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Abstract

The inflammatory bowel diseases (IBD) such as Crohn’s disease and ulcerative 
colitis are immunological dysfunctions of the gastrointestinal tract that develop 
because of multifactorial processes, including genetic predisposition, gut dysbio-
sis, and excessive inflammation in susceptible subjects. These pathologies affect 
millions of people worldwide, with substantial impact on healthcare systems and 
patients’ quality of life. Considering the chronic inflammation that underlies the 
IBD presentation, the main treatment options are related to the control of patients’ 
inflammatory response, through immunosuppressor and modulatory therapies. 
Therefore, in this chapter we reviewed the main mechanisms associated with the 
treatments that are aimed at suppressing mucosal immunity and the effects of 
corticosteroid therapies in Crohn’s disease and ulcerative colitis.

Keywords: inflammatory bowel disease, Crohn’s disease, ulcerative colitis, 
immunosuppressor, corticosteroid, therapy

1. Introduction

The treatment of Crohn’s disease and ulcerative colitis has central purposes 
such as to induce and maintain the patients’ remission, while restraining the 
disease’s secondary effects and improving the quality of life of the affected subjects. 
Pharmacological therapy against these pathologies converges on controlling the 
exacerbation of immune response, either with systemic agents, such as corticoste-
roids, azathioprine (AZA), aminosalicylates, and methotrexate, or topical anti-
inflammatory drugs. Traditionally, the treatment for CD and UC follows a “step-up” 
approach. However, in the last years, a “top-down” strategy was implemented in 
IBD therapy, beginning to treat patients with biological agents, especially for more 
aggressive diseases [1]. After the main control of the inflammation, biologicals can 
be withdrawn, and weaker immunosuppressor medicines can be used, such as AZA, 
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aminosalicylates, or other drug alternatives for maintenance of disease remission 
[2], with different mechanisms of action, as discussed in the following section.

2.  Mechanisms of action of IBD’s therapies: from corticosteroids to 
immunosuppressor drugs

2.1 Glucocorticoids

Corticosteroids, a type of steroid hormones, are lipophilic molecules derived 
from cholesterol. Glucocorticoids, whose major representative is cortisol, play a 
role in the metabolism of lipids and carbohydrates and in the immune response, 
through immunosuppressive mechanisms. These hormones are synthesized by the 
adrenal glands in response to psychological or physiological stressful stimuli, such 
as excessive inflammation. The synthesis of glucocorticoids occurs after hypotha-
lamic production of corticotropin-releasing hormone (CRH), which activates the 
pituitary secretion of corticotropin (ACTH) that, in turn, leads to adrenal release of 
cortisol, in a fine-tuned circadian rhythm [3].

Many of the immunosuppressive and anti-inflammatory functions of glucocor-
ticoids occur after the binding of this hormone to the glucocorticoid receptor (GR). 
This molecule was described in the 1970s [4] and presents two isoforms of GR, GRα 
and GRβ, which differ in the C-terminal domain, being that the α forms the most 
prevalent in many human cells [5].

Glucocorticoids may exert their effects by non-genomic and mainly by the 
genomic signaling pathways [6]. One of the first evidences on the formation of a 
glucocorticoid-GR complex dated from 1972 in a study, which showed that free 
glucocorticoids penetrate hepatoma cells and bind to a cytoplasmic receptor, form-
ing a complex which migrates to the nucleus shortly thereafter [7]. In the nucleus, 
the glucocorticoid/receptor complex binds to specific DNA sequences, named 
glucocorticoid responsive elements (GRE) [8]. Such binding to GREs may lead to 
repression and downregulation of target genes, especially those related to inflam-
matory response such as IFN-γ [9], TNF [10], and adhesion molecules [11], but may 
also lead to transcriptional activation of genes such as IL-10 [12], which plays an 
important anti-inflammatory activity. Another mechanism for gene transcription 
regulation by the glucocorticoid/receptor complex is the interference with other 
transcription factors, such as NF-κB, NFAT, and AP-1 [13], which also results in the 
inhibition of inflammatory responses.

Cortisol was first synthesized around 1937/1938 by Tadeusz Reichstein, who 
won the Nobel Prize about 10 years later for his work [14]. The first use of cortico-
steroids as an immunosuppressive and anti-inflammatory treatment occurred in the 
1940s for rheumatoid arthritis in a study by Hench et al., who showed a decrease in 
symptoms when patients were treated with these hormones, besides disease relapse 
when treatment was stopped [15]. Since then, corticosteroids have been effective in 
treating other diseases, including intestinal inflammation [16].

Today, corticosteroid therapy is one of the most widely used and most effective 
drugs in the treatment of IBD, especially in acute inflammation, to induce disease 
remission [17]. However, there are important limitations regarding their long-term 
use, because of the drug’s side effects. In line with that, despite the anti-inflam-
matory role in experimental colitis, budesonide worsens the general status of the 
mice, leading to endotoxemia and impaired epithelial repair in the gut, which are 
findings that could partially explain the fails in long-term glucocorticoid therapy 
for intestinal inflammation [18]. In contrast, mice exposed to dextran sodium 
sulfate for colitis development and treated for short term with the glucocorticoid 
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dexamethasone had decreased intestinal inflammation, with reduced expres-
sion of pro-inflammatory cytokines such as IFN-γ and IL-1, diminishment of 
IFN- γ-producing CD4+ T cells and augmented frequency of anti-inflammatory 
cytokine-producing cells such as IL-10. Moreover, the increase in the frequency of 
regulatory markers such as GITR, CTLA-4, PD-1, CD73, and FoxP3 in treated mice 
pointed to a relevant role for this short-term therapy in the induction of immune 
regulation [19], despite the long-term adverse effects of these drugs. These find-
ings corroborate the relevance of this hormone in the regulation of mucosal immu-
nity. In fact, regulatory T cells deficient for glucocorticoid receptor fail to control 
intestinal inflammatory diseases, in vivo. In addition, these knockout regulatory T 
cells acquire Th1 phenotype and secrete IFN-γ, with a consequent failure to inhibit 
the proliferation of CD4+ T cells. Then, not only the synthetic glucocorticoid is 
important to inflammation control, but the glucocorticoid receptor is critical for 
regulatory T cell functions neither [20].

Regarding the pivotal role of microbiota in the development of gut inflamma-
tion [21], it is known that the commensal intestinal bacteria may be involved in the 
mechanisms of action of glucocorticoid and mediate the anti-inflammatory effects 
of dexamethasone in the colon [22]. Indeed, the evaluation of mucosa transcrip-
tomics of ulcerative colitis patients pointed to a corticosteroid-response gene 
signature that could predict response to this therapy, together with notable changes 
in gut microbiota [23]. In Crohn’s disease or ulcerative colitis, the bacteria transloca-
tion in the gut is originally restrained by local phagocytic cells such as neutrophils, 
which in turn may contribute to tissue damage due to their excessive inflammation 
triggered in an attempt to control microbial invasion. Then, the mechanisms and 
efficacy of corticosteroids in IBD also involve the reduction in the chemokines 
responsible for the recruitment of neutrophils, besides natural killer cells and 
activated T lymphocytes to the gut, during ulcerative colitis [24]. There is also a 
decrease in adhesion and chemotaxis of these cells to the intestinal mucosa [25].

Although the efficacy of corticosteroid for the treatment of autoimmune and 
inflammatory diseases has been demonstrated, prolonged utilization of these drugs 
is associated with an increased risk of developing eye diseases such as glaucoma 
or cataract, hyperglycemia or insulin resistance, dermatological affections, and 
purpura [26]. Moreover, there is an increased risk of gastrointestinal problems such 
as peptic ulcer with perforations, bleeding, and acute pancreatitis [27]. The use of 
corticosteroids can also cause psychiatric and cognitive disorders [28], psychosis, 
and also sleep-related disorders [29]. Moreover, because of its immunosuppressive 
and anti-inflammatory effects, many patients who use corticosteroids may suffer 
from reduced effectiveness of the immune system and are at risk for opportunistic 
infections [30].

2.2 Aminosalicylates

The aminosalicylates (5-aminosalicylic acid, 5-ASA, or mesalazine) are one of 
the most used therapeutic choices to control mild to moderate inflammatory bowel 
diseases (IBD). Sulfasalazine (SASP), balsalazide, and olsalazine are prodrugs in 
which an azo bond is added to the structure to connect the 5-ASA moiety to carrier 
molecules. Sulfasalazine was the first aminosalicylate used for IBD and provided the 
basis for this class of medications. It was developed in the late 1930s, by the Swedish 
physician Nanna Svartz for the treatment of patients with rheumatic polyarthritis. 
Interestingly, some of the patients who were treated with SASP had ulcerative colitis 
too, and, surprisingly, their condition became more stable [31]. Therefore, SASP 
was soon being chosen as a treatment option for patients with IBD. Later, metabolic 
studies revealed that when this drug reaches the colon, the azo bond is cleaved by 
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bacterial azoreductase, liberating 5-ASA and sulfapyridine, which is responsible 
for most of the usual adverse effects related to sulfasalazine [32]. In fact, in earlier 
elegant studies from the 70–80 decades, 5-ASA was shown to be the therapeutically 
active compound in sulfasalazine, while sulfapyridine plays a role as a carrier mol-
ecule, not required for clinical efficacy of the drug. These works were very impor-
tant to drive the development of pure 5-ASA preparations useful for the treatment 
of IBD. Therefore, since aminosalicylates are among the most common therapeutic 
agents for these diseases, many studies have been performed in an attempt to 
discover the mechanisms of action of these drugs in the gut inflammation.

When the initial triggers break the mucosal tolerance in IBD, there is a vast 
infiltration of leukocytes in the intestine, with consequent production of soluble 
mediators of inflammation such as cytokines, chemokines, and eicosanoids. 
Some of these mediators are significantly elevated in the inflamed mucosa of 
IBD individuals, corroborating the pathogenesis of the disease, due to their 
pro-inflammatory impacts upon the bowel. In fact, the increased levels of seven 
eicosanoids, including prostaglandin (PG)E2, PGD2, thromboxane (TBX)B2, 
5-HETE, 11-HETE, 12-HETE, and 15-HETE are found on mucosal biopsies from 
patients with ulcerative colitis, being correlated with the severity of inflamma-
tion [33]. Similarly, prostacyclin I2, PGE2, and TBXA2 are increased in cultured 
gut biopsies of active colitis patients, and, notably, the levels of these inflam-
matory mediators are reduced in the presence of 5-ASA. In fact, the activated 
leucocytes in patients’ mucosa release toxic reactive oxygen metabolites and 
harmful eicosanoids such as LTB4, which seems to be an essential chemotactic 
agent in these diseases [34]. Therefore, considering the therapy mechanisms, 
sulfasalazine can effectively repress LTB4 and 5-HETE production by human 
polymorphonuclear leukocytes [35], while sulfasalazine, 5-ASA, and olsalazine 
(a 5-ASA dimer) potently inhibit colonic macrophage chemotaxis toward LTB4 
[36]. These data suggested that one of the mechanisms of action of these drugs 
could be the inhibition of eicosanoids and then it is plausible to infer that the 
therapeutic inhibition of LOX or COX pathways could be useful in both ulcer-
ative colitis and Crohn’s disease.

Platelet-activating factor (PAF) is another phospholipid mediator released early 
in inflammation by a diversity of cell types, playing important roles in inflamma-
tory conditions, including IBD. In active Crohn’s disease, PAF levels are significantly 
higher and more elevated in inflamed than in noninflamed areas [37]. In parallel, 
PAF is increased in the colon and ileum from Crohn’s disease patients [38], while 
biopsies of inflamed areas taken from ulcerative colitis subjects produce PAF spon-
taneously [39]. In this context, sulfasalazine and 5-ASA greatly reduce the synthesis 
of this mediator when incubated with mucosal biopsy specimens, indicating that 
these drugs exert beneficial effects in the inhibition of inflammation induced by 
PAF [40].

Chronic gut inflammation is also related to enhanced production of reactive 
metabolites of oxygen and nitrogen, since both reactive oxygen species (ROS) and 
nitric oxide (NO) deeply modulate the inflammatory responses. The generation of 
these reactive species can be attenuated by sulfasalazine, as it inhibits the binding 
of N-formyl-methionyl-leucyl-phenyl-alanine (fMLP) to its receptor on neutrophils 
[41] and also the superoxide production [42]. Interestingly, olsalazine and sul-
fasalazine are both potent inhibitors of superoxide production and degranulation of 
human neutrophils stimulated with fMLP, in contrast to 5-ASA and sulfapyridine, 
which do not have this ability [43]. On the other hand, 5-ASA can be converted to 
the oxidation products salicylate and gentisate, when the drug is incubated with 
activated human mononuclear cells and neutrophils, indicating that 5-ASA may 
scavenge toxic oxygen and nitrogen metabolites [44]. Similarly, evidences from an 



5

Traditional Drugs: Mechanisms of Immunosuppressor and Corticosteroid Therapies…
DOI: http://dx.doi.org/10.5772/intechopen.90009

in vivo study pointed once more to a scavenge role of sulfasalazine as a mechanism 
of action, thus reducing experimental intestinal inflammation induced by acetic 
acid [45]. In humans, 5-ASA oxidation products can be found in the stools of IBD 
patients using sulfasalazine, suggesting that this drug indeed plays a role as scaven-
ger for ROS and NO in these diseases [46].

A series of studies have demonstrated that sulfasalazine and its metabolites, at 
clinically relevant concentrations, also inhibit the release of cytokines produced 
by multiple cell types, including T cell mediators such as interleukin (IL)-2 [47] 
and those produced by monocytes or macrophages, like IL-12 [48], IL-1β, and 
tumor necrosis factor (TNF) [49]. Precisely, how sulfasalazine represses the release 
of cytokines has not been fully elucidated yet, but some studies have shown, for 
example, that sulfasalazine inhibits TNF expression in macrophages by inducing 
apoptosis [49] or inhibiting nuclear factor kappa B (NF-KB), a transcription factor 
crucial to the production of inflammatory mediators [50]. In the last years, the 
effects of sulfasalazine have been extensively studied in experimental models of 
intestinal inflammation. The chemically treated animals develop inflammation 
signs similar to those of human IBD, such as severe bloody diarrhea, body weight 
loss, colon length shortening, and gut pathological changes. In general, sulfasala-
zine treatment is able to reduce these signs and the colitis severity. Moreover, the 
drug significantly decreases the levels of inflammatory markers such as ROS [51], 
NF-KB, COX-2 [52], IL-6, TNF, IL-1 [53], NO [53], inducible nitric oxide synthase 
(iNOS) [52], myeloperoxidase (MPO) [54], monocyte chemoattractant protein-1 
(MCP-1) [51], intercellular adhesion molecule-1 (ICAM-1) [51], and LTB4 [55], 
which are frequently overexpressed in IBD and widely known to be involved in 
chronic inflammatory disorders. Taken together, these experimental findings 
pointed to different mechanisms of action of sulfasalazine in the control of innate 
inflammatory reactions in gut mucosa, with outstanding relevance to the disease 
outcome.

Regarding adaptive and regulatory responses, it is known that a close relation-
ship exists between colonic inflammation and T helper 1 (Th1) or Th17 immune 
reactions, which are related to the severity of inflammation in both human and 
experimental IBD [56]. In accordance, in a colitis model, mesalazine is able to 
inhibit Th1 and Th17 responses in contrast to an induction of regulatory immune 
profile, as observed by the disease amelioration, reduced expression neutrophil 
activity, IL-1β, TNF, IL-12, IFNγ, IL-17, IL-6, and RORγt, along with an augment 
in the suppressive cytokines IL-10 and TGF-β and in the transcription factor Foxp3 
[57]. These data indicate that another mechanism of action of aminosalicylate drugs 
could be by decreasing pathogenic while increasing regulatory responses in intesti-
nal inflammation.

The peroxisome proliferator-activated receptor ligand-γ (PPARγ) plays a 
significant role in the immune control through its capacity to repress the expression 
of inflammatory cytokines and induce the differentiation of leukocytes toward 
anti-inflammatory phenotypes. Importantly, by using experimental approaches 
with epithelial colon cell lines and human biopsies, Rousseaux et al. showed that 
5-ASA activates PPARγ, pointing to the receptor as an important drug’s target 
for the control of intestinal inflammation [58]. In line with that, regulatory T 
cells (Tregs) play an indispensable role in suppressing exacerbated inflammatory 
immune responses that can be harmful to the host, such as in IBD [59]. Recently, 
Oh-Oka et al. proposed a new anti-inflammatory mechanism for mesalamine 
(5-ASA) in colitis, involving colonic Tregs. The oral treatment with this drug leads 
to the accumulation of Tregs in the colon lamina propria associated with increased 
levels of the active form of the anti-inflammatory cytokine TGF-β. These altera-
tions attributed to mesalamine are dependent on the activation of aryl hydrocarbon 
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receptor (AhR), a transcription factor that regulates several immune processes, 
including Treg activation and differentiation [60].

Altogether, these studies show that aminosalicylates play an important role in 
the regulation of IBD responses.

2.3 Thiopurines

One of the most prescribed strategies for IBD therapy is the use of thiopurines, 
mainly azathioprine (AZA) and 6-mercaptopurine (6-MP). AZA is a prodrug that 
is metabolized by nonenzymatic mechanisms to be converted to 6-MP and other 
metabolites. Therefore, patients could be treated with AZA or directly with 6-MP, 
but the final metabolites produced from the thiopurines are the same. Also, both 
drugs generate endogenously active products able to interfere on DNA and RNA 
synthesis [61].

The discovery of AZA and 6-MP yielded a Nobel Prize in Medicine in 1988 for 
Gertrude B. Elion and George Hitchings. At first, the thiopurines were used in 
cancer therapy, in order to stop cell proliferation. Nonetheless, the immunosuppres-
sive effect of thiopurines was evident as well as their efficiency in prolonging renal 
allograft transplant survival [62]. Thereafter, AZA and 6-MP began to be used in 
the clinics for inflammatory and rheumatic diseases. Since then, many mechanisms 
of action of thiopurines were proposed, mainly involving immunological axis in an 
attempt to unravel their immunosuppressive effects.

Some thiopurine metabolites, such as deoxyguanosine triphosphate (dGTP) and 
6-thioguanine (6-TG), can be incorporated to DNA, replacing the natural purines 
adenine (A) and guanine (G). Then, during the DNA replication, a high level of 
substitution 6-TG could be particularly cytotoxic [63]. These DNA modifications 
are not restricted to cancer cells, and lymphocytes can be affected by the purine 
analogue 6-TG as well [64]. Besides that, some evidences point to the inhibition of 
de novo synthesis, which produce purines, by the thiopurine therapy. Then, the lack 
of abundant nitrogenous bases impairs the lymphocyte replication either, which 
contributes to the immunosuppression [65].

The thiopurines have the capacity to downregulate the expression of inflamma-
tory genes in activated T lymphocytes [66]. One of these genes is the TNF-related 
apoptosis-inducing ligand (TRAIL), which is important to induce apoptosis and is 
upregulated in activated T lymphocytes. Despite being apparently contradictory, 
TRAIL could increase T cell proliferation and IFN-γ production [67], a phenom-
enon that is pathogenic for Crohn’s disease patients. It is important to state that 
IFN-γ is a cytokine that accompanies the Th1 response, which increases gut inflam-
mation. Also, CD27, which is a member of TNF superfamily, is downregulated by 
AZA [66]. This receptor is required to T cell maintenance and for B cell activation. 
Consequently, a low expression of CD27 could facilitate the lymphocyte death [68]. 
Besides, CD27 is involved in the NF-κB activation and IFN-γ production [69]. In 
fact, the 6-TG incorporation into T cell DNA is correlated to the decreased IFN-γ 
production in CD patients [70]. Lastly, the thiopurines could reduce the expres-
sion of the α4-integrin as well [66]. This integrin is mandatory to the lymphocyte 
accumulation in the gut and the chronic inflammation [71].

It is clear that the accumulation of T lymphocytes in the gut mucosa is one 
of the main hallmarks for the exacerbated inflammation and disease worsen-
ing. Accordingly, thiopurines also reduce T cell proliferation and the consequent 
excessive inflammatory mediators produced by this population. Indeed, 6-MP that 
impairs the A and T purine integration into the replicant DNA and replaces them for 
mimetic purines compromises the cell cycle and T cell proliferation. 6-MP interferes 
in the G1 to S phase transition and progression through S phase in cell cycle, with 
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consequent increase in lymphocyte death [72]. Thereby, it is unquestionable that 
the thiopurine metabolites incorporate into the genetic material and negatively 
influence the DNA integrity or stability, which causes cellular death. In the last 
decade, the first conclusive and detailed studies about the thiopurines’ molecular 
mechanism of action in T lymphocytes explained better the delayed effects of these 
drugs, besides the incorporation of mimetic purines, as described above.

The Ras-related C3 botulinum toxin substrate 1 (Rac1) is a GTPase protein 
that activates MEKK/IκB/NF-κB (mitogen-activated protein kinase kinase/IKK/
nuclear factor kappa-light-chain-enhancer of activated B cells) and signal trans-
ducer and activator of transcripition-3 (STAT-3) pathways, both of which lead to 
the accumulation of B-cell lymphoma-extra large (Bcl-xL) in the mitochondria. 
The enhancement of this protein results in an anti-apoptotic effect to cell survival. 
However, AZA and the 6-MP metabolite 6-thioguanine triphosphate (6-Thio-GTP) 
bind to Rac1, which impairs MEKK and STAT-3 phosphorylation, and consequently 
the anti-apoptotic effect by Bcl-xL is lost. Instead of that, there is an enhancement 
of Caspase-9, an apoptotic pathway of human cells involving mitochondria [73]. 
Interestingly, these mechanisms require the co-stimulation by CD28 in T cells.

The bind of CD28 by costimulatory molecules leads to lymphocyte’s lamellipodia 
formations, which are projections of the cytoskeletal protein actin, necessary for T 
cell movement and membrane readjustment to make contact with antigen-present-
ing cells (APC). GTPase Rac1 also mediates this process [74]. Later, it was observed 
that thiopurines also bind to and block Rac2 activation, while the treatment with 
these drugs impairs the lamellipodia formation. Additionally, upon binding to Rac 
proteins, AZA and its metabolites reduce ezrin-radixin-moesin protein (ERM) 
desphosphorylation and subsequently the formation of APC-T cell conjugates, 
necessary for an effective immune adaptive response. Likewise, that was dependent 
on CD28 activation too [74]. Taken together, these results suggested that AZA and 
its metabolites binding Rac1 promote T cell apoptosis, by decreasing Bcl-xL and 
increasing caspase-9, but also interfere in T cell function or activation. Recently, 
a Bcl-2 inhibitor was suggested as a novel therapy to patients refractory to AZA 
treatment, despite Bcl-2, as a biomarker, cannot predict AZA treatment response in 
IBD patients [75].

In 2009 a study confirmed that 6-MP and 6-TG decrease the lymphoproliferative 
capacity of T cells, but in a physiological concentration (5 μM) [76]. The thiopurine 
therapy causes, in vivo, specifically depletion of T CD4 memory cells, thus reduc-
ing the capacity of response to a recurrent antigen. Considering that in IBD there 
is continuous microbial translocation and antigen presentation [77], this should 
explain, at least in part, the delayed onset of the drug’s effect on the disease.

Thiopurine metabolites are also capable to inhibit the inflammatory response 
of macrophages and epithelial cells. These drugs significantly reduce the activity 
of c-Jun N-terminal kinase (JNK) and STAT3, as well IL-6, IL-8, CCL2, and CCL5 
and inducible nitric oxide synthase (iNOS) expression. However, only iNOS in 
macrophages and IL-8 in epithelial cells are decreased dependent on Rac1 [78]. 
In fact, AZA restores the paracellular permeability after TNF-induced apoptosis. 
The treatment improves the expression of tight junctions and adherens junctions, 
such as occludin and E-cadherin [79]. Thus, the reduction of Rac1 is proposed as a 
biomarker for effectiveness of thiopurine treatment in patients with IBD [80].

It seems that the use of thiopurines can modulate the frequency of diverse 
immune cell populations, even by an indirect pathway. For example, patients 
treated with AZA have increased CCR5 expression in circulating monocytes. These 
CCR5+ cells are considered to have an anti-inflammatory profile, with increased 
CD163 and diminished TLR4-induced TNF and IL-6 secretion, probably in an 
attempt to achieve immunoregulation under AZA treatment [81]. Moreover, 
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thiopurine therapy decreases CD160 expression [82], as well as natural killer (NK) 
cells and the population of B lymphocytes in the peripheral blood of IBD patients 
[83]. Indeed, the reduction in B cells is one of the reasons for using combo therapy 
with AZA plus infliximab (IFX), instead of IFX alone. AZA diminishes the anti-
body formation against IFX and then improves the patients’ responsiveness to the 
biological treatment [84].

The presence of variant Tγδ cells, specifically the TCR Vδ2, in the gut mucosa of 
Crohn’s disease patients is associated with worse clinical prognosis and inflamma-
tion [85]. However, AZA is able to ablate this population in the blood and mucosa of 
patients treated with this drug, suggesting other potential mechanisms of action of 
AZA in the control of intestinal inflammation [86].

Besides the cellular changes, thiopurines are also capable of modulating soluble 
mediators, by decreasing IL-1β, TNF, and IFN-γ or increasing IL-10 production 
in vivo [87]. Likewise, the higher expression of inflammatory cytokines in detri-
mental to anti-inflammatory mediators may dictate the augmented production of 
matrix metalloproteinases (MMPs) in contrast to inhibitors of metalloproteinases 
(TIMPs), which are correlated to the control of the disease and improvement of 
intestinal barrier [88]. In line with that, the treatment with thiopurines reduced the 
pro-inflammatory effects, with decreased neutrophil MMP-9 and MMP-26 produc-
tion, besides increased TIMP-3 expression by enterocytes [89].

Finally, a last mechanism of immune regulation was recently described involv-
ing AZA’s use. This drug can induce autophagy, which is a natural mechanism to 
recycle cellular components and to promote cell survival, depending on PERK 
sensor and mTORC1 in lymphocytes. Hence, modulation of autophagy could 
represent an additional mechanism of inflammation control through AZA treat-
ment in IBD [90].

2.4 Methotrexate

Methotrexate (MTX), originally known as amethopterin, is a folate antagonist. 
Its history and clinical use refers to Faber and Diamond [91], who reported the 
utilization of aminopterin, the first folic acid antagonist, as a treatment for acute 
leukemia in children. MTX, which is a derivative of aminopterin and is distin-
guished by having an additional methyl in its structure, subsequently replaced 
aminopterin after a study reported its lower toxicity in an experimental model of 
acute leukemia in rats [92]. The idea behind the use of antifolates for the treatment 
of neoplasias was based on the knowledge that folates function as cofactors for DNA 
biosynthesis. Subsequently, the ability of MTX to interfere in DNA synthesis was 
proven experimentally [93], and years later lower doses of MTX also began to be 
studied for other conditions such as psoriasis [94] and rheumatoid arthritis [95].

For IBD, Kozarek et al. [96] were the first to report the ability of this drug to 
induce clinical and histological remission in patients with Crohn’s disease, but it was 
only after two randomized controlled trials (RCTs) of the North American Crohn’s 
Study Group (NACSG) that MTX was formally established as a possible therapy for 
this disease [97]. On the other hand, there is no strong scientific basis for recom-
mending the use of MTX as a monotherapy for UC. Nevertheless, the utilization 
of high or low doses of MTX in combination with anti-TNF has been shown to be 
effective in disease control at the same extent in both Crohn’s disease and ulcerative 
colitis patients [98]. In summary, because of these and other results, MTX is usually 
recommended in specific conditions, especially depending on disease outcome and 
response to other therapies [99].

MTX acts as an antineoplastic drug when used at high doses and as immu-
nosuppressive at low doses [100]. This led to the investigation of other possible 
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mechanisms capable of inducing immunosuppression, in addition to interfering in 
cell proliferation. In line with that, there is a lack of specific investigation unravel-
ing the exact mechanisms of action of MTX in IBD, but this drug is capable of 
inducing apoptosis in activated T cells [101], inhibiting IL-8 production by periph-
eral blood mononuclear cells [102], and increasing extracellular adenosine levels. 
This metabolite has potent anti-inflammatory properties [103] in patients with 
rheumatoid arthritis [104] and potentially in IBD [105]. Clearly, more experimental 
studies are needed to better understand the action of MTX in IBD, but those men-
tioned above represent possible mechanisms that could explain the relative success 
of MTX as an immunomodulatory therapy, especially for Crohn’s disease.

2.5 Cyclosporine

The cyclosporine A (CsA) is an immunosuppressor drug initially used for organ 
transplantation on the late 70 and 80 decades [106]. Some years later, it was utilized 
as an alternative treatment for ulcerative colitis (UC) patients refractory to gluco-
corticoids, because of its strong immune regulatory effects [107].

CsA is a lipophilic cyclic peptide that is metabolized by hepatic enzymes of cyto-
chrome P450 pathway [108]. Its immunosuppressor activity depends on the intra-
cellular binding to cyclophilins with further inhibition of the calcium-calcineurin 
pathway and the resulting blockage of the nuclear activated T cell factor (NFAT) 
translocation to the nucleus [109], thus avoiding cellular activation. Consequently, 
there is reduction in the transcription of genes related to cytokine production such 
as IL-2, IL-4, and IFN-γ [110], inhibition of CD4 expression, cell proliferation 
[111], and activation of CD8 lymphocytes [112]. Therefore, the blockage of NFAT is 
considered one of the main effects of this immunosuppressor drug [113].

Upon in vitro treatment of peripheral blood mononuclear cells (PBMCs), 
from ulcerative colitis or Crohn’s disease patients with CsA, there is reduction of 
TNF, IL-17, and IL-10 in samples from all donors, besides an exclusive significant 
IL-13 decrease in subjects with UC. Also, CsA stimulates the cellular apoptosis of 
PBMC from patients with UC, though not by the mitochondrial route [114]. In an 
experimental colitis model, the treatment with CsA reduces the clinical activity of 
the disease and mRNA expression of several inflammatory cytokines such as IL-1β, 
IL-6, and TNF [115].

Hence, though the therapy with CsA has shown to be beneficial, the systemic 
treatment can be limited due to its side effects such as nephrotoxicity, hypertension, 
seizures, production of ROS or hydrogen peroxide, and opportunistic infections 
[116].

2.6 Tacrolimus

Tacrolimus (Tac) was isolated in 1984 from the fungus strain Streptomyces 
tsukubaensis. It was initially used in the treatment of transplants and later in thera-
pies for inflammatory or autoimmune diseases [117]. This drug is a substrate for 
cytochrome P450 isoenzymes (CYP3A), and the expression or activity of these 
enzymes in liver and intestinal cells may vary between individuals, thus contribut-
ing to different pharmacokinetic profile of Tac therapy [118].

The Tac, compared to CsA, has a more potent inhibitory action against T cell 
activation, leading to immunosuppression. It binds to FKBP-12, with further 
inhibition of the calmodulin-dependent phosphatase activity of calcineurin [119]. 
Thus, it inhibits the action of activated nuclear T cell factor (NFAT), reducing the 
production of IL-2. In line with that, Tac can also decrease the activity of NF-κB 
[120]. Therefore, besides IL-2, Tac is a calcineurin inhibitor that leads to reduced 
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production of IL-3, TNF, IFN-γ, and IL-17, as well as the release of histamine from 
mast cells and proliferation of CD4+ or CD8+ T cells in a variety of inflammatory 
processes [121]. Tac treatment in bone marrow-derived macrophages also leads to 
reduced IL-12p40, IL-12p70, and IL-23 during LPS stimuli [122].

As described, in vitro treatment with Tac inhibits the activity of leukocytes 
such as T lymphocytes, NKT, and antigen-presenting cells, usually present on colon 
tissue. Moreover, the administration of Tac in trinitrobenzene sulfonic acid (TNBS) 
colitis results in the reduction of neutrophil infiltrate in the intestinal mucosa asso-
ciated with inhibition of T cell activation, as well as decreased expression of CXCL1 
and CXCL2 chemokines [123]. Most interestingly, Tac is able to inhibit the expres-
sion of IL-17 and TNF [124], suggesting that this drug could assume therapeutic 
effect on diseases mediated by Th17 responses, such as IBD. Furthermore, the rectal 
treatment in mice leads to better results than oral administration of the drug [125].

In experimental granulomatous colitis, treatment with Tac results in the reduc-
tion of intestinal permeability, neutrophil activity, as well as extra-intestinal 
manifestations of the disease, such as hepatic and splenic granulomas, caused by the 
colitis-inducing agent [126]. On the other scenario, myofibroblasts isolated from 
normal gut tissues and stimulated in vitro with TNF show increased phosphoryla-
tion of the p38 subunit of MAP kinase, leading to augmented CCL2 and CXCL10 
expression. However, in vitro treatment with Tac suppresses the expression of 
CCL2 and CXCL10 mRNA by inhibiting phosphorylation of MAP kinase, indicating 
that these effects could be one of the mechanisms of therapeutic action of Tac on 
intestinal inflammation [127].

Hence, although this therapy may result in satisfactory IBD outcome, research 
has pointed that after mucosal healing, it is desirable to change this therapeutic 
intervention to other immunosuppressor drugs, in order to reduce the long-term 
adverse effects caused by Tac, such as nephrotoxicity [128].

3. Conclusions

The introduction of pharmacological therapies for IBD is of high importance 
to achieve remission and maintenance of quiescent disease in affected patients. 
Nonetheless, although these drugs act by diverse mechanisms, all of them are rel-
evant in constraining the activation and perpetuation of the exacerbated immune-
inflammatory responses that underline the gut inflammation in Crohn’s disease 
and ulcerative colitis. Then, the balance between adequate control of inflammatory 
responses and drugs’ adverse effects dictates the efficiency of corticosteroid and 
suppressor treatments in IBD.
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