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Chapter

Introductory Chapter: Soil Erosion 
at a Glance
Konstantinos Kaffas and Vlassios Hrissanthou

1. Introduction

Wind and precipitation are the two weather elements prevailing as the generat-
ing causes of soil erosion, inducing the so-called wind erosion and water erosion. 
While erosion by wind is internationally termed wind erosion, erosion caused by 
water can be found by a variety of definitions, such as water erosion, sheet erosion, 
surface erosion, rill erosion, interrill erosion, land erosion, and soil erosion. Most 
frequently, it is referred to as soil erosion and as such will be denoted in the present 
chapter. Despite the fact that there is ample literature on both erosion types and 
though wind erosion is a major environmental problem, especially in large open 
areas, with sparse vegetation and loose soils, modelers have put appreciably greater 
effort on studying soil erosion as a hydrologically-driven magnitude. This short 
review is dedicated to soil erosion, aiming to report some key information on its 
background and modeling.

1.1 Definition of the problem

Soil erosion, globally recognized as the main cause of land degradation, is 
the physical phenomenon, triggered by rainfall, during which soil particles are 
detached from the soil mass and washed downslope by surface runoff. Sediment is 
detached from soil surface both by the raindrop impact and shearing force of flow-
ing water [1]. Thus, soil erosion is mainly due to rainfall and runoff. Erosion due to 
rainfall, also known as splash erosion, is the first stage in the water erosion process. 
At this stage, raindrops act like little bombs detaching soil particles and destroying 
soil structure [2]. Subsequently, the detached soil particles are carried away by 
the flowing water and the soil can be further eroded, depending on the runoff ’s 
transport capacity. At this point, reasonable questions are raised: What happens to 
the soil surface when soil is continuously removed, due to erosion by wind, rainfall 
and runoff? Would not that lead to constant drop of soil surface level? And what 
effect would that have to plants, ecosystems, and humans? The answer is that as soil 
gets eroded and removed, it is also formed by the physical, chemical and biological 
weathering of rocks. Ultimately, it could be stated that there is a permanent soil loss 
when soil is removed at rates greater than the ones it is formed.

Among the obvious consequences are soil loss and changes in the land surface 
morphology; yet, the implications go much deeper. It is well documented that soil 
erosion leads to decline of soil fertility and to considerable loss of productive culti-
vated and arable land or even to desertification, with serious socioeconomic effects 
[3–8]. A degradation of physical properties of soil involves a decline in soil structure 
resulting to an increase in bulk density, decrease in total macroporosity, reduction 
in infiltration, and increase in surface runoff and, finally, in aggravation of soil 
erosion by water [9]. Apart from the effects on soil fertility, soil development, soil 
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degradation, and soil diversity [10], an eroded and fractured soil can ease the deep 
percolation of water and sediments to the aquifer. Moreover, surface runoff washes 
down toward the stream network, carrying sediments that have been previously 
abstracted from the soil. As stated by Unger and McCalla [11], water erosion is a 
major contributor to water pollution. Hence, groundwater and surface water con-
tamination by influx of rain water and sediments, which can be carriers of polluting 
factors, is a further side effect, especially in agricultural basins where fertilizers 
and pesticides are in use. Generally, soil erosion is directly connected to a series of 
environmental issues, such as problems with the vegetation growth, increase of soil 
acidity levels, muddy floods, etc.

It would not be an exaggeration to say that the effects of soil erosion are more 
evident in the adjacent fluvial systems than in the soil surface itself. The greatest 
part (more than 90%, many times) of the instream sediment derives from sedi-
ment inflow as the product of rainfall and runoff erosion. Thus, a river, in effect, 
can be considered a body of flowing sediments as much as one of flowing water 
[12]. Depending on the hydraulic conditions and the sediment transport capacity of 
streamflow, this sediment gets deposited or/and transported downstream, unceas-
ingly embroidering the morphological profile of rivers and streams. The influx of 
erosion yields to the streams has positive and negative impacts. Aside from what was 
discussed above regarding potential contaminations, sediments are also carriers of 
nutritional factors, necessary for the thriving of riparian and fluvial ecosystems. A 
balanced amount of deposition provides the appropriate grounds of spawning for 
fish and macroinvertebrates. Contrarily, excessive sedimentation can cause changes 
in faunal assemblages, the decline of macrophyte growth, and the clogging of spawn-
ing gravel [13] or even, effectively, ravage their natural habitats. Excessive deposition 
can cause increase of flood events, by diminishing the cross-sectional areas. High 
concentrations of sediment—as a product of soil erosion—in rivers can lead to degra-
dation of water quality, which in turn would result in an increase of water treatment 
costs. Sediment transport, also, greatly affects the morphology of the shoreline and 
the coastal zones. According to Samaras and Koutitas [14], coastal areas are subject to 
“pressures” from upstream watersheds in terms of sediment transport.

Soil erosion, implicitly, takes a toll on hydraulic structures, such as reservoirs and 
hydroelectric schemes. Sediments constitute—even today—the worst implication 
associated with dams, due to excessive sedimentation which leads to a considerable 
storage loss. Even when sediment flushing is a viable solution for recovering and 
maintaining storage capacity of small- to medium-sized hydropower reservoirs, 
observations have documented significant environmental damage due to sediment 
release downstream [15, 16]. According to Cui et al. [17], the accumulation of fine 
sediment in reservoirs and the potential impact of sediment flushing constitute even 
a cause for dams to be removed in some cases. It is true that in several cases, dams are 
decommissioned or even abandoned due to sedimentation (Nizam Sagar dam, Katteri 
dam, Bhakra dam (India), Sanmenxia dam (China), Peligre dam (Haiti), Melton 
dam, Umberumberka dam (Australia), and others [18]). This is, obviously, not 
attributed to manufacturing defects but to failed prediction of the sediment discharge 
at the location of the dam, prior to its construction, in other words, to the underesti-
mation of soil erosion and sediment discharge of basins drained by dams.

1.2 Factors influencing soil erosion

In order to assess if and under what conditions erosion will take place, a critical 
question has to be answered: are all soils equally prone to erosion?

As to their susceptibility to erosion, soils can be placed into a spectrum ranging 
from erodible to non-erodible. Erodible are usually characterized non-cohesive 
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soils with little or no resistance to erosion, while non-erodible are soils notably less 
susceptible to erosion. This characterization is made on the basis of the physical 
properties of soil, alone, regardless any exogenous factors like land cover, land use, 
or support practices. Studies on the physical properties of soil have shown that soil 
texture (sand, silt, clay content) and organic matter play an important role to soil 
erodibility [19–23]. According to Wischmeier and Mannering [24], a soil’s inherent 
erodibility is a complex property dependent both on its infiltration capacity and its 
capacity to resist detachment by rainfall and transport by runoff. Thus, the effect 
of soil characteristics can be observed in two consecutive stages, first being the 
endurance of soil to the raindrop impact and its resistance to detachment. The more 
concrete is the structure of the soil, the more armored it is against splash erosion. 
The second stage initiates with surface runoff, when the intensity of rainfall exceeds 
the infiltration capacity of the soil. Most relevant studies point out silt as the main 
culprit for soil susceptibility to erosion. In fact, the effect of the silt content in a soil 
is such that it can itself be a regulating factor of the soil’s erodibility. Wischmeier 
and Mannering [24] report that a soil type becomes less erodible with decrease 
in silt fraction, regardless of whether the corresponding increase is in the sand 
fraction or the clay fraction. Generally, silty and sandy soils with low content in 
clay and organic matter are known to be more prone to erosion [23–25]. For a better 
comprehension of soils’ texture, FAO’s World Reference Base for Soil Resources [26] 
provides particle classes, according to their size (Table 1).

Despite being well-aggregated, silty soils suffer a collapse of their aggregations 
when wetted, allowing the non-aggregated fine particles to be easily transported by 
runoff [22]. Sandy soils are, also, susceptible to detachment due to their low cohe-
sion, but their high permeability to water, resulting in low runoff rates, in combina-
tion with their large size and density, makes it difficult to transport by runoff. Clayey 
soils are characterized by high cohesion and low infiltration rates; they are very 
resisting to detachment but are easily transported, once detached from the soil body.

Despite what was discussed above, soil erosion processes are characterized 
by even greater complexity. An ensemble of additional parameters, such as land 
cover type, land use practices, weather conditions, etc., influences soil erosion at 
a large extent. As shown by Morin and Benyamini [27], the antecedent moisture 
conditions, as well as the duration and intensity of rainfall, play an important role 
and cannot be ignored. It is well-known that the denser the land cover and canopy, 
the more the raindrop impact, and thus the erosive force of rainfall is contained. 
Mohammad and Adam [28] support that the lowest runoff and soil erosion rates 
are associated with the forest and with natural vegetation. The effect of land cover 

Soil texture Diameter limits (mm)

Very coarse sand 1.25–2.00

Coarse sand 0.63–1.25

Medium sand 0.20–0.63

Fine sand 0.125–0.20

Very fine sand 0.063–0.125

Coarse silt 0.02–0.063

Fine silt 0.002–0.02

Clay <0.002

Table 1. 
Particle size classes (WRBSR-FAO).
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and land use practices on soil erosion at the basin scale has been well documented—
among others—in [28–31].

As stated—very early—by Middleton [19], all soils are somewhat susceptible 
to erosion by runoff water. Thus, reliable information on soil erosion rates is 
an essential prerequisite for the design of targeted erosion and sediment control 
 strategies [32].

2. Review of literature

What is mentioned in the previous sections dictates the necessity for soil erosion 
quantification and highlights soil erosion modeling as the utmost vital action taken, 
in the context of an integrated management at the basin scale.

Soil degradation by accelerated erosion is a serious problem and will remain 
so during the twenty-first century. Soil erosion prediction and assessment have 
been a challenge to researchers since the 1930s, and several models have since been 
developed [33]. However, the treatment of soil erosion in the form of soil conserva-
tion plans has made its appearance long before that, in the early nineteenth cen-
tury. As stated by Dotterweich [34], the first extensive essay on soil conservation 
known to the western world was published in Germany in 1815, while the rise of 
professional soil conservation occurred in the late nineteenth and early twentieth 
centuries. Substantially, the first decades of the nineteenth century can be consid-
ered as the outset of the profound understanding and studying of the phenomenon 
of soil erosion. It is remarkable that the third president of the United States, 
Thomas Jefferson, in one of his letters in 1813 [35], demonstrates his awareness of 
the on- and off-site effects of soil erosion, the role of runoff in soil erosion, and 
the interaction of soil conservation, hydrology, and crop production, important 
scientific topics today in understanding, predicting, and modeling soil erosion, 
200 years later [36].

The most significant, and groundbreaking for that time, theory regarding soil 
erosion was introduced in 1899 by Davis. His theory, known as cycle of erosion 
[37], is an idealized model for stream erosion and landscape development in which 
stream erosion occurs in a gradual sequence of stages (young, mature, and old). 
During these stages, the soil surface erodes up to the point it becomes a peneplain. 
Davis’ cycle of erosion dominated in geomorphology for more than half a century.

After 1950, the Davisian theory began to be questioned. Among those who 
challenged it was Chorley [38, 39] who rejected the Davisian cycle of erosion and 
suggested a quantitative method based on general system theory and numerical 
modeling. King has also tried to dispute the Davisian cycle of erosion [40, 41]; 
however, his theories did not manage to escape the Davisian cyclical nature. 
According to Bishop [42], the dissatisfaction was embodied in Strahler’s [43] call for 
radical change and the embracing of a new approach and underpinning concepts, 
ultimately taking the discipline into spatial and temporal scales much reduced from 
the grand vision and sweeping canvas of Davis and his disciples. Strahler’s call is 
now being heard in long-term landscape evolution as geomorphology embraces 
quantitative and geochemical analytical approaches to the sorts of questions that 
Davis sought to address [42].

Boardman [44] highlights some of the most notable and influential advances 
of the recent past, among which are the following: Trimble [45] with its emphasis 
on sediment storage and the relationship between erosion on the hillslopes and the 
role of the valley-bottom stream; Govers’ and Poesen’s [46] empirical study of rill 
and interrill areas; De Ploey’s [47] attempt to categorize eroding western European 
landscapes; and Blaikie’s [48] recognition that degradation occurs because of 
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people-land relationships often involving social and economic opportunities and 
constraints [44].

The Universal Soil Loss Equation (USLE) [49] is one of the most significant 
advances in soil and water conservation in the twentieth century. It has been 
applied in almost all the kinds of climatic conditions and types of soils around the 
globe, as an individual model, while it also constitutes an important component of 
many models and hydromorphological softwares. Since then, there have been many 
parallaxes and modifications of USLE, the most known of which are the Modified 
Universal Soil Loss Equation (MUSLE) [50] and the Revised Universal Soil Loss 
Equation (RUSLE) [51].

The evolution of the soil erosion and the sediment transport modeling has 
consistently followed the evolution of technology. In the last few decades, there 
has been a hectic advancement in the domain of soil erosion modeling, as a result 
of the advancements in computer science. This resulted in the development of a 
plethora of integrated models that—in many cases—fully address the study of the 
hydromorphological processes. There is a wide range of integrated models that 
simulate the runoff, the soil erosion, and the stream sediment transport processes, 
on a continuous (long-term) or on an event-time basis. Some notorious examples, 
with a prominent position in literature, are the following: the Agricultural 
Nonpoint Source (AGNPS) model [52], the Chemical Runoff and Erosion from 
Agricultural Management Systems (CREAMS) model [53], the Areal Nonpoint 
Source Watershed Environment Response Simulation (ANSWERS) [54], the Soil 
and Water Assessment Tool (SWAT) [55, 56], the European Soil Erosion Model 
(EUROSEM) [57], the Hydrologic Engineering Center-Hydrologic Modeling 
System (HEC-HMS) [58], and the Watershed Erosion Prediction Project (WEPP) 
[59]. These models have been applied both stand-alone and as a part of integrated 
mathematical models, to model the sedimentary cycle [60–63].

© 2019 The Author(s). Licensee IntechOpen. This chapter is distributed under the terms 
of the Creative Commons Attribution License (http://creativecommons.org/licenses/
by/3.0), which permits unrestricted use, distribution, and reproduction in any medium, 
provided the original work is properly cited. 
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