of the FRF is assessed according to Eq. (6).
Figure 10 presents the obtained results. Note that convergence was achieved for
nKL = 40 and nS = 250.

For the fuzzy approach, a fuzzy triangular number with the same nominal value

and dispersion considered for the stochastic approach (~ES = 205� 15% GPa) is used.
The objective function of the α-level optimization is the norm of the FRF.

In this contribution, the performed uncertainty analysis aims at obtaining the
minimum and maximum responses of the rotor system, i.e., the bounds of the
uncertain dynamic responses. Therefore, the fuzzy uncertainty analysis was
devoted to the α-level, αk = 0. Thus, the dynamic responses of the rotor are obtained

Figure 9.
Simulated ( ) and experimental ( ) Bode diagrams obtained from impact forces applied at D1 and
the sensor S8X [13].
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by considering the maximum level of uncertainty. Moreover, the stochastic
approach is also applied to compute the minimum and maximum dynamic
responses of the rotor.

Figure 11 presents a comparative evaluation of the FRFs’ uncertain envelopes
obtained by applying the stochastic and fuzzy approaches. In this case, the obtained
FRFs were determined by considering the force applied along the x direction of disc
D1 and sensor S8X. The results show that the uncertain envelopes obtained from the
stochastic and fuzzy approaches are similar. Additionally, the updated FRF is also
shown for comparison purposes.

5.2 Time-domain analysis

The time-domain analysis was performed based on the orbits of the flexible
shaft. This analysis considers uncertainties affecting the stiffness coefficients kxx

Figure 10.
Convergence analysis for the FRF: (a) nKL and (b) ns [13].

Figure 11.
FRFs obtained by using the stochastic and fuzzy approaches [13].
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and kzz of bearing B1. For the stochastic approach, the uncertain parameters were
modeled as Gaussian random variables with kxx = 8.551 � 105 N/m,
kzz = 1.198 � 106 N/m (mean values), and deviation of �10%. The rotation speed
of the rotor is 1200 rev/min, and an unbalance of 487.5 g mm/00 was applied to
disc D1.

The convergence analysis was performed to determine nKL and ns based on the
time-domain vibration responses of the rotor system. Figure 12 shows the obtained
results. Note that convergence was achieved for nKL ≥ 100 and ns ≥ 500.

Considering the fuzzy approach, the uncertain parameter is defined as a fuzzy
triangular number with the same nominal value and deviation of the stochastic
modeling. The objective function of the α-level optimization is written as the norm
of the shaft displacement measured by sensor S8X. Figure 13 presents a comparative

Figure 12.
Convergence analysis for the orbits: (a) nKL and (b) ns [13].

Figure 13.
Orbits obtained by using both the stochastic and fuzzy approaches [13].
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evaluation of the uncertain envelopes of the rotor orbits determined by using the
stochastic and fuzzy approaches. Note that the obtained results are similar, demon-
strating that both approaches lead to equivalent responses.

6. Conclusions

This chapter is dedicated to the modeling, numerical methods, and simulations
for the uncertainty analysis of flexible rotors. The stochastic and fuzzy approaches
showed to be suitable methods to quantify the effect of uncertain parameters on the
dynamic responses of rotating machines. The comparative study permitted to eval-
uate the two studied approaches is based on numerical simulations. Although the
numerical results obtained by applying both approaches were similar, the fuzzy
approach demands a greater computational effort than the stochastic method. Nev-
ertheless, the stochastic approach requires an extensive mathematical background
and an insight knowledge on the uncertain parameters. In this case, the stochastic
distribution should be known or assumed. However, both approaches can be
applied to the design of rotating machines.
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