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Chapter

Deep Learning Based Prediction of
Transfer Probability of Shared
Bikes Data
Wenwen Tu

Abstract

In the pile-free bicycle sharing scheme, the parking place and time of the bicycle
are arbitrary. The distribution of the pile does not constrain the origin and destina-
tion of the journey. The travel demand of the user can be derived from the use of
the shared bicycle. The goal of this article is to predict the probability of transition
for a shared bicycle user destination based on a deep learning algorithm and a large
amount of trajectory data. This study combines eXtreme Gradient Boosting
(XGBoost) algorithm, stacked Restricted Boltzmann Machines (RBM), support
vector regression (SVR), Differential Evolution (DE) algorithm, and Gray Wolf
Optimization (GWO) algorithm. In an experimental case, the destinations of the
cycling trips and the probability of traffic flow transfer for shared bikes between
traffic zones were predicted by computing 2.46 million trajectory points recorded
by shared bikes in Beijing. The hybrid algorithm can improve the accuracy of
prediction, analyze the importance of various factors in the prediction of transfer
probability, and explain the travel preferences of users in the pile free
bicycle-sharing scheme.

Keywords: deep learning, restricted Boltzmann machines,
support vector regression, eXtreme gradient boosting, shared bikes data

1. Introduction

Bicycle sharing is a new type of transportation with low energy consumption
and emissions. It serves short-distance travel and helps solve the “last mile” prob-
lem [1]. With the rapid development of the mobile Internet, the pileless bicycle
began to replace the pile station bicycle [2]. In the pile-free bicycle sharing scheme,
the parking place and time of the bicycle are arbitrary. The distribution of the pile
does not constrain the origin and destination of the journey. The travel demand of
the user can be derived from the use of the shared bicycle. The distribution of
destinations for shared bike users is a valuable study. However, the large number of
shared bicycle tracks requires a lot of computation time. This paper sets up different
traffic areas and studies the law of shared bicycle flow transfer between the traffic
areas. On this basis, we predict the ratio of the traffic flow of shared bicycles
between traffic areas. It can be considered as the probability that the shared bicycle
user selects the traffic area A as the origin and the traffic area B as the destination.
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The pile-free shared bicycle system puts a large number of bicycles in the city.
The amount is much higher than the number of traditional piled public bicycles.
Therefore, when dealing with massive volume of trajectory data volume as a data
set, classical statistical methods and traditional neural network algorithms would
have limited processing capabilities.

As a newly developed travel method, the algorithms for the destination predic-
tion of trips based on shared bikes need to be researched in depth [3–5]. In Deep
neural networks (DNN), the model with multi-hidden layers can be developed
based on the artificial neural network. The hidden layers of DNN convert the input
data into a more abstract compound representation [6–10].

The Restricted Boltzmann Machine (RBM) is an algorithm that can be used for
dimensionality reduction, classification, regression, and feature learning
problems. RBM reconstructs data in an unsupervised algorithm and adjusts the
weight through the process of reverse transfer and forward transfer. The RBM
gradually approaches the original input and learns the probability distribution on
the input set [11–15].

In this paper, a stacked RBM-SVR algorithm is constructed by combining sup-
port vector regression (SVR) [16] and stacking RMB algorithm. RBM-SVR is used to
predict continuous output values. The error penalty factor cs and kernel function
parameter γs are the basic parameters of the radial basis function of the SVR model.
The value of cs and γs will directly affect the fit and generalization ability of the SVR
[17–19]. In order to improve the accuracy of prediction, this paper needs to
introduce intelligent algorithms to optimize the selection of parameter values.

In machine learning algorithms, Mirjalili et al. [20] proposed Gray Wolf Opti-
mizer (GWO) as a meta-heuristic algorithm for solving many multi-modal functions
in 2014. In addition, Storn and Price [21] proposed a differential evolution (DE)
algorithm. The DE algorithm is an optimization algorithm based on modern intelli-
gent theory. DE intelligently optimizes the direction of search through groups gener-
ated by cooperation and competition among individuals. Based on the above theory,
an algorithm called the differential evolution Gray Wolf Optimizer algorithm
(DEGWO) is used to optimize cs and γs. DEGWO generates initial populations, sub-
populations, and variant populations for each iteration, and then uses the GWO’s
capabilities for global searching to optimize the cs and γs parameters.

After processing by RBM algorithm, the input data are transformed into a sparse
matrix containing a high amount of information. It can reduce the computation time
of SVR prediction, but it may also increase the number of outliers in the SVR algo-
rithm, increase the complexity of the SVR model and reduce the stability of the fitting
process. To solve this problem, this paper proposes a hybrid algorithm that combines
the eXtreme Gradient Boosting (XGBoost) algorithm with the stacked RBM-SVR
algorithm. XGBoost is an optimized distributed gradient boosting library designed to
be highly efficient, flexible, and portable [22]. XGBoost uses the Exclusive Feature
Bundling method to transform several sparse features into a dense matrix [23]. In the
process, the approximate greedy algorithm is used to find the best combination of
merged features when the number of bundles is the smallest. The XGB algorithm
realizes the partition of nodes by the second order gradient and optimizes the greedy
algorithm of splitting nodes by the local approximation algorithm [24].

The principal purpose of this paper is to build a hybrid model that combines the
XGBoost model, the stacked RBM-SVR network, and the DEGWO optimization
algorithm. This paper analyzes the trajectory data of shared bicycles, extracts the
cell information, and predicts the probability of user destination selection in the
traffic area, that is, predicts the transfer probability of shared bikes.
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2. Background

Artificial intelligence (AI) is a domain of computer science that studies how to
apply computings to simulate the fundamental theories, methods, and techniques of
human knowledge. As the mainstream algorithm of artificial intelligence, deep
learning is considered capable of solving many challenges in the field of computer
vision, prediction, and optimization. It realizes the automatic positioning of targets
and automated learning of target features, which improves the speed and accuracy
of target detection. Artificial intelligence is mainly used to share bicycles in the
following aspects.

First, the user’s travel behavior and the law of spatial movement can be obtained
through machine learning algorithms and statistical theory analysis. The user’s
travel preferences can be quantitatively analyzed. Researchers can discuss the
impact of various influencing factors on shared bicycle usage, such as the mix of
land use, the degree of convergence with public transport facilities, the sharing of
bicycle infrastructure, rainfall and high temperatures [25, 26].

Second, through the deep learning algorithm of AI technology, the dynamic
demand and parking demand of the shared bicycle users can be predicted. The
focus of this paper is on this issue. This paper uses a deep learning algorithm to
predict the probability of user destination selection. Xu et al. [27] prove that the
long short-term memory neural networks (LSTM NNs) in deep learning algorithms
are superior to traditional statistical metrology algorithms and advanced machine
learning algorithms. LSTM NNs can better predict the riding demand dynamically.
Besides, based on the distribution of road networks and travel needs, researchers
can predict parking demand and develop better layout strategies for electronic
fences [28].

Finally, according to the deep reinforcement learning algorithm in AI
technology, a shared bicycle scheduling model can be constructed. Deep reinforce-
ment learning combines the perception of deep learning with the decision-making
ability of reinforcement learning. It can be directly controlled according to the
original input data. It is an artificial intelligence method that is closer to human
thinking. Based on this algorithm, the dynamic scheduling model can efficiently
optimize goals such as improving user satisfaction and reducing system cost
[29–31].

3. A stacked RBM_SVR deep learning algorithm

RBM_SVR is a deep learning model that connects three stacked RBMmodels and
one SVR model. First, in RBM_SVR, the bottommost RBM is trained with the
original input data, and the top RBM takes the feature extracted by the bottom RBM
as input and continues training. RBM_SVR repeats this process until the topmost
RBM model is trained. Secondly, RBM_SVR fine-tunes the network through the
traditional global learning algorithm (BP algorithm), so that the model can converge
to the local best. Finally, RBM_SVR can efficiently train a deep network and output
the predicted probability value according to the SVR model.

Each RBM model has a visible layer v and a hidden layer h. The neurons inside
the RBM layer are unconnected, but the neurons between the layers are fully
connected. The value of the RBM node variable is 0 or 1. The number of layers of
visible layers and hidden layers of the RBM_SVR model are n and m, respectively.
The energy equation of RBM_SVR is given by Eq. (1)
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E v, hjθð Þ ¼ �
X

n

i¼1

aivi �
X

m

j¼1

b jh j �
X

n

i¼1

X

m

j¼1

viwijh j (1)

where ∀i, j∈ 0, 1f g, θ ¼ wij, ai, b j

� �

involves the parameters of RBM; wij is a

connection weight between the visible layer i and the hidden layer j; ai represents

the bias of the visible layer, and b j denotes the bias of the hidden layer. P v, hjθð Þ ¼

e�E v,hjθð Þ
P

v,h
e�E v,hjθð Þ

is the joint probability distribution of this set of states v, hð Þ [32]. P vjθð Þ ¼
P

h
e�E v,hjθð Þ

P

v,h
e�E v,hjθð Þ

is the marginal distribution of P v, hjθð Þ. Since each visible layer and each

hidden layer are independent, the activation probability of the hidden layer j and
the ith visible layer are shown in Eqs. (2) and (3), respectively [33].

P vi ¼ 1jh, θð Þ ¼ σ ai þ
X

j

wijh j

 !

(2)

P h j ¼ 1jv, θ
� �

¼ σ b j þ
X

i

viwij

 !

(3)

where σ xð Þ ¼ 1
1þexp �xð Þ. In RBM_SVR, the number of neurons per layer of RBM is

300. Based on the abstracted vector output from the stacked RBM model, the SVR
model predicts the probability of the traffic transfer among traffic zones yd, as
shown in Eq. (4).

yd ¼ RBM:SVR xð Þ (4)

where x is the input dataset, RBM:SVR represents the RBM_SVR model.

4. An improved RBM-SVR algorithm

4.1 Principles of GWO algorithm

Assume that in a D-dimensional search space, the population size X ¼

X1,X2, … ,X ~N

� �

is composed of N individuals. Xih ¼ X1
ih
,X2

ih
, … ,XD

ih

� 	

is the loca-

tion of the gray wolf ih-the solution to the optimization problem. The top three
wolves of the optimal solution of the objective function are wolf α, wolf β, and
wolf δ, respectively. They are also the main wolves that guide the rest of the wolves
to explore the optimal solution. The rest of the solution corresponds to the wolf as
wolf ω. The parameters and explanations of the GWO algorithm are shown inTable 1.

The update process of X tð Þ is given by Eq. (5). The first three obtained optimal
values are saved to enforce other searching individuals (including ω) to constantly
update their positions according to the position of the optimal value, and the
calculation method is expressed as Eqs. (6)–(7).

X tþ 1ð Þ ¼ Xp tð Þ � A CXp tð Þ � X tð Þ










 (5)

Xμ tþ 1ð Þ ¼ Xπ tð Þ � AμDπ (6)

Xp tþ 1ð Þ ¼
1

3

X

3

μ¼1

Xμ (7)
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where π ¼ α, β, δ; μ ¼ 1, 2, 3. The distances between the other individual gray

wolves and α, β, and δ, as well as the distances Dπ ¼ CμXπ tð Þ � X tð Þ










 between them

and the updated position of the gray wolf are be determined by and (6). Then, the
position of the prey can be determined by Eq. (7).

4.2 Principles of the DE algorithm

Assume that in the D-dimensional search space, in the population size NP, Z gð Þ

is the gth generation of the population, Z gð Þ ¼ Z1 gð Þ,Z2 gð Þ, … ,Znp gð Þ
� �

. Zk gð Þ is the
kth individual in the gth generation of the population,
Zk gð Þ ¼ Zk,1 gð Þ,Zk,2 gð Þ, … ,Zk,D gð Þ½ �, k ¼ 1, 2, … ,NP, g ¼ 1, 2, … , gmax, and gmax is
the number of the last iteration.

4.2.1 Initialization of the population

Initially, the algorithm randomly generates the 0th generation of the population
over the entire search space, and the value of the individual zk,q 0ð Þ in each dimen-

sion q is generated according to Eq. (8).

zk,q 0ð Þ ¼ zLk,q þ rand 0, 1ð Þ zUk,q � zLk,q

� 	

(8)

where q ¼ 1, 2, … ,D, rand 0, 1ð Þ is a random number, which is uniformly dis-

tributed within 0, 1½ �, zLk,q is the lower threshold of the individual population, zUk,q is

the upper threshold of the individual population.

4.2.2 Mutation

Mutant individual is generated via Eq. (9).

τk,q gð Þ ¼ zp1 þ F zp2 � zp3
� �

(9)

where zp1 , zp2, zp3 are three different parameter vectors randomly selected from

the current population, and zp1 6¼ zp2 6¼ zp3 6¼ i; F is an amplifying factor within

[0,1].

Parameter Interpretation

t The number of current iterations

C The swing factor C ¼ 2r1

Xp tð Þ The position of the prey after the tth iteration

X tð Þ The position of the gray wolf during the tth iteration

r1 A random number within 0, 1½ �

A The convergence factor, A ¼ 2a � r2 � a

r2 A random number uniformly distributed within [0,1]

a a linearly decreases from 2 to 0 with the increase of the number of iterations

Dπ The distances between the individual gray wolves, Dπ ¼ CμXπ tð Þ � X tð Þ












Table 1.
Parameters and explanations of the GWO algorithm.
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4.2.3 Crossover

The crossover process in the DE algorithm is expressed as Eq. (10).

μk g þ 1ð Þ ¼
τk,q gð Þ, rand 0, 1ð Þ≤CR or q ¼ rand 0, 1ð Þ

τk,q gð Þ, rand 0, 1ð Þ≥CR or q 6¼ rand 0, 1ð Þ

(

(10)

where CR is the crossover probability within 0, 1½ �, and rand 0, 1ð Þ is a random
number, which is uniformly distributed within 0, 1½ � and used to guarantee that at
least one-dimensional component comes from the target vector Zk.

4.2.4 Selection

Selection operation compares the vector μk g þ 1ð Þ and the vector zk gð Þ by an
evaluation function, which is given by Eq. (11).

zk,q g þ 1ð Þ ¼
μk g þ 1ð Þ, f μk g þ 1ð Þ½ �< f zk gð Þ½ �

zk gð Þ, f μk g þ 1ð Þ½ �≥ f zk gð Þ½ �

(

(11)

Therefore, this mechanism allows the populations of the offspring to evolve
based on the current population. This optimization mechanism can improve
the average optimization ability of the population and converge the optimal
solution.

Algorithm 1. RBM_SVR _DEGWO

Input: Dtrain ¼ x1, y1
� �

, x2, y2Þ, … , xm0 , ym0 Þ
� ���

, Dtest ¼ x1, y1
� �

, x2, y2Þ, … , xn, yn0 Þ
� ���

, Sdegwo:dbn;

Output: rtest,Zparent:α

� �

Initialize a, A, C, Zparent and objective function Vparent

for each individual wolf k do

Vparent  RBM_SVR (Dtrain, Dtest, Zparent)

end for

sort Vparent

compute top three gray wolf individuals Xα,Xβ,Xδ

� �

for each generation g do

update a 2� g � 2=gmax

� �

for each individual wolf k do

Zparent  Xp

Vparent  RBM_SVR (Dtrain, Dtest, Zparent)

compute mutant individuals τk,q  zp1 þ F � zp2 � zp3

� 	

compute children population Zchild  μk,q

Vchild  RBM_SVR (Dtrain, Dtest, Zchild)

end for

for each individual wolf k do

update Zparent and Vparent

end for

end for

update the parameters in DBN S Zparent:α

RBM_SVR (Dtrain, Dtest, S)

return rtest,Zparent:α

� �

Table 2.
The procedure of RBM_SVR _DEGWO algorithm.
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4.3 DEGWO algorithm

In the DEGWO algorithm, Sdegwo:dbn ¼ NP, gmax,CR,D, ub, lb,F
� �

where NP

denotes population size, gmax denotes the maximum number of iterations, ub and lb
are the search range. rtest and rtrain denote the error in test and learning procedure
respectively. Table 2 is the specific procedure employing the DE and the GWO
algorithms to optimize parameters cs and γs in the RBM-SVR deep learning model.

5. A hybrid model based on RBM SVR DEGWO and XGBoost

5.1 XGBoost principle

5.1.1 Model function form

This paper assumes that the data set as the input sample is D ¼ Xi, zið Þf g and the
XGBoost model is a linear model (logistic regression, linear regression). The linear
model is an additive model. The number of learning trees is n [34].The XGBoost
model uses a pattern of linear superposition to calculate the predicted value, as
shown in Eq. (12).

ẑi ¼
X

N

n

hn x j

� �

(12)

Here, xi is a feature vector and i is the number of data points. hn xið Þ is the
regression tree function. hn ∈H, H is the set space of the regression trees.

H ¼ hn zð Þ ¼ α f xð Þ

� �

(13)

In Eq. (13), f : Rm ! T, f Xð Þ indicates that sample X is classified on a leaf node.
T represents the number of leaf nodes of the tree. α is the score of the leaf node.
α f xð Þ represents the predicted value of the regression tree for the sample.

5.1.2 XGBoost learning objective function

The objective function based on the parameter space is shown in the following
Eq. (14).

κ ϕð Þ ¼ L ϕð Þ þ Ω ϕð Þ ¼
X

I

i¼1

l z j, ẑi
� �

þ
X

N

n

Ω hnð Þ (14)

where Ω ϕð Þ is a regularization term, indicating a penalty value for the complex-
ity of the model. The regular term Ω ϕð Þ in the linear model includes: the regular

term L1, Ω αð Þ ¼ λ αk k1, and the regular L2, Ω αð Þ ¼ λ αk k2. L ϕð Þ is an error function
that measures the fitting accuracy of the model. A can reduce model bias, such as
square loss, exponential loss. Compared to GBDT, XGBoost adds a regular term to
the objective function. XGBoost punishes the complexity of each regression tree and
avoids overfitting during learning. XGBoost measures the complexity of the tree
such as the number of internal nodes, the depth of the tree, the number of leaf
nodes T, the leaf node score α, etc. XGBoost uses the regular term as shown in
Eq. (15).
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Ω hð Þ ¼ γT þ
1

2
λ αk k2 (15)

5.1.3 Model optimization

In the model parameter optimization process, each iteration model is always
added a new function on the optimal model obtained from the previous training.
After the kth iteration, the prediction of the model is equal to the prediction
function of the first k� 1th model prediction function combined with the kth tree,
as shown by Eq. (16).

ẑ
kð Þ
i ¼

X

I

i¼1

hn x j

� �

¼ ẑ
k�1ð Þ
i þ hi x j

� �

(16)

The objective function can be rewritten to Eq. (17).

κ kð Þ ¼ ẑ
kð Þ
i ¼

X

I

i¼1

l zi, ẑ
k�1ð Þ
i þ hi Xið Þ

� 	

þ Ω hið Þ (17)

In formula (17), the model’s goal is to learn the function of the kth tree. When
the error function is replaced by a second-order Taylor expansion, the objective
function can be rewritten as Eq. (18).

L kð Þ ¼
X

I

i¼1

l zi, ẑ
k�1ð Þ
i þ vihi Xið Þ þ

1

2
gih

2
k Xið Þ

� �
 �

þ Ω hkð Þ (18)

When vi ¼ ∂
ẑ

k�1ð Þ

i

l zi, ẑ
k�1ð Þ
i

� 	

a = 1 and gi ¼ ∂
2
ẑ

k�1ð Þ

i

l zi, ẑ
k�1ð Þ
i

� 	

, the objective func-

tion is Eq. (19).

~L
kð Þ
¼
X

I

i¼1

vihi Xið Þ þ
1

2
gih

2
k Xið Þ


 �

þΩ hkð Þ (19)

This objective function solves regression, classification, and sorting problems.
Eqs. (20) and (21) are in the form of a tree structure of the regression tree function
and the regular term. The objective function can be updated to Eq. (22).

h Xð Þ ¼ α f xð Þ (20)

Ω hð Þ ¼ γT þ
1

2
λ αk k2 (21)

~L
kð Þ
¼
X

I

i¼1

viα f xið Þ þ
1

2
gih

2
kα

2
f xð Þ


 �

þ γT þ λ
1

2

X

T

j¼1

α2j (22)

This article defines the sample set on each leaf node as J j ¼ i f xið Þ ¼ jjf g. The

objective function based on the form of leaf node accumulation is Eq. (23).

~L
kð Þ
¼
X

T

j¼1

X

i∈G j

f i

0

@

1

Aα j þ
1

2

X

i∈G j

gi þ λ

0

@

1

Aλα2j

2

4

3

5þ γT

¼
X

T

J¼1

δ jα j þ
1

2
η j þ λ
� 	

α2j


 �

þ γT

(23)
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This paper assumes that the structure of the tree is a certain value (i.e., f xið Þ is
determined). To solve the problem of minimizing the objective function, we can
make the derivative of the objective function zero. The optimal predicted score for
each leaf node is Eq. (24). The formula for the minimum loss function is Eq. (25),
which can be thought of as a function that scores the tree structure. The tree
structure is gradually optimized as the score is reduced.

A ∗

j ¼ �
δ j

η j þ λ
(24)

~L
∗ð Þ
¼ �

X

T

j¼1

δ2j

η j þ λ
þ γT ¼ �

1

2

X

T

j¼1

X

i∈G j

f i

0

@

1

A

2

=
X

i∈G j

gi þ λ

0

@

1

Aþ γT (25)

5.1.4 Structure score

Eq. (25) is a function for scoring a tree structure, called structure score. The
smaller the score, the better the tree structure is. The algorithm searches for the

optimal tree structure by using Eq. (25). ~L
∗
represents the contribution of the leaf

node to the overall loss. The goal of the algorithm is to minimize the loss, so the

larger part of
δ2j

η jþλ
could be as good as possible. This article expands a leaf node and

defines the gain as shown in Eq. (26).

gain ¼
1

2

δ2j

ηL þ λ
þ

δ2R
ηR þ λ

�
δL þ δRð Þ2j

ηL þ ηR þ λ

" #

� γ (26)

In Eq. (26),
δ2j

ηLþλ
is the score of the left subtree,

δ2R
ηRþλ

is the score of the right

subtree,
δLþδRð Þ2j
ηLþηRþλ

is the score without division, and γ is the cost of the complexity after

introducing the new leaf node. The larger the value of gain, the more loss after
splitting is reduced. Therefore, when segmenting a leaf node, we calculate the gain
corresponding to all candidate features and select the segment with the largest gain.

5.1.5 Best branch

The core part of the XGBoost algorithm is to obtain the optimal node based on the
maximum gain obtained. XGBoost looks for the best branch using a greedy algorithm.
The greedy algorithm traverses all possible segmentation points of all features, calcu-
lating the Gain value and selecting the maximum value to complete the segmentation.
The greedy algorithm is an algorithm that controls the local optimum to achieve
global optimization. The decision tree algorithm can also be considered as a method
of greedy algorithm. XGBoost is an integrated model of the tree. If each leaf is
optimal, the overall generated tree structure is optimal. This avoids enumerating all
possible tree structures. XGBoost uses the objective function to measure the structure
of the tree, and then let the tree grow from depth 0. Each time a branch calculation is
implemented, XGBoost calculates the reduction in the objective function. When the
reduction is below a certain value, the tree will stop growing.

5.2 Hybrid model based on RBM_SVR_DEGWO and XGBoost

After the boosting tree is created, the XGBoost algorithm extracts the impor-
tance score for each attribute. The XGBoost importance score measures the value of
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features in improving decision tree construction. The more an attribute is used to
build a decision tree, the more important it is [35]. In order to further improve the
accuracy of prediction and analyze the importance of feature quantity, this paper
uses XGBoost to extract the feature quantity importance score. By combining the
proposed RBM_SVR _DEGWO model prediction value, this paper proposes a
hybrid prediction model, as shown in Table 3.

6. Experimental description and result analysis

This paper analyzes 2,468,059 trajectory data from Mobike’s shared bikes. The
data covers more than 300,000 users and 400,000 shared bikes. The data of each
rental trip includes the start time, the end time, the Geohash code of the starting
position, the Geohash code of the ending position, the bicycle ID and the user ID.

GeoHash is an algorithm for spatial indexing. In the GeoHash theory, the Earth
is considered to be a two-dimensional plane that can be divided into multiple sub-
regions. The latitude and longitude inside the sub-area will correspond to the same
code. GeoHash-based spatial indexing can improve the efficiency of spatial data for
latitude and longitude retrieval. In this paper, GeoHash encodes a square plane
separated by a square of latitude and longitude of 0.001373. To improve the pre-
diction accuracy, this paper combines nine adjacent areas into a square area with a
length of 411.9873 meters. This paper divides Beijing into 10 � 10 traffic zones and
numbers them from 1 to 100. Various indicators of the traffic area will be used as
input data for the prediction model, as shown in Table 4.

The output of the model is the daily transfer probability of traffic flow among
the traffic zones ptI,J, which is given by Eq. (27). In the cities of N interconnected

traffic areas, ptI,J indicates the transfer probability of the traffic flow with the

original point I and the destination J in day t.

ptI,J ¼
dtI,J

PN
J¼1d

t
I,J

(27)

Algorithm 2. Hybrid Algorithm based on RBM_SVR_DEGWO and XGBoost

Input: D ¼ Xi, zið Þf g, J j ¼ i f xið Þ ¼ jjf g

data sets normalization

Initialize gain

Initialize δL, ηL
for each k do

δL  0, ηL  0

for j in sorted (J, by Xjk) do

ηL  ηL þ g j, δL  δL þ f j

ηR  η� ηL, δR  δ � δL

score max scoreð Þ

end for

end for

Split with max score

yd ¼ RBM:SVR:DEGWO Xið Þ

ye ¼ EXGBOOST Xið Þ

yhybrid ¼ E yd, ye
� �

Output: yhybrid

Table 3.
Hybrid algorithm based on RBM_SVR_DEGWO and XGBoost.
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where I ¼ 1, 2, 3, … ,N; J ¼ 1, 2, 3, … ,N; dtI,J refers to the traffic flow with the

original point I and the destination J in day d. ptI,J represents the origin–destination

(OD) probability distribution and reflects the distribution of demand in the city.
This paper builds a set of destinations that may correspond to the origin traffic

zone of the test day. The calculated destination candidates can be used to predict the
probability of the traffic flow among the traffic zones. In the experiment, we
selected data of different adjacent days as 6 test groups (Table 5).

Based on data for the past 2 days as the training data, this paper predicts
the subsequent third day of the transfer probabilities of bike-sharing traffic flow.
Figure 1 is the root mean square errors of a prediction result of transfer probabili-
ties of bike-sharing traffic flow in Beijing based on the RBM_SVR_DEGWO
algorithm.

Compared to the surrounding area, the central area of the city has higher shared
bicycle usage and more bicycle trajectory data. Therefore, the Root Mean Square
Error of the central region is smaller.

To illustrate the performance of the RBM_SVR_DEGWO algorithm, we calcu-
lated the predicted values of the SVR algorithm, the RBM_SVR algorithm, and the
RBM_SVR_DEGWO algorithm based on the data from the experimental groups in
Table 5. To ensure the fairness of the results, the data, network structure and
parameter settings consistent. Figure 2 shows the mean-square error bars of the
predicted transfer probabilities of SVR, RBM_SVR, and RBM_SVR_DEGWO.

Number Variable name

1 Zone number of origin traffic zone

2 Zone number of destination traffic zone

3 Longitude of the origin point

4 Latitude of the origin point

5 Longitude of the destination point

6 Latitude of the destination point

7 Distance between the center points of the traffic area

8 Absolute value of the difference in the numbers of traffic zone

9 Number of the day

Table 4.
Input variables and interpretation.

The first day of

training data

The 2nd day of

training data

Prediction data

Test group Date Data amount

(trajectories)

Date Data amount

(trajectories)

date Data amount

(trajectories)

1 2017/5/10 262,569 2017/5/11 272,210 2017/5/12 265,173

2 2017/5/13 225,281 2017/5/14 236,594 2017/5/15 279,554

3 2017/5/14 236,594 2017/5/15 279,554 2017/5/16 288,719

4 2017/5/15 279,554 2017/5/16 288,719 2017/5/17 322,201

5 2017/5/16 288,719 2017/5/17 322,201 2017/5/18 315,758

6 2017/5/10 262,569 2017/5/15 279,554 2017/5/16 288,719

Table 5.
Experimental group training data and test data.
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The average values of the mean squared errors of the predicted values of the
transfer probabilities of the algorithms SVR, RBM_SVR, and RBM_SVR_DEGWO
are gradually reduced. The average mean square error of the SVR is 0.0916, the
RBM_SVR is 0.0542, and the RBM_SVR_DEGWO is 0.0283. RBM improves the
prediction accuracy of the model through the deep network structure. The DEGWO
algorithm stabilizes the prediction value error to a lower value by optimizing the
parameters of the RBM-SVR. Compared with SVR and RBM_SVR,
RBM_SVR_DEGWO algorithm has better robustness.

According to the proposed hybrid algorithm of RBM_SVR_DEGWO and
XGBoost, the value of transfer probabilities of bike-sharing traffic flow can be
predicted. The data set for this experiment is from the grouped data of Table 5. The
training data set, test data set, and feature variables are the same as those used in the
previous experiments. Table 6 is the parameters and explanation of the XGBoost
model.

Figure 1.
The root-mean-square errors of the predicted transfer probabilities of bike sharing traffic flow.

Figure 2.
The mean-square error bars of the predicted transfer probabilities of bike sharing traffic flow of six test groups
for each type of comparison method.
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The root mean square error of the predicted values of the RBM_SVR_DEGWO
algorithm, the XGBoost algorithm, and the hybrid algorithm is shown in Figure 3.
In the six experimental groups, the mean, variance, kurtosis, maximum, minimum,
and range of the predicted root mean square error of the RBM_SVR_DEGWO
algorithm, the XGBoost algorithm, and the hybrid algorithm are shown in Figure 3.

The statistical characteristics of the proposed root mean square error of the
algorithms are shown in Figure 4. The root-mean-square error of the predicted
value of the mixed algorithm has a high kurtosis value. It indicates that the variance
increases of root mean square error is caused by the extreme difference of low
frequency greater than or less than the mean value. The plots of the minimum and
variance indicate that RBM_SVR_DEGWO can achieve higher prediction accuracy
than XGBoost. XGBoost is more stable than RBM_SVR_DEGWO in the prediction
process. In the six experimental groups, compared with the RBM_SVR_DEGWO
algorithm and the XGBoost algorithm, the mean, variance, maximum, minimum,
and range of the root mean square error of the predicted value of the hybrid

Parameter Value Interpretation

early_stopping_rounds 200 If the loss function does not decrease after the model has been added

to n trees continuously, the model will stop adding trees.

eval_metric linear Evaluation index

eta 0.3 The shrinking step size used in the update process. Eta is used to

prevent overfitting.

min_child_weight 1 Min_child_weight refers to the sum of the weights of the smallest leaf

nodes. If the sample weight of a leaf node is less than

min_child_weight then the splitting process ends.

max_depth 6 Maximum depth of the tree

lambda 1 Penalty factor for L2 regular terms

alpha 0 Penalty factor for L1 regular terms

objective linear Loss function

Table 6.
Parameters and explanations of the XGBoost model.

Figure 3.
The root mean square error of the predicted values of the RBM_SVR_DEGWO algorithm, the XGBoost
algorithm, and the hybrid algorithm.
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algorithm are lower. Therefore, by combining the prediction results of the
RBM_SVR_DEGWO algorithm and the XGBoost algorithm, the hybrid algorithm
improves the prediction accuracy and obtains a lower root mean square error of the
predicted value. XGBoost scores the importance of each feature based on the num-
ber of times the feature is used to segment the sample in all trees and the average
gain in all trees. In the six experimental groups, the ranking of each input feature
variable is as shown in Figure 5.

The main factors affecting the transfer probabilities of bike-sharing traffic flow
are the destination traffic zone number, the origin traffic zone number, and the
absolute value of the difference between the numbers of traffic zone. It shows that
the shared bike rider’s choice of destination is usually affected by the starting point,
the end position and the distance of the journey. The shared bicycle service is
suitable for short trips. Travel destinations for shared bike riders are usually nearby
business and lifestyle centers, and bus stops. The dates of the data for the six groups
of experiments are within weekdays. On a normal weekday, for the riders in the
same community, the main travel destinations are somewhat similar and fixed.
Therefore, information such as the cell number of the origin and destination
becomes a key factor for predicting the probability of travel destination.

Figure 4.
Statistical characteristics of the root mean square error.

Figure 5.
Importance analysis of characteristic variables.
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7. Conclusions

The principal objective of this study is to predict the traffic flow transfer prob-
ability of shared bicycle by proposing a hybrid deep learning algorithm and accu-
rately reflect the transfer probability of the user’s OD demand. First, this paper
constructs a deep-structured RBM model and connects it to the SVR model for
predicting continuous probability values. Furthermore, we utilize the DEGWO
optimization algorithm, named, to optimize the parameters cs and γs in the stacked
RBM-SVR algorithm. XGBoost improves the prediction accuracy and analyzes the
importance of the feature variables in the input data.

Based on the comparison results, it demonstrates that the proposed hybrid
algorithm outperformed the XGBoost model and RBM_SVR_DEGWO model. The
XGBoost algorithm improves the stability of the prediction process and reduces the
error of the RBM_SVR_DEGWO algorithm at extreme points. The deep-structured
RBM algorithm simulates the probability distribution that best produces the train-
ing samples. In the case of massive training data, RBM improves the efficiency of
algorithm calculation utilizing Gibbs sampling of small-batch data. In the DEGWO
algorithm, the GWO algorithm guarantees the global search capability, and the DE
algorithm avoids the fall into a local optimal through the mutant individual, cross-
over, and selection operations.
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