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Chapter

The Genus Enterococcus and Its 
Associated Virulent Factors
Hassan Bin-Asif and Syed Abid Ali

Abstract

Enterococci, the Gram-positive, catalase negative, non-spore forming and aero-
tolerant fermentative organisms form the second largest group of bacteria studied 
with reference to microbial source tracking in view of their ability to survive 
adverse environmental conditions and adaptable nature to revolutionize from low 
number commensals to a predominant population of host microbiota thus creating 
a consequence for pathogenesis. Despite being a member of normal human intes-
tinal flora, they are not regarded anymore as generally recognized as safe (GRAS) 
organisms and some of its species may turned out to be a major cause of nosocomial 
infections. Ecological and epidemiological studies showed that these bacteria 
enter in the environment via feces and colonize because of their high adaptability. 
The main contributors in pathogenesis of enterococci are the presence of various 
virulence factors and antibiotic resistance genes. This chapter aims to highlight the 
infections caused by enterococci and their respective virulent determinants.

Keywords: enterococcus, virulence, resistance, hemolysis, lactic acid bacteria, 
nosocomial infections

1. Introduction

Enterococci (ENT), the Gram-positive (G +ve), catalase negative, benzidine 
negative, non-spore forming and aero-tolerant fermentative organisms form the 
second largest group of bacteria studied with reference to microbial source track-
ing (MST) [1, 2]. It is a non-filamentous microorganism but some species like E. 
casseliflavus and E. gallinarum exhibit motility by scanty flagella. They produce 
lactic acid [L (+)- lactic acid enantiomer in case of glucose fermentation] by 
homofermentative Embden-Meyerhof-Parnas pathway, hence called Lactic Acid 
Bacteria (LAB). All the species except E. faecalis [(E. fl) (which contains lysine 
alanine 2–3 type)] contains lysine-D-asparagine linkages with D-isoasparagine as 
cross bridge in peptidoglycan. Their ability to survive in adverse environmental 
conditions and adaptable nature revolutionize them from low number commensals 
to a predominant population of host microbiota which ultimately results in creating 
a consequence for their pathogenesis [3]. Despite being a member of normal human 
intestinal flora, they are not regarded as GRAS (Generally Recognized As Safe) 
organisms anymore [4] as some of its species have turned out to be a major cause 
of nosocomial infections including hepatobiliary sepsis, urinary tract infections 
(UTI), surgical wound infections, endocarditis, bacteremia and neonatal sepsis [5]. 
From a medical perspective, ENT have been recognized as an important hospital 
acquired pathogen due to their ability to transfer or acquire resistance genes via 
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chromosomal exchange as well as plasmid or transposon (Figure 1). This can lead 
to increment in dangerous nosocomial infections, thus limiting therapeutic options 
[6]. This is the reason for exploitation of this genus as an important key indicator 
bacterium for humans and veterinary resistance surveillance system [7].

2. Enterococcal infections and their treatments

Over the past few decades, members of the genus Enterococcus have emerged as an 
important nosocomial pathogen causing different infections. Their transformation 
from gut commensal to pathogen is attributed by increasing antibiotic resistance 
especially resistance to vancomycin, high-level aminoglycosides (HLA), and penicil-
lin is of interest. Moreover, resistance to new antimicrobial agents, like linezolid, 
quinupristin/dalfopristin, and daptomycin has also been emerged (Figure 2). Being 
more resistant than E. fl, E. faecium (E. fm) has come out to be the leading cause of 
multidrug resistant (MDR) infections in U.S. Because of its resistance to vancomy-
cin, ampicillin and high-level aminoglycosides, infections caused by this species is 
very difficult to treat. According to National Healthcare Safety Network (NHSN) 
report, majority of device associated infections (for example, central lines infections, 
urinary drainage catheters infection and ventilator infections) were caused by 80% 
vancomycin and 90.4% ampicillin resistant E. faecium [8]. Other enterococcal species 
including E. avium, E. casseliflavus, E. durans, E. hirae, E. raffinosus, E. gallinarum 
and E. mundtii accounts for less human’s infection [9]. Enterococci can cause variety 
of infections directly as sole cause of an infection or indirectly as a contributor in 
co-infection with other microorganisms [10] (Figure 3).

Enterococcal infections particularly those caused by vancomycin resistant 
enterococci (VRE) are associated with prolonged hospital stay and excess mortality. 
World Health Organization (WHO), in its report published in February 2017 placed 
Vancomycin Resistant E. faecium in the “HIGH PRIORITY category in global prior-
ity pathogens list (global PPL)” of antibiotic resistant bacteria to help in prioritizing 

Figure 1. 
Bacterial mobile genetic elements.
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the research and development of new and effective antibiotic treatments [11, 12]. 
Earlier to this, VRE was also categorized as “microorganisms with a threat level of 
serious” with estimated 20,000 drugs resistant enterococcal infections, 1300 death 
tolls and 66,000 Enterococcus infections per year in United States [13].

2.1 Urinary tract infections (UTIs)

UTIs including prostatitis, epididymitis and cystitis are the most common 
types of infections caused by ENT. Majority of the patients includes older men as 
compared to young women. Upper UTIs which lead to bacteremia also occurred 
in young men [14]. According to a report presented to NHSN by center of disease 
control and prevention (CDC), Enterococcus spp. account for 14.9% of the total 
catheter associated UTIs between 2006 and 2007 [8]. Moreover, it is also reported 

Figure 2. 
Examples of recently approved drugs.

Figure 3. 
Different infections caused by genus Enterococcus.
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that 15% of UTIs occur in ICU setting with VRE being the major health care associ-
ated pathogen [15].

2.2 Intra-abdominal, pelvic and soft tissue infections

ENT are often recovered as a component of mixed microbial flora from cultures of 
pelvic, soft tissues and intra-abdominal infections. They rarely cause monomicrobial 
infections at these sites. Enterococcal bacteremia is accompanied with intra-abdominal 
and pelvic abscesses and wounds; this is the reason why many clinicians prescribe 
antibiotic regimens for infections at these sites [14, 16, 17]. Moreover, ENT are fre-
quently found in cultures from foot ulcers, decubiti and in diabetics in association with 
osteomyelitis [15]. Tigecycline, a semi synthetic, bacteriostatic in nature analogue of 
TET is active against many Gram negative (G −ve) and G +ve bacteria has been used 
use for the treatment of skin, intra-abdominal and soft tissue infections [18].

2.3 Bacteremia

Incidence of enterococcal blood stream infections are rising day by day [19]. 
Starting from 6th position in early 80’s, ENT is now the 2nd most common cause of 
health care associated bacteremia [8]. Bacteremia is designated as a major cause of 
mortality with Enterococcus spp. being the third and fourth most common etiologi-
cal agent of blood stream infections in U.S and Denmark, respectively [20–22]. 
Genitourinary tract, intra-abdominal, biliary sources, soft tissues infections and 
indwelling central lines are the common sources of bacteremia from which ENT 
are isolated as a polymicrobial component [17]. Although enterococcal bacteremia 
occurs in patients with underlying immunity and illnesses, it rarely affects distant 
organs or cause metastatic abscesses. Usage of inappropriate antibiotics or late 
treatment is associated with excess mortality [19]. However, some studies found 
no decrease in mortality with appropriate antibiotic treatment [23, 24], while some 
revealed a better outcome after using appropriate antibiotics both for vancomycin 
and high-level gentamicin resistant enterococci [25, 26].

2.4 Endocarditis

Endocarditis is one of the major enterococcal infections for which antibiotic 
treatment is difficult because of enterococci’s intrinsic resistance to many anti-
biotics. First case report of endocarditis with details of clinical and pathological 
description of a strain called Micrococcus zymogens (Enterococcus faecalis) was pub-
lished in 1899 [27]. Since then this species is responsible for 8–17% of all infective 
endocarditis (IE) cases affecting mainly elderly patients with prosthetic heart valve, 
degenerative heart valve diseases, urinogenital or GIT infections leading to bactere-
mia and becoming third most frequent etiologic agent of both native and prosthetic 
valve IE [28–30]. In certain cases, dual antibiotic therapy including aminoglycoside 
(preferably gentamicin) and cell-wall synthesis inhibitor (vancomycin or β-lactam) 
is required for IE therapy.

American Heart Association (AHA) and European Society of Cardiology (ESC) 
recommends 4 to 6 weeks of combined antibiotic treatment with success rate of 
80%. Due to nephrotoxic effects of long-term aminoglycoside usage, Danish guide-
lines on endocarditis treatment endorsed aminoglycoside usage but for 2 weeks only 
[30]. In case of VRE and HLGR enterococcal IE, surgery remains the only option 
to remove the infected valve [15]. Among Enterococcus spp., E. fl was thought to be 
the most common causative agent of endocarditis infecting mostly older persons as 
compared to women [31, 32] but recently a more problematic MDR strain of  
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E. fm belonging to well characterized hospital-associated clade was also identified 
as a cause of IE. The strains of E. fm has high resistance against first line antibiotics 
(i.e., MIC >64 mg/L ampicillin and vancomycin) due to which their application in 
curing IE is obsolete [33, 34]. In response to this, AHA recommends Quinupristin-
dalfopristin (Q/D; 30% Streptogramin B and 70% A) and linezolid as alternate 
to treat MDR E. fm IE [35]. In fact, many reports suggest better efficacy of Q/D 
(24 g/day) when use in combination with imipenem, levofloxacin, doxycycline, 
rifampicin, high-dose ampicillin [36, 37]. Two main and critical steps in the patho-
genesis of IE are attachment to tissues and production of biofilm. Biofilm associated 
proteins which facilitates occurrence of IE includes aggregation substance protein, 
i.e., Asc10 [38], microbial surface components recognizing adhesive matrix mol-
ecules (MSCRAMM) proteins ace for E. fl [39] and acm for E. fm [40], esp and its 
homolog in E. fm, espfm [41, 42], endocarditis and biofilm associated pili of E. fl, i.e., 
ebp [42–44]. The main complication of enterococcal IE is heart failure occurring in 
half of the patients. Moreover, MDR E. fm is also an important factor in increasing 
epidemiology of enterococcal IE because >90% of E. fl are susceptible to ampicillin 
and vancomycin [45].

3. Pathogenesis and virulence associated with enterococci

Virulence factors are potential traits that define the pathogenesis of most 
infections which involves a series of events namely, colonization, adhesion to the 
host’s cells, tissue invading and resistance to non-specific defensive mechanisms. 
Researchers are encouraged to characterize the factors involved in etiology of infec-
tions caused by pathogenic ENT in immunocompromised or impaired immunity 
patients. Two major classes of virulent factors have been well characterized: (1) 
surface factors that promote colonization in host cells, and (2) protein and peptides 
secreted by ENT that damage the tissues [46].

3.1 Gelatinase (gelE), serine protease (sprE) and fsr regulator

Gelatinase is a zinc metalloprotease expressed extracellularly and hydrolyze 
gelatin, collagen and casein [47]. It is proved to be a full virulence factor expressed 
in mouse model of peritonitis, endocarditis [48, 49], endophthalmitis [50], in 
nematode [51] and in vitro translocation [52]. It is encoded by gelE and sprE operon 
and expressed in regulation by a quorum sensing system encoded by the fsr locus 
[53]. The fsr locus (E. fl regulator) is a well characterized locus containing fsrA, fsrB, 
fsrC and fsrD genes which is homologs to staphylococcal agrBCA loci [54]. A signal-
ing peptide in fsrB liberates gelatinase biosynthesis activating pheromone (GBAP) 
peptide by auto-processing and a quorum sensing system. gelE and sprE genes are 
induced when GBAP accumulates from exponential to stationary phase. Fsr regulon 
is present above the sprE and gelE and encode a serine protease and gelatinase, 
respectively [55]. Possible molecular mechanism behind the expression of gelE and 
sprE is shown in Figure 4 [56]. Epidemiological data suggests the involvement of fsr 
locus and gelatinase in virulence traits, like adhesion capacity (biofilm) established 
by processing of C-terminal gelatinase protein [57, 58].

3.2 Catalase (EC 1.11.1.6)

Catalase is a renowned enzyme present in all three domains of life. It catalyzes 
the decomposition of hydrogen peroxide (HP) to water and oxygen, protecting 
the cell from oxidative damage of HP. HP is a reactive oxygen species (ROS) in 
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biosphere. It is produced as a by-product in aerobic metabolism such as in oxygen 
activation, in photosynthetic and respiratory electron transport chain and as prod-
uct of oxidases activity. First step of catalase reaction is the reduction of HP to water 
forming cationic heam radical and an oxoiron [compound 1 (FeIV

═O ion)]. In the 
second step, dismutation is completed by the reaction of a second HP, resulting in 
the release of oxygen and water. The enzyme is regenerated in the resting FeIII state. 
NADPH binding catalases prevent the build-up of an inactive partially oxidized 
dead-end form of the enzyme called compound II [59].

Catalases are of three types: Prokaryotic Mn-catalases (minor bacterial pro-
tein family), bifunctional catalase peroxidases (not found in plants and animals 
and exhibit both catalytic and peroxidative activities) and haem catalases (most 
abundant group found in Archaebacteria, Eubacteria, Fungi, Protista, Animalia 
and Plantae). Despite catalyzing the same reaction (2H2O2 → 2H2O + O2), all three 
families differ in architecture of active site and mode of reaction [60]. Among G 
+ve lactic acid bacteria (LAB), E. fl are unable to make porphyrin compounds, 
including heam groups. It exhibits catalase activity but only when it is grown in 
heme containing medium [61]. E. fl catalase (katA) is a homo-tetrameric protein 
containing only one heme group (protoheme IX) and belongs to the group of heme 
containing mono functional catalases [62]. In the absence of heme, E. fl produces 
NADH peroxidase (Npr) that degrades HP to water. Factors involve in biogenesis of 
catalase was not known until Baureder and Hederstedt [62] carried out a research 
in which they used two different transposon systems to construct libraries of E. fl 
mutants and screened for clone defective in catalase activity by using colony zymo-
gram staining procedure. They identified nine genes (in addition to katA, which 
codes for catalase enzyme protein) distributed over five chromosomal loci which 
are important for expression of catalase activity in E. fl. The proteins encoded by 
those genes have diverse functions such as NADH oxidation and HP detoxifica-
tion (npr), global regulation of RNA turnover (rnjA, srmB), membrane transport 
(oppBC) and/or stress response (etaR) [62].

3.3 Hyaluronidase (EC 4.2.2.1)

These are the enzymes capable of degrading hyaluronate (Hyaluronic acid, hyal-
uronan) found in several body parts, like umbilical cord, synovial fluid, cartilage, 
brain, muscles and extracellular matrix (ECM) in connective tissues. Almost half 
of the total body hyaluronate is found in the skin. The viscous ground substance 
release by the connective tissues provides a barrier for the entry of bacteria or toxin 
into the body. However, ground substance contains hyaluronate as a major compo-
nent which is degraded by hyaluronidases. Rooster’s combs and certain bacteria like 

Figure 4. 
Flow diagram showing the possible mechanism of gelE and sprE gene expression.
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streptococci also produce hyaluronidases [63]. Many pathogenic bacteria release 
some extracellular products which helps them in damaging the tissue thus acting 
as a virulent factor and smoothen the progress of bacterial toxin into the tissues 
and are commonly named as “spreading factors.” Bacterial hyaluronidases (BH) are 
among some of the spreading factors released by certain G +ve and G −ve bacteria. 
BH belongs to the third type of hyaluronidases commonly called as hyaluronate 
lyases. They eliminate β 1–4 linkage resulting in the production of unsaturated 
disaccharides by acting as endo-N-acetylhexosaminidases [63]. Different models of 
E. fm trans conjugant’s virulence that harbors conjugative mega plasmid have been 
reported [64, 65] to carried hyl gene. According to some previous studies, the hyl 
gene was more prevalent in clinical isolates rather than community base isolates. 
According to a recent study, hyl gene is considered as a passive marker of virulence 
because deletion of this gene caused no effect on mouse peritonitis model [66, 67].

3.4 Cytolysin (Cyt)

Enterococcal Cyt is a broad range prokaryotic and eukaryotic lysin usually 
plasmid encoded. It is reported to enhance virulence of E. fl in animal models. It 
was originally described as lanthionine-containing bacteriocins of G +ve bacteria 
[68]. The Cyt operon is a part of E. fl PAI consisting of 6 genes related to toxin 
biosynthesis and two promoters namely PL (involve in regulation of transcription 
of genes related to toxin structure and function) and PREG (involve in transcription 
of regulatory genes) and present near esp gene [69]. Like gelatinase, expression of 
Cyt is quorum sensing dependent and regulated by two component systems [70]. 
The regulatory system of Cyt consists of two open reading frames (ORFs) namely 
cylR1 and cylR2 which encodes a transmembrane protein of unknown function 
(cylR1) and a helix-turn-helix DNA binding protein (cylR2) [71]. The Cyt operon is 
either present on conjugative pheromone responsive plasmid such as pAD1 [72] or 
encoded by chromosome within 150 kb PAI [73, 74]. Todd et al. [75] conducted the 
first comprehensive study on hemolysin molecule after the observation of hemoly-
sis zones on blood agar plates produced by E. fl. Increased virulence due to Cyt in E. 
fl was first described in the study of Ike and colleagues [76] through dose dependent 
intraperitoneal injections of E. fl strains harboring plasmid pAD1 which encodes 
Cyt. Later, various researchers showed the lyses of mouse erythrocytes, macro-
phages, and PMNs or death of experimental animals/organism like mouse, rabbits 
and C. elegans with Cyt [58, 73, 77–80]. Self-lysis of Cyt producing cells is prevented 
by an unknown mechanism. However, immunity proteins or ABC transporters 
protects other lantibiotic producing bacteria from self-lysis [81, 82]. In E. fl, a zinc 
metalloprotease and transmembrane protein, CylI (immunity factor) is shown to 
protect from Cyt mediated bacterial cell death [83].

Despite having a virulence face, Cyt can also act as beneficiary trait for both E. fl 
and its host. Possible beneficial activities might include, acting as colonization fac-
tor, providing self-defense against something which is more harmful (probably an 
intestinal parasite), facilitating nutrient acquisition from prokaryotic or eukaryotic 
sources, function as signaling molecule to monitor bacterial population size and 
probe the environment for target cells and last but not the least, bacteriocin activity 
of Cyt allows E. fl to occupy a novel host niche which non-cytolytic bacteria cannot 
access [68, 84, 85].

3.5 Enterococcal surface protein (esp)

Esp, a putative virulent factor is found in both E. fl and E. fm. It is located on 
pathogenicity island (PAI) at the surface of the bacterium [56]. It was initially 
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identified in a highly virulent gentamicin resistant strain of E. fl [69]. Esp shares 
global structural similarity with Streptococcus agalactiae Rib [86], S. pyogenes 
R28, C-alpha protein, and S. aureus Bap (biofilm associated protein) [87]. These 
similarities are restricted to a highly conserved region within the C repeat units 
of Esp proteins and group A and B of streptococcal proteins of streptococci and 
nonrepeat N-terminal region of Bap protein [71]. Bap protein from S. aureus is 
associated with biofilm formation and shares a sequence and structural similar-
ity with Esp. Esp is also associated with E. fl biofilm formation on different sur-
faces, like polysterylene plates and hospital equipment like catheters, prosthetic 
heart valves, orthopedic appliances, artificial cardiac pace makers [47], ureteral 
stents [88], intravascular catheters [89], silicone gastrostomy devices [90], and 
biliary stents [91].

A variant of Esp is also reported in E. fm isolates [92]. E. fm esp is predomi-
nantly present in nosocomial settings in contrast to E. fl esp which is widely 
distributed among environmental strains [93, 94]. Expression of esp is affected by 
environmental conditions like temperature (maximum at 37°C) and availability 
of oxygen, i.e., under anaerobiosis [56]. Several research groups demonstrated 
the role of E. fm esp in pathogenesis of experimental endocarditis, UTIs, and 
bacteremia. While no specific role of esp was found in peritonitis, and colonization 
of GIT [95, 96]. Role of esp was also established by a genetic approach. In a study 
conducted by Tendolkar et al. [97], esp-lacking E. fl strains produced biofilm in 
large amounts after successful induction and expression of esp gene. In contrast, 
several studies suggest that esp is not necessary for biofilm formation [98, 99]. 
Study conducted by Kristich et al. [100] demonstrated that E. fl OG1RF produced 
biofilms not only in the absence of esp and entire PAI that harbors it. In other stud-
ies, conducted on clinical enterococcal isolates, majority of the esp-negative isolates 
produced biofilms and no correlation was found among esp gene and biofilm 
forming capacity [89, 101].

3.6 Aggregation substance (AS)

AS is a group of proteins encoded by pheromone-induced conjugative plasmids. 
AS directed bacteria to aggregate which results in close cell contact between donor 
and recipient. Several studies showed that AS mediated internalization of E. fl 
by cultured human intestinal epithelial cells and increased in vitro adhesion to 
cultured renal tubular cells [102]. Among the best studied AS proteins are Asa I, 
Asp I, and Acs 10 encoded by asa1, aspI and prgB genes of conjugated plasmids 
pAD1 and pCF10, respectively, and shows >90% sequence identity [56, 66]. These 
proteins contain an N-terminal domain, a central domain, a variable region and 
two Arg-Gly-Asp (RGD) motifs which are also found in fibronectin and associated 
with integrin binding proteins [102, 103]. Apart from their function in conjugation 
transfer, these RGD motifs are also involve in eukaryotic cell binding and binding 
to renal epithelial cells [102]. It is demonstrated in a study that central domain and 
N-terminal domain are responsible for aggregation of Asc 10 [104]. Beside its role 
in conjugation, AS also serves as a virulence factor in E. fl by promoting cell-cell 
contact, adhesions to host cells and ECM proteins (including thrombospondin, 
fibronectin, vitronectin, and collagen type I), increased vegetation in experimental 
endocarditis, resistance to killing by polymorphonuclear leukocytes (PMNs) by 
inhibition of respiratory burst (production of ROS) in the macrophages, increased 
cell surface hydrophobicity [71]. All the proteins aid in the pathogenesis of AS in E. 
fl, like Asa I increases adherence to human macrophages and renal tubular cells, Asc 
10 facilitates internalization and intracellular survival in PMNs [74, 103, 105]. Both 
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Virulent factors Gene Primer sequence (5′-3′) Product 

length 

(bp)

Reference

Biofilm associated 

genes

espTIM CTT-TGA-TTC-TTG-GTT-GTC-GGA-TAC
TCC-AAC-TAC-CAC-GGT-TTG-TTT-ATC

475 [111]

agg AAG-AAA-AAG-AAG-TAG-ACC-AAC
AAA-CGG-CAA-GAC-AAG-TAA-ATA

1553 [112]

acm GGC-CAG-AAA-CGT-AAC-CGA-TA
CGC-TGG-GGA-AAT-CTT-GTA-AA

353 [113]

efaAfm AAC-AGA-TCC-GCA-TGA-ATA
CAT-TTC-ATC-ATC-TGA-TAG-TA

735 [92]

efaAfs GAC-AGA-CCC-TCA-CGA-ATA
AGT-TCA-TCA-TGC-TGT-AGT-A

705

asa GCA-CGC-TAT-TAC-GAA-CTA-TGA
TAA-GAA-AGA-ACA-TCA-CCA-CGA

375 [114]

ace AAA-GTA-GAA-TTA-GAT-CCA-CAC
TCT-ATC-ACA-TTC-GGT-TGC-G

320 [115]

ccf GGG-AAT-TGA-GTA-GTG-AAG-AAG
AGC-CGC-TAA-AAT-CGG-TAA-AAT

542 [112]

cpd TGG-TGG-GTT-ATT-TTT-CAA-TTC
TAC-GGC-TCT-GGC-TTA-CTA

782

cob AAC-ATT-CAG-CAA-ACA-AAG-C
TTG-TCA-TAA-AGA-GTG-GTC-AT

1405

eep GAG-CGG-GTA-TTT-TAGTTC-GT
TAC-TCCAGCATTGGATGCT

937

Gelatinase operon 

genes

gelE ACC-CCG-TAT-CAT-TGG-TTT
ACG-CAT-TGC-TTT-TCC-ATC

419 [116]

sprE TTG-AGC-TCC-GTT-CCT-GCC-GAA-
AGT-CAT-TC

TTG-GTA-CCG-ATT-GGG-GAA-CCA-
GAT-TGA-CC

591

fsrA ATG-AGT-GAA-CAA-ATG-GCT-ATT-TA
CTA-AGT-AAG-AAA-TAG-TGC-CTT-GA

740

fsrB GGG-AGC-TCT-GGA-CAA-AGT-ATT-
ATC-TAA-CCG

TTG-GTA-CCC-ACA-CCA-TCA-CTG-
ACT-TTT-GC

566

fsrC ATG-ATT-TTG-TCG-TTA-TTA-GCT-ACT
CAT-CGT-TAA-CAA-CTT-TTT-TAC-TG

1343

Cytolysin operon 

genes

cylLL GAT-GGA-GGG-TAA-GAA-TTA-TGG
GCT-TCA-CCT-CAC-TAA-GTT-TTA-TAG

253 [117]

cylLs GAA-GCA-CAG-TGC-TAA-ATA-AGG
GTA-TAA-GAG-GGC-TAG-TTT-CAC

240

cylM AAA-AGG-AGT-GCT-TAC-ATG-GAA-
GAT

CAT-AAC-CCA-CAC-CAC-TGA-TTC-C

2940

cylB AAG-TAC-ACT-AGT-AGA-ACT-AAG-GGA
ACA-GTG-AAC-GAT-ATA-ACT-CGC-

TAT-T

2020

cylA ACT-CGG-GGA-TTG-ATA-GGC
GCT-GCT-AAA-GCT-GCG-CTT

688
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Virulent factors Gene Primer sequence (5′-3′) Product 

length 

(bp)

Reference

Enterocin genes entA ATG-AAA-CAT-TTA-AAA-ATT-TTG-TCT-
ATT-AAA-G

TTA-GCA-CTT-CCC-TGG-AAT-TGC-TCC

1770 [118]

entB AGA-CCT-AAC-AAC-TTA-TCT-AAA-G
GTT-GCA-TTT-AGA-GTA-TAC-ATT-TGC

126

entP ATG-AGA-AAA-AAA-TTA-TTT-AGT-
TTA-GCT-CTT-ATT-GG

TTA-ATG-TCC-CAT-ACC-TGC-CAA-
ACC-AG

216

Ef1097 GGC-GAT-GGC-ATT-ACT-AAT-GAC-
ATT-AGG

CTT-AGC-CCA-CAT-TGA-ACT-GCC-
CAT-AAA-GC

408

enlA CGA-TTT-CTG-TTG-TAG-GAA-CC
GTA-CAT-CTC-CAT-ATA-CTT-TTC-C

1405

Insertion sequence 

element gene

IS16 CATG-TTC-CAG-CAA-CCA-GAG
TCA-AAA-AGT-GGG-CTT-GGC

547 [111]

Hyaluronidase 

gene

hyl ACA-GAA-GAG-CTG-CAG-GAA-ATG
GAC-TGA-CGT-CCA-AGT-TTC-CAA

276 [119]

Catalase gene kat ACC-CCG-TAT-CAT-TGG-TTT
ACG-CAT-TGC-TTT-TCC-ATC

419 [110]

Lipase gene Lip-fm TTG-AGC-TCC-GTT-CCT-GCC-GAA-
AGT-CAT-TC

TTG-GTA-CCG-ATT-GGG-GAA-CCA-
GAT-TGA-CC

591 [108]

Lip-fl ATG-AGT-GAA-CAA-ATG-GCT-ATT-TA
CTA-AGT-AAG-AAA-TAG-TGC-CTT-GA

740

Table 1. 
List of primers reported for the genotypic assessment of major virulence factors.

Thermal cycler programme Gene name (Reference)

A gelE, sprE, fsrA, fsrB, fsrC genes [116]

B lip-fm and lip-fl genes [108]

C kat gene [110]

D cylLL, cylM, cylB, cylA [117]
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Thermal cycler programme Gene name (Reference)

E efaAfs and efaAfm [92]

F espTIM [111]

G acm gene [113]

H ace and asa1 gene [114, 115]

I agg or AP gene [112]

J ccf, cpd, eep, cob genes [112]

K entP, entA, entB, ef1097 gene [118]

L enlA gene [118]

M IS16 gene [111]

N Hyl gene [119]

Table 2. 
Illustrations for the PCR conditions for the amplification of various putative virulence genes.
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Asa I and Asc 10 increase virulence of E. fl in rabbit endocarditis model by increas-
ing adherence to certain ECM proteins [79, 106].

4. Conclusions

In conclusion, acquired resistance to certain antibiotics is an important feature 
of the genus Enterococcus. Persistent use of antibiotics in humans and animals 
for therapy and as growth promoters plus the presence of insertion sequences, 
transposons, integerons and plasmids make them large reservoirs of transferable 
antibiotic resistance and virulence genes in various ecosystems including soil, 
water, and food. Due to its rapid popularity, as resistant bacteria, ENT serves as 
an important key indicator in the surveillance of many humans and veterinary 
resistance profile. Adherence capability plus antibiotic resistance make them more 
problematic for effective therapeutic decisions. Till now only food consumption 
is considered as an option for the spread of antibiotic resistant bacteria to humans 
but the detection of resistant bacteria in soil opens a new route for the exposure of 
environmental antibiotic resistance to humans. Results of different studies from 
our lab concludes that soil, poultry, animals and birds carried high burdens of 
ENT which are fully armed with potential virulent and antibiotic resistance genes 
[107–110]. In Pakistan, there is paucity of information regarding prevalence, types 
and genetic characteristics of enterococci along with their resistance/virulence 
genes and clones especially from clinical and other environmental sources. In 
this respect, regular environmental monitoring using most advance molecular 
genotyping (Tables 1 and 2) as routine testing is recommended. Genes mirror 
the requirements of life. As our understanding of enterococcal genomics grows, 
bacterial genomics will become an important tool for providing new insights into 
the nature, biology and habitats of the enterococci. Presence of insertion sequence 
(IS16) gene in soil isolates verified the dissemination of hospital associated ENT 
into the environment via inappropriate handling of hospital wastes [108]. It 
is therefore also recommended to dispose clinical/hospital waste properly and 
appropriately.
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