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Chapter

From Asymptotic Normality
to Heavy-Tailedness via Limit
Theorems for Random Sums
and Statistics with Random
Sample Sizes
Victor Korolev and Alexander Zeifman

Abstract

This chapter contains a possible explanation of the emergence of heavy-tailed
distributions observed in practice instead of the expected normal laws. The bases
for this explanation are limit theorems for random sums and statistics constructed
from samples with random sizes. As examples of the application of general theo-
rems, conditions are presented for the convergence of the distributions of random
sums of independent random vectors with finite covariance matrices to multivariate
elliptically contoured stable and Linnik distributions. Also, conditions are presented
for the convergence of the distributions of asymptotically normal (in the
traditional sense) statistics to multivariate Student distributions. The joint
asymptotic behavior of sample quantiles is also considered.

Keywords: random sum, random sample size, multivariate normal mixtures,
heavy-tailed distributions, multivariate stable distribution, multivariate Linnik
distribution, Mittag-Leffler distribution, multivariate Student distribution,
sample quantiles
AMS 2000 Subject Classification: 60F05, 60G50, 60G55, 62E20, 62G30

1. Introduction

In many situations related to experimental data analysis, one often comes across
the following phenomenon: although conventional reasoning based on the central
limit theorem of probability theory concludes that the expected distribution of
observations should be normal, instead, the statistical procedures expose the
noticeable non-normality of real distributions. Moreover, as a rule, the observed
non-normal distributions are more leptokurtic than the normal law, having sharper
vertices and heavier tails. These situations are typical in the financial data analysis
(see, e.g., Chapter 4 in [1] or Chapter 8 in [2] and references therein), in experi-
mental physics (see, e.g., [3]), and other fields dealing with statistical analysis of
experimental data. Many attempts were undertaken to explain this heavy-
tailedness. Most significant theoretical breakthrough is usually associated with the
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results of B. Mandelbrot and others who proposed, instead of the standard central
limit theorem, to use reasoning based on limit theorems for sums of random sum-
mands with infinite variances (see, e.g., [4]) resulting in non-normal stable laws as
heavy-tailed models of the distributions of experimental data. However, first, in
most cases the key assumption within this approach, the infiniteness of the vari-
ances of elementary summands can hardly be believed to hold in practice and,
second, although more heavy-tailed than the normal law, the real distributions
often turn out to be more light-tailed than the stable laws.

In this work, in order to give a more realistic explanation of the observed non-
normality of the distributions of real data, an alternative approach based on limit
theorems for statistics constructed from samples with random sizes is developed.
Within this approach, it becomes possible to obtain arbitrarily heavy tails of the
data distributions without assuming the non-existence of the moments of the
observed characteristics.

This work was inspired by the publication of the paper [5] in which, based on
the results of [6], a particular case of random sums was considered. One more
reason for writing this work was the recent publication [7], the authors of which
reproduced some results of [8, 9] without citing these earlier papers.

Here we give a more general description of the transformation of the limit
distribution of a sum of independent random variables or another statistic (i.e., of a
measurable function of a sample) under the replacement of the non-random num-
ber of summands or the sample size by a random variable. General limit theorems
are proved (Section 3). Section 4 contains some comments on heavy-tailedness of
scale mixtures of normal distributions. As examples of the application of general
theorems, conditions are presented for the convergence of the distributions of
random sums of independent random vectors with finite covariance matrices to
multivariate elliptically contoured stable and Linnik distributions (Section 5). Also,
conditions are presented for the convergence of the distributions of asymptotically
normal (in the traditional sense) statistics to multivariate Student distributions
(Section 6).

In Section 7, the joint asymptotic behavior of sample quantiles is considered. In
applied researches related to risk analysis, such characteristic as VaR (Value-at-
Risk) is very popular. Formally, VaR is a certain quantile of the observed risky
value. Therefore, the joint asymptotic behavior of sample quantiles in samples with
random sizes is considered in detail in Section 7 as one more example of the
application of the general theorem proved in Section 3. In this section, we show how
the proposed technique can be applied to the continuous-time case assuming that
the sample size increases in time following a Cox process. One more interpretation
of this setting is related with an important case where the sample size has the mixed
Poisson distribution.

In classical problems of mathematical statistics, the size of the available sample,
that is, the number of available observations, is traditionally assumed to be deter-
ministic. In the asymptotic settings, it plays the role of infinitely increasing known
parameter. At the same time, in practice very often the data to be analyzed are
collected or registered during a certain period of time and the flow of informative
events each of which brings a next observation forms a random point process.
Therefore, the number of available observations is unknown till the end of the
process of their registration and also must be treated as a (random) observation. For
example, this is so in insurance statistics where, during different accounting
periods, different numbers of insurance events (insurance claims and/or insurance
contracts) occur and in high-frequency financial statistics where the number of
events in a limit order book during a time unit essentially depends on the intensity
of order flows. Moreover, contemporary statistical procedures of insurance and
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financial mathematics do take this circumstance into consideration as one of possi-
ble ways of dealing with heavy tails. However, in other fields such as medical
statistics or quality control, this approach has not become conventional; yet, the
number of patients with a certain disease varies from month to month due to
seasonal factors or from year to year due to some epidemic reasons and the number
of failed items varies from lot to lot. In these cases, the number of available obser-
vations as well as the observations themselves is unknown beforehand and should
be treated as random to avoid underestimation of risks or error probabilities.

Therefore, it is quite reasonable to study the asymptotic behavior of general
statistics constructed from samples with random sizes for the purpose of construc-
tion of suitable and reasonable asymptotic approximations. As this is so, to obtain
non-trivial asymptotic distributions in limit theorems of probability theory and
mathematical statistics, an appropriate centering and normalization of random
variables and vectors under consideration must be used. It should be especially
noted that to obtain reasonable approximation to the distribution of the basic
statistics, both centering and normalizing values should be non-random. Otherwise,
the approximate distribution becomes random itself and, for example, the problem
of evaluation of quantiles or significance levels becomes senseless.

In asymptotic settings, statistics constructed from samples with random
sizes are special cases of random sequences with random indices. The randomness
of indices usually leads to the limit distributions for the corresponding random
sequences being heavy-tailed even in the situations where the distributions
of non-randomly indexed random sequences are asymptotically normal
(see, e.g., [2, 8, 10]).

Many authors noted that the asymptotic properties of statistics constructed from
samples with random samples differ from those of the asymptotically normal sta-
tistics in the classical sense. To illustrate this, we will repeatedly cite [11] where the
following example is given. Let X 1ð Þ, … ,X nð Þ be order statistics constructed from

the sample X1, … ,Xn. It is well known (see, e.g., [12]) that in the standard situation
the sample median is asymptotically normal. At the same time, in [11] it was
demonstrated that if the sample size Nn has the geometric distribution with expec-

tation n, then the normalized sample median
ffiffiffi

n
p

X Nn=2½ �þ1ð Þ � medX1

� �

has the

limit distribution function

Ψ xð Þ ¼ 1

2
1þ x

ffiffiffiffiffiffiffiffiffiffiffiffiffi

2þ x2
p

� �

(1)

(the Student distribution with two degrees of freedom) which has such heavy
tails that its moments of orders δ≥ 2 do not exist. In general, as it was shown in [8],
if a statistic that is asymptotically normal in the traditional sense is constructed on
the basis of a sample with random size having negative binomial distribution, then
instead of the expected normal law, the Student distribution with power-type
decreasing heavy tails appears as an asymptotic law for this statistic.

2. Notation and definitions: auxiliary results

Let r∈. We will consider random elements taking values in the r-dimensional
Euclidean space r.

Assume that all the random variables and random vectors are defined on one
and the same probability space Ω,A, Pð Þ. By the measurability of a random field, we
will mean its measurability as a function of two variates, an elementary outcome
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and a parameter, with respect to the Cartesian product of the σ-algebra A and the
Borel σ-algebra B 

rð Þ of subsets of r.
The distribution of a random vector ξ with respect to the measure P will be

denoted L ξð Þ. The weak convergence, the coincidence of distributions, and the
convergence in probability with respect to a specified probability measure will be

denoted by the symbols ), ¼d , and !P , respectively.
Let Σ be a positive definite matrix. The normal distribution in 

r with zero
vector of expectations and covariance matrix Σ will be denoted ΦΣ. This distribu-
tion is defined by its density

ϕ xð Þ ¼ exp � 1
2x

Τ
Σ
�1x

� �

2πð Þr=2 Σj j1=2
, x∈

r:

The characteristic function fY tð Þ of a random variable Y such that L Yð Þ ¼ ΦΣ

has the form

fY tð Þ � E exp it⊤Y
� �

¼ exp � 1

2
t⊤Σt

	 


, t∈
r: (2)

Consider a sequence Snf gn≥ 1 of random elements taking values in 
r. Let Ξ 

rð Þ
be the set of all nonsingular linear operators acting from 

r to 
r. The identity

operator acting from 
r to 

r will be denoted Ir. Assume that there exist sequences
Bnf gn≥ 1 of operators from Ξ 

rð Þ and anf gn≥ 1 of elements from 
r such that

Yn � B�1
n Sn � anð Þ ) Y n ! ∞ð Þ (3)

where Y is a random element whose distribution with respect to P will be
denoted H, H ¼ L Yð Þ.

Along with Snf gn≥ 1, consider a sequence of integer-valued positive random

variables Nnf gn≥ 1 such that for each n≥ 1 the random variable Nn is independent of

the sequence Skf gk≥ 1. Let cn ∈
r, Dn ∈Ξ 

rð Þ, and n≥ 1. Now, we will formulate
sufficient conditions for the weak convergence of the distributions of the random

elements Zn ¼ D�1
n SNn

� cnð Þ as n ! ∞.

For g∈
r, denote Wn gð Þ ¼ D�1

n BNng þ aNn � cnð Þ. In [13, 14], the following the-
orem was proved, which establishes sufficient conditions of the weak convergence
of multivariate random sequences with independent random indices under operator
normalization.

Theorem 1 [14]. Let ∥D�1
n ∥ ! ∞ as n ! ∞ and let the sequence of random vari-

ables ∥D�1
n BNn

∥
� �

n≥ 1
be tight. Assume that there exist a random element Y with distri-

bution H and an r-dimensional random field W gð Þ, g∈
r, such that 3ð Þ holds and

Wn gð Þ ) W gð Þ n ! ∞ð Þ

for H-almost all g∈
r. Then the random field W gð Þ is measurable, linearly

depends on g and

Zn ) W Yð Þ n ! ∞ð Þ,

where the random field W �ð Þ and the random element Y are independent.
Now, consider an auxiliary statement dealing with the identifiability of a special

family of mixtures of multivariate normal distributions. Let U be a nonnegative
random variable. The symbol EΦUΣ �ð Þ will denote the distribution which for each
Borel set A in 

r is defined as
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EΦUΣ Að Þ ¼
ð∞

0
ΦuΣ Að ÞdP U < uð Þ:

Let U be the set of all nonnegative random variables.
It is easy to see that if Y is a random vector such that L Yð Þ ¼ ΦΣ independent of

U, then EΦUΣ ¼ L
ffiffiffiffi

U
p

Y
� �

.

Lemma 1. Whatever nonsingular covariance matrix Σ is, the family of distributions
EΦUΣ �ð Þ : U ∈Uf g is identifiable in the sense that if U1 ∈U, U2 ∈U, and

EΦU1Σ Að Þ ¼ EΦU2Σ Að Þ (4)

for any set A∈B 
rð Þ, then U1 ¼d U2.

The proof of this lemma is very simple. If U ∈U, then the characteristic function

v Uð Þ tð Þ corresponding to the distribution EΦUΣ �ð Þ has the form

v Uð Þ tð Þ ¼
ð∞

0
exp � 1

2
tΤ uΣð Þt

	 


dP U < uð Þ ¼
ð∞

0
exp � 1

2
utΤΣt

	 


dP U < uð Þ

¼
ð∞

0
exp �usf gdP U < uð Þ, s ¼ 1

2
tΤΣt, t∈

r,

(5)

But on the right-hand side of (5), there is the Laplace-Stieltjes transform of the

random variable U. From (4), it follows that v U1ð Þ tð Þ � v U2ð Þ tð Þ whence by virtue of
(5) the Laplace-Stieltjes transforms of the random variables U1 and U2 coincide,

whence, in turn, it follows that U1 ¼d U2. The lemma is proved.
Remark 1. When proving Lemma 1, we established a simple but useful by-

product result: if ψ sð Þ is the Laplace-Stieltjes transform of the random variable U,

then the characteristic function v Uð Þ tð Þ corresponding to the distribution EΦUΣ has
the form

v Uð Þ tð Þ ¼ ψ
1

2
t⊤Σt

� �

, t∈
r: (6)

3. General theorems

First, consider the case where the random vectors Snf gn≥ 1 are formed as grow-
ing sums of independent random variables. Namely, let X1,X2, … be independent
r-valued random vectors, and for n∈ let

Sn ¼ X1 þ … þ Xn:

Consider a sequence of integer-valued positive random variables Nnf gn≥ 1 such
that for each n≥ 1 the random variable Nn is independent of the sequence Skf gk≥ 1.

Let bnf gn≥ 1 be an infinitely increasing sequence of positive numbers such that

L Sn
ffiffiffiffiffi

bn
p
� �

) ΦΣ (7)

as n ! ∞, where Σ is some positive definite matrix.
Let dnf gn≥ 1 be an infinitely increasing sequence of positive numbers. As Zn take

the scalar normalized random vector
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Zn ¼
SNn
ffiffiffiffiffi

dn
p :

Theorem 2. Let Nn ! ∞ in probability as n ! ∞. Assume that the random vari-
ables X1,X2, … satisfy condition 6ð Þ with an asymptotic covariance matrix Σ. Then a
distribution F such that

L Znð Þ ) F n ! ∞ð Þ, (8)

exists if and only if there exists a distribution function V xð Þ satisfying the
conditions

i.V xð Þ ¼ 0 for x<0;

ii. for any A∈B 
rð Þ,

F Að Þ ¼ EΦUΣ Að Þ ¼
ð∞

0
ΦuΣ Að ÞdV uð Þ, x∈

1;

iii. P bNn
< dnxð Þ ) V xð Þ, n ! ∞.

Proof. The “if” part. We will essentially exploit Theorem 1. For each n≥ 1, set

an ¼ cn ¼ 0, Bn ¼ Dn ¼
ffiffiffiffiffi

dn
p

Ir. For the convenience of notation, introduce a random
variable U with the distribution function V xð Þ. Note that the conditions of the
theorem guarantee the tightness of the sequence of random variables

∥D�1
n BNn

∥ ¼
ffiffiffiffiffiffiffiffi

bNn

dn

s

, n ¼ 1, 2, …

implied by its weak convergence to the random variable
ffiffiffiffi

U
p

. Further, in the case

under consideration, we haveWn gð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

bNn
=dn

p

� g, g∈
r. Therefore, the condition

Nn=dn ) U implies Wn gð Þ )
ffiffiffiffi

U
p

g for all g∈
r. Condition (7) means that in the

case under consideration, H ¼ ΦΣ. Hence, by Theorem 1, Zn )
ffiffiffiffi

U
p

Y where Y is a
random element with the distribution ΦΣ independent of the random variable U. It

is easy to see that the distribution of the random element
ffiffiffiffi

U
p

Y coincides with
EΦUΣ �ð Þ where the matrix Σ satisfies (7).

The “only if” part. Let condition (8) hold. Make sure that the sequence

∥D�1
n BNn

∥
� �

n≥ 1
is tight. Let Y be a random element with the distribution ΦΣ. There

exist δ > 0 and R > 0 such that

P ∥Y∥ > Rð Þ > δ: (9)

For R specified above and an arbitrary x > 0, we have

P ∥Zn∥ > xð Þ≥P
SNn
ffiffiffiffiffi

dn
p
�

�

�

�

�

�

�

�

> x;
SNn
ffiffiffiffiffiffiffiffi

bNn

p

�

�

�

�

�

�

�

�

�

�

> R

 !

¼

¼ P

ffiffiffiffiffiffiffiffi

bNn

dn

s

> x � SNn
ffiffiffiffiffiffiffiffi

bNn

p

�

�

�

�

�

�

�

�

�

�

�1

;
SNn
ffiffiffiffiffiffiffiffi

bNn

p

�

�

�

�

�

�

�

�

�

�

> R

0

@

1

A≥P

ffiffiffiffiffiffiffiffi

bNn

dn

s

>
x

R
;

SNn
ffiffiffiffiffiffiffiffi

bNn

p

�

�

�

�

�

�

�

�

�

�

> R

 !

¼

¼
X

∞

k¼1

P Nn ¼ kð ÞP
ffiffiffiffiffi

bk
dn

s

>
x

R
;

Sk
ffiffiffiffiffi

bk
p
�

�

�

�

�

�

�

�

> R

 !

¼
X

∞

k¼1

P Nn ¼ kð ÞP
ffiffiffiffiffi

bk
dn

s

>
x

R

 !

P
Sk
ffiffiffiffiffi

bk
p
�

�

�

�

�

�

�

�

> R

� �

(10)
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(the last equality holds since any constant is independent of any random vari-

able). Since by (7) the convergence Sk=
ffiffiffiffiffi

bk
p

) Y takes place as k ! ∞, from (9) it
follows that there exists a number k0 ¼ k0 R, δð Þ such that

P
Sk
ffiffiffiffiffi

bk
p
�

�

�

�

�

�

�

�

> R

� �

> δ=2

for all k > k0. Therefore, continuing (10) we obtain

P ∥Zn∥ > xð Þ≥ δ

2

X

∞

k¼k0þ1

P Nn ¼ kð ÞP
ffiffiffiffiffi

bk
dn

s

>
x

R

 !

¼

¼ δ

2
P

ffiffiffiffiffiffiffiffi

bNn

dn

s

>
x

R

 !

�
X

k0

k¼1

P Nn ¼ kð ÞP
ffiffiffiffiffi

bk
dn

s

>
x

R

 !" #

≥
δ

2
P

ffiffiffiffiffiffiffiffi

bNn

dn

s

>
x

R

 !

� P Nn ≤ k0ð Þ
" #

:

Hence,

P

ffiffiffiffiffiffiffiffi

bNn

dn

s

>
x

R

 !

≤
2

δ
P ∥Zn∥ > xð Þ þ P Nn ≤ k0ð Þ: (11)

From the condition Nn !
P
∞ as n ! ∞, it follows that for any ϵ > 0 there exists

an n0 ¼ n0 ϵð Þ such that P Nn ≤ n0ð Þ< ϵ for all n≥ n0. Therefore, with the account of
the tightness of the sequence Znf gn≥ 1 that follows from its weak convergence to the

random element Z with L Zð Þ ¼ F implied by (8), relation (11) implies

lim
x!∞

s upn≥ n0 ϵð ÞP

ffiffiffiffiffiffiffiffi

bNn

dn

s

>
x

R

 !

≤ ϵ, (12)

whatever ϵ > 0 is. Now assume that the sequence

∥D�1
n BNn

∥ ¼
ffiffiffiffiffiffiffiffi

bNn

dn

s

, n ¼ 1, 2, …

is not tight. In that case, there exists an α > 0 and sequences N of natural and
xnf gn∈N of real numbers satisfying the conditions xn↑∞ n ! ∞, n∈Nð Þ and

P

ffiffiffiffiffiffiffiffi

bNn

dn

s

> xn

 !

> α, n∈N : (13)

But, according to (12), for any ϵ > 0 there exist M ¼ M ϵð Þ and n0 ¼ n0 ϵð Þ
such that

s upn≥ n0 ϵð ÞP

ffiffiffiffiffiffiffiffi

bNn

dn

s

>M ϵð Þ
 !

≤ 2ϵ: (14)

Choose ϵ< α=2 where α is the number from (13). Then for all n∈N large
enough, in accordance with (13), the inequality opposite to (14) must hold. The
obtained contradiction by the Prokhorov theorem proves the tightness of the

sequence ∥D�1
n BNn

∥
� �

n≥ 1
or, which in this case is the same as that, of the sequence

bNn
=dnf gn≥ 1.
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Introduce the set W Zð Þ containing all nonnegative random variables U such
that P Z ∈Að Þ ¼ EΦUΣ Að Þ for any A∈B 

rð Þ. Let L �, �ð Þ be any probability metric
that metrizes weak convergence in the space of random variables, or, which is the
same in this context, n the space of distribution functions, say, the Lévy metric
or the smoothed Kolmogorov distance. If X1 and X2 are random variables with the
distribution functions F1 and F2 respectively, then we identify L X1,X2ð Þ and
L F1,F2ð Þ. Show that there exists a sequence of random variables Unf gn≥ 1,

Un ∈W Zð Þ, such that

L
bNn

dn
,Un

� �

! 0 n ! ∞ð Þ: (15)

Denote

βn ¼ inf L
bNn

dn
,U

� �

: U ∈W Zð Þ
	 


:

Prove that βn ! 0 as n ! ∞. Assume the contrary. In that case, βn ≥ δ for some
δ > 0 and all n from some subsequence N of natural numbers. Choose a
subsequence N 1 ⊆N so that the sequence bNn

=dnf gn∈N 1
weakly converges to a

random variable U (this is possible due to the tightness of the family bNn
=dnf gn≥ 1

established above). But then Wn gð Þ )
ffiffiffiffi

U
p

g n ! ∞ð , n∈N 1Þ for any g∈
r. Apply-

ing Theorem 1 to n∈N 1 with condition (7) playing the role of condition (3), we
make sure that U ∈W Zð Þ, since condition (8) provides the coincidence of the limits
of all weakly convergent subsequences. So, we arrive at the contradiction to the
assumption that βn ≥ δ for all n∈N 1. Hence, βn ! 0 as n ! ∞.

For any n ¼ 1, 2, … , choose a random variable Un from W Zð Þ satisfying the
condition

L
bNn

dn
,Un

� �

≤ βn þ
1

n
:

This sequence obviously satisfies condition (15). Now consider the structure of
the set W Zð Þ. This set contains all the random variable’s defining the family of
special mixtures of multivariate normal laws considered in Lemma 1, according to
which this family is identifiable. So, whatever a random element Z is, the set W Zð Þ
contains at most one element. Therefore, actually condition (15) is equivalent to

bNn

dn
) U n ! ∞ð Þ,

that is, to condition (iii) of the theorem. The theorem is proved.
Corollary 1. Under the conditions of Theorem 2, non-randomly normalized random

sums SNn
=dn are asymptotically normal with some covariance matrix Σ

0 if and only if
there exists a number c > 0 such that

bNn

dn
) c n ! ∞ð Þ:

Moreover, in this case, Σ0 ¼ cΣ.
This statement immediately follows from Theorem 2 with the account of

Lemma 1.
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Now consider a formally more general setting.
Let N1,N2, … and W1,W2, … be random variables and random vectors,

respectively, such that for each n≥ 1 the random variable Nn takes only natural
values and is independent of the sequence W1,W2, … . Let

Tn ¼ Tn W1, … ,Wnð Þ ¼ Tn,1 W1, … ,Wnð Þ, … ,Tn,r W1, … ,Wnð Þð Þ

be a statistic taking values in 
r, r≥ 1. For each n≥ 1 define a random vector

(random element) TNn
by setting

TNn ωð Þ ¼ TNn ωð Þ W1 ωð Þ, … ,WNn ωð Þ ωð Þ
� �

for every elementary outcome ω∈Ω.
We shall say that a statistic Tn is asymptotically normal with the asymptotic

covariance matrix Σ if there exists a non-random r-dimensional vector t such that

L ffiffiffi

n
p

Tn � tð Þ
� �

) ΦΣ n ! ∞ð Þ: (16)

Examples of asymptotically normal statistics are well known. Under certain
conditions, the property of asymptotic normality is inherent in maximum likelihood
estimators, sample moments, sample quantiles, etc.

Our nearest aim is to describe the asymptotic behavior of the random elements
TNn

, that is, of statistics constructed from samples with random sizes Nn.
Again let dnf gn≥ 1 be an infinitely increasing sequence of positive numbers. Now

set

Zn ¼
ffiffiffiffiffi

dn
p

TNn
� tð Þ:

Theorem 3. Let Nn ! ∞ in probability as n ! ∞. Assume that a statistic Tn is
asymptotically normal in the sense of 16ð Þ with an asymptotic covariance matrix Σ. Then
a distribution F such that

L Znð Þ ) F n ! ∞ð Þ,

exists if and only if there exists a distribution function V xð Þ satisfying the
conditions.

(i) V xð Þ ¼ 0 for x<0;
(ii) for any A∈B 

rð Þ

F Að Þ ¼
ð∞

0
Φu�1Σ Að ÞdV uð Þ, x∈

1;

(iii) P Nn < dnxð Þ ) V xð Þ, n ! ∞.

The proof of Theorem 3 relies on Theorem 1 with (16) playing the role of (3) and
Lemma 1 and differs from the proof of Theorem 2 only by that bNn

=dn is replaced by
dn=Nn.

Corollary 2. Under the conditions of Theorem 3 the statistic TNn is asymptotically
normal with some covariance matrix Σ

0 if and only if there exists a number c > 0 such
that

Nn

dn
) c n ! ∞ð Þ:
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Moreover, in this case, Σ0 ¼ c�1
Σ.

This statement immediately follows from Theorem 2 with the account of
Lemma 1.

4. Some remarks on the heavy-tailedness of scale mixtures of normals

The one-dimensional marginals of the multivariate limit law in Theorems 2 and
3 are scale mixtures of normals with zero means of the form EΦ x=Uð Þ, x∈, where
Φ xð Þ is the standard normal distribution function and U is a nonnegative random
variable. It turns out, although absolutely not so evident, that these distributions are
always leptokurtic having sharper vertex and heavier tails than the normal law
itself.

It is easy to see that

EΦ x=Uð Þ ¼ P X � U < xð Þ, x∈,

where X is a standard normal variable independent of U. First, as a measure of
leptokurtosity, consider the excess coefficient which is traditionally used in

(descriptive) statistics. Recall that for a random variable Y with EY4
<∞, the excess

coefficient (kurtosis) κ Yð Þ is defined as

κ Yð Þ ¼ E
Y � EY
ffiffiffiffiffiffiffi

DY
p

� �4

:

If P X < xð Þ ¼ Φ xð Þ, then κ Xð Þ ¼ 3. Densities with sharper vertices (and, respec-
tively, with heavier tails) than the normal density, have κ > 3, and κ< 3 for densities
with more flat vertices.

Lemma 2. Let X and U be independent random variables with finite fourth moments;
moreover, let EX ¼ 0 and P U ≥0ð Þ ¼ 1. Then

κ XUð Þ ≥ κ Xð Þ:

Furthermore, κ XUð Þ ¼ κ Xð Þ if and only if P U ¼ constð Þ ¼ 1.
For the proof see [10].
So, if X is a standard normal random variable and U is a nonnegative random

variable with EU4
<∞ independent of X, then κ X � Uð Þ≥ 3 and κ X �Uð Þ ¼ 3 if and

only if U is non-random.
Using the Jensen inequality, we can easily obtain one more inequality directly

connecting the tails of the normal mixtures with the tails of the normal distribution.
Lemma 3. Assume that the random variable U satisfies the normalization condition

EU�1 ¼ 1. Then

1� EΦ x=Uð Þ≥ 1�Φ xð Þ, x > 0:

From Lemma 3, it follows that if X is the standard normal random variable and

U is a nonnegative random variable independent of X with EU�1 ¼ 1, then for any
x≥0

P jX � Uj≥ xð Þ ≥ P jXj≥ xð Þ ¼ 2 1�Φ xð Þ½ �ð Þ,

that is, scale mixtures of normal laws are always more leptokurtic and have
heavier tails than normal laws themselves.

10
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The class of scale mixtures of normal laws is very rich and involves distributions
with various character of decrease of tails. For example, this class contains Student
distributions with arbitrary (not necessarily integer) number of degrees of freedom
(and the Cauchy distribution included), symmetric stable distributions (see the
“multiplication theorem” 3.3.1 in [15]), symmetric fractional stable distributions
(see [16]), symmetrized gamma distributions with arbitrary shape and scale
parameters (see [10]), and symmetrized Weibull distributions with shape parame-
ters belonging to the interval 0, 1ð � (see [17, 18]). As an example, in the next section,
we will discuss the conditions for the convergence of the distributions of the
statistics constructed from samples with random sizes to the multivariate Student
distribution.

5. Convergence of the distributions of random sums of random vectors
with finite covariance matrices to multivariate elliptically contoured
stable and Linnik distributions

5.1 Convergence of the distributions of random sums of random vectors to
multivariate stable laws

Let Σ be a positive definite r� rð Þ-matrix, α∈ 0, 2ð �. A random vector Zα,Σ is said
to have the (centered) elliptically contoured stable distribution Gα,Σ with charac-
teristic exponent α, if its characteristic function gα,Σ tð Þ has the form

gα,Σ tð Þ � E exp it⊤X
� �

¼ exp � t⊤Σt
� �α=2

n o

, t∈
r:

Univariate stable distributions are popular examples of heavy-tailed distribu-
tions. Their moments of orders δ≥ α do not exist (the only exception is the normal
law corresponding to α ¼ 2). Stable laws and only they can be limit distributions for
sums of a non-random number of independent identically distributed random vari-
ables with infinite variance under linear normalization. Here it will be shown that
they also can be limiting for random sums of random vectors with finite covariance
matrices. The result of this subsection generalizes the main theorem of [19] to a
multivariate case.

By ζα, we will denote a positive random variable with the one-sided stable
distribution corresponding to the characteristic function

gα tð Þ ¼ exp � tj jα exp � 1

2
iπα signt

	 
	 


, t∈,

with 0< α≤ 1 (for more details see [15] or [4]).
Let α∈ 0, 2ð �. It is known that, if Y is a random vector such that L Yð Þ ¼ ΦΣ

independent of the random variable ζα=2, then

Zα,Σ ¼d
ffiffiffiffiffiffiffiffi

ζα=2

q

� Y (17)

(see Proposition 2.5.2 in [4]). In other words,

Gα,Σ ¼ EΦζα=2Σ: (18)

As in Section 3, let X1,X2, … be independent r-valued random vectors. For
n∈, denote Sn ¼ X1 þ … þ Xn. Consider a sequence of integer-valued positive
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random variables Nnf gn≥ 1 such that for each n≥ 1 the random variable Nn is
independent of the sequence Skf gk≥ 1. Let bnf gn≥ 1 be an infinitely increasing

sequence of positive numbers providing convergence (6) with some positive defi-
nite matrix Σ.

Theorem 4. Let Nn ! ∞ in probability as n ! ∞. Assume that the random vari-
ables X1,X2, … satisfy condition 7ð Þ with an asymptotic covariance matrix Σ. Then

L
SNn
ffiffiffiffiffi

dn
p
� �

) Gα,Σ n ! ∞ð Þ

with some infinitely increasing sequence of positive numbers dnf gn≥ 1 and some
α∈ 0, 2ð �, if and only if

Nn

dn
) ζα=2,1

as n ! ∞.
Proof. This theorem is a direct consequence of Theorem 2 with the account of

relations (17) and (18).

5.2 Convergence of the distributions of random sums of random vectors with
finite covariance matrices to multivariate elliptically contoured Linnik
distributions

In 1953, Yu. V. Linnik [20] introduced the class of univariate symmetric proba-
bility distributions defined by the characteristic functions

fLα tð Þ ¼ 1

1þ tj jα , t∈,

where α∈ 0, 2ð �. Later, the distributions of this class were called Linnik distribu-
tions [21] or α-Laplace distributions [22]. Here the first term will be used since it has
become conventional. With α ¼ 2, the Linnik distribution turns into the Laplace
distribution corresponding to the density

fΛ xð Þ ¼ 1

2
e�∣x∣, x∈:

A random variable with the Linnik distribution with parameter α will be
denoted L1,α.

The Linnik distributions possess many interesting analytic properties (see, e.g.,
[17, 18] and the references therein) but, perhaps, most often Linnik distributions
are recalled as examples of geometric stable distributions often used as heavy-tailed
models of some statistical regularities in financial data [23, 24].

The multivariate Linnik distribution was introduced by D. N. Anderson in [25]
where it was proved that the function

f
Lð Þ
α,Σ tð Þ ¼ 1

1þ t⊤Σtð Þα=2
, t∈

r, α∈ 0, 2ð Þ, (19)

is the characteristic function of an r-variate probability distribution, where Σ is a
positive definite r� rð Þ-matrix. In [25], the distribution corresponding to the
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characteristic function (19) was called the r-variate Linnik distribution. For the
properties of the multivariate Linnik distributions, see [25, 26].

The r-variate Linnik distribution can also be defined in another way. For this
purpose, recall that the distribution of a nonnegative random variable Mδ whose
Laplace transform is

ψδ sð Þ � Ee�sMδ ¼ 1

1þ sδ
, s≥0, (20)

where 0< δ≤ 1, is called the Mittag-Leffler distribution. It is another example
of heavy-tailed geometrically stable distributions; for more details see for example,
[17, 18] and the references therein. The Mittag-Leffler distributions are of serious
theoretical interest in the problems related to thinned (or rarefied) homogeneous
flows of events such as renewal processes or anomalous diffusion or relaxation
phenomena, see [27, 28] and the references therein. In [18], it was
demonstrated that

L1,α ¼d Y1 �
ffiffiffiffiffiffiffiffiffiffiffiffiffi

2Mα=2

q

, (21)

where Y1 is a random variable with the standard univariate normal distribution
independent of the random variable Mα=2 with the Mittag-Leffler distribution with

parameter α=2.
Now let Y be a random vector such that L Yð Þ ¼ ΦΣ, where Σ is a positive

definite r� rð Þ-matrix, independent of the random variable Mα=2. By analogy with

(21), introduce the random vector Lr,α,Σ as

Lr,α,Σ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi

2Mα=2

q

� Y:

Then, in accordance with what has been said in Section 2,

L Lr,α,Σð Þ ¼ EΦ2Mα=2Σ
: (22)

The distribution (14) will be called the ð centeredÞ elliptically contoured multivar-
iate Linnik distribution.

Using Remark 1, we can easily make sure that the two definitions of the multi-
variate Linnik distribution coincide. Indeed, with the account of (20), according to
Remark 1, the characteristic function of the random vector Lr,α,Σ defined by (22) has
the form

E exp it⊤Lr,α,Σ

� �

¼ ψα=2 t⊤Σt
� �

¼ 1

1þ t⊤Σtð Þα=2
¼ f

Lð Þ
α,Σ tð Þ, t∈

r,

that coincides with Anderson’s definition (19).
Our definition (22) together with Theorem 2 opens the way to formulate a

theorem stating that the multivariate Linnik distribution can not only be limiting
for geometric random sums of independent identically distributed random vectors
with infinite second moments [29], but it can also be limiting for random sums of
independent random vectors with finite covariance matrices.

Theorem 5. Let Nn ! ∞ in probability as n ! ∞. Assume that the random vari-
ables X1,X2, … satisfy condition 7ð Þ with an asymptotic covariance matrix Σ. Then

13

From Asymptotic Normality to Heavy-Tailedness via Limit Theorems for Random Sums…
DOI: http://dx.doi.org/10.5772/intechopen.89659



L
SNn
ffiffiffiffiffi

dn
p
� �

) L Lr,α,Σð Þ n ! ∞ð Þ

with some infinitely increasing sequence of positive numbers dnf gn≥ 1 and some
α∈ 0, 2ð �, if and only if

Nn

dn
) 2Mα=2

as n ! ∞.
Proof. This theorem is a direct consequence of Theorem 2 with the account of

relation (22).

6. Convergence of the distributions of asymptotically normal statistics
to the multivariate Student distribution

The multivariate Student distribution is described, for example, in [30] (also see
[31]). Consider an r-dimensional normal random vector Y with zero vector of
expectations and covariance matrix Σ. Assume that a random variable Wγ has the
chi-square distribution with parameter (the “number of degrees of freedom”) γ > 0
(not necessarily integer) and is independent of Y. The distribution Pγ,Σ of the
random vector

Q γ,Σ ¼
ffiffiffiffiffiffiffiffiffiffiffiffi

γ=Wγ

q

� Y (23)

is called the multivariate Student distribution (with parameters γ and Σ). For any
x∈

r the distribution density of Z has the form

pγ,Σ xð Þ ¼ Γ rþ γð Þ=2Þ
Σj j1=2Γ γ=2ð Þ πγð Þr=2

� 1

1þ 1
γ
xΤΣ

�1x
� 
 rþγð Þ=2 :

According to Theorem 3, the multivariate Student distribution is the resulting
transformation of the limit distribution of an asymptotically normal (in the sense of
(16)) statistic under the replacement of the sample size by a random variable whose
asymptotic distribution is chi-square. Consider this case in more detail.

Let Gm,m xð Þ be the gamma-distribution function with the shape parameter coin-
ciding with the scale parameter and equal to m:

Gm,m xð Þ ¼
0 if x≤0,
mm

Γ mð Þ

ðx

0
e�my ym�1dy if x > 0:

8

<

:

Theorem 6. Let γ > 0 be arbitrary, Σ be a positive definite matrix and let dnf gn≥ 1 be

an infinitely increasing sequence of positive numbers. Assume that Nn ! ∞ in probabil-
ity as n ! ∞. Let a statistic Tn be asymptotically normal in the sense of 16ð Þ. Then the
convegence

L
ffiffiffiffiffi

dn
p

TNn � tð Þ
� 


) Pγ,Σ n ! ∞ð Þ,
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takes place if and only if

P Nn < dnxð Þ ) Gγ=2,γ=2 xð Þ, n ! ∞,

where Gγ=2,γ=2 xð Þ is the gamma-distribution function with coinciding shape and

scale parameters equal to γ=2.
Proof. This statement is a direct consequence of Theorem 3, representation (23)

and Lemma 1.
Let Np,m be a random variable with the negative binomial distribution

P Np,m ¼ k
� �

¼ Ck�1
mþk�2p

m 1� pð Þk�1, k ¼ 1, 2, … (24)

Here m > 0 and p∈ 0, 1ð Þ are parameters; for non-integer m, the quantity

Ck�1
mþk�2 is defined as

Ck�1
mþk�2 ¼ Γ mþ k� 1ð Þ

k� 1ð Þ! � Γ mð Þ :

In particular, form ¼ 1, relation (24) determines the geometric distribution. It is
well known that

ENp,m ¼ m 1� pð Þ þ p

p
,

so that ENp,m ! ∞ as p ! 0.
As is known, the negative binomial distribution with natural m admits an illus-

trative interpretation in terms of Bernoulli trials. Namely, the random variable with
distribution (24) is the number of the Bernoulli trials held up to the mth failure, if
the probability of the success in a trial is 1� p.

Lemma 4. For any fixed m > 0

lim
p!0

s upx∈∣P
Np,m

ENp,m
< x

� �

� Gm,m xð Þ∣ ¼ 0,

where Gm,m xð Þ is the gamma-distribution function with the shape parameter
coinciding with the scale parameter and equal to m.

The proof is a simple exercise on characteristic functions; for more details, see [8].
Corollary 3. Let m > 0 be arbitrary. Assume that for each n≥ 1 the random variable

Nn has the negative binomial distribution with parameters p ¼ 1
n and m. Let a statistic

Tn be asymptotically normal in the sense of 16ð Þ. Then

L ffiffiffiffiffiffiffi

mn
p

TNn � tð Þ
� �

) P2m,Σ n ! ∞ð Þ

where P2m,Σ is the r-variate Student distribution with parameters γ ¼ 2m and Σ.
Proof. By Lemma 4 we have

Nn

nm
¼ Nn

ENn
� ENn

nm
¼ Nn

ENn
�m n� 1ð Þ þ 1

mr
¼ Nn

ENn
1þ O

1

n

� �� �

) Um

as n ! ∞ where Um is the random variable having the gamma-distribution
function with coinciding shape and scale parameters equal to m. Now the desired
assertion directly follows from Theorem 6.
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Remark 2. The r-variate Cauchy distribution (γ ¼ 1) appears in the situation
described in Corollary 2 when the sample size Nn has the negative binomial distri-
bution with the parameters p ¼ 1

n, m ¼ 1
2, and n is large.

Remark 3. In the case where the sample size Nn has the negative binomial
distribution with the parameters p ¼ 1

n, m ¼ 1 (that is, the geometric distribution

with the parameter p ¼ 1
n), then, as n ! ∞, we obtain the limit r-variate Student

distribution with parameters γ ¼ 2 and Σ. Moreover, if Σ ¼ Ir (that is, the r-variate
Student distribution is spherically symmetric), then its one-dimensional marginals
have the form (1). As we have already noted, distribution (1) was apparently for the
first time introduced as a limit distribution for the sample median in a sample with
geometrically distributed random size in [11]. It is worth noticing that in the cited
paper [11], distribution (1) was not identified as the Student distribution with two
degrees of freedom.

Thus, the main conclusion of this section can be formulated as follows. If the
number of random factors that determine the observed value of a random variable
is random itself with the distribution that can be approximated by the gamma
distribution with coinciding shape and scale parameters (e.g., is negative binomial
with probability of success close to one, see Lemma 4), then those functions of the
random factors that are regarded as asymptotically normal in the classical situation
are actually asymptotically Student with considerably heavier tails. Hence, since
gamma-models and/or negative binomial models are widely applicable (to confirm
this it may be noted that the negative binomial distribution is mixed Poisson with
mixing gamma distribution, this fact is widely used in insurance), the Student
distribution can be used in descriptive statistics as a rather reasonable heavy-tailed
asymptotic approximation.

7. The asymptotic distribution of sample quantiles in samples with sizes
generated by a Cox process

Sometimes, when the performance of a technical or financial system is analyzed,
a forecast of main characteristics is made on the basis of data accumulated during a
certain period of the functioning of the system. As a rule, data are accumulated as a
result of some “informative events” that occur during this period. For example,
inference concerning the distribution of insurance claims, which is very important
for the estimation of, say, the ruin probability of an insurance company, is usually
performed on the basis of the statistic W1,W2, … ,WN Tð Þ of the values of insurance
claims arrived within a certain time interval 0,T½ � (here N Tð Þ denotes the number
of claims arrived during the time interval 0,T½ �). Moreover, this inference is typi-
cally used for the prediction of the value of the ruin probability for the next period
T, 2T½ �. But it is obvious (at least in the example above) that the observed number of
informative events occurred during the time interval 0,T½ � is actually a realization
of a random variable, because both the number of insurance claims arrived within
this interval follow a stochastic counting process. If the random character of the
number of available observations is not taken into consideration, then all what can
be done is the conditional forecast. To obtain a complete prediction with the account
of the randomness of the number of “informative events,” we should use the results
similar to Theorems 2 and 3. One of rather realistic and general assumptions
concerning N tð Þ, the number of observations accumulated by the time t, is that N tð Þ
is a Cox process. In this section, as an example, we will consider the asymptotic
behavior of sample quantiles constructed from a sample whose size is determined
by a Cox process. As we have already noted in the introduction, this problem is very
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important for the proper application of such risk measures as VaR (Value-at-Risk)
in, say, financial engineering.

Let W1, … ,Wn, n≥ 1, be independent identically distributed random variables
with common distribution density p xð Þ and W 1ð Þ, … ,W nð Þ be the corresponding
order statistics, W 1ð Þ ≤W 2ð Þ ≤ … ≤W nð Þ. Let r∈ λ1, … , λr be some numbers such

that 0< λ1 < λ2 < … < λr < 1. The quantiles of orders λ1, … , λr of the random variable
W1 will be denoted ξλi , i ¼ 1, … , r. The sample quantiles of orders λ1, … , λr are the
random variables W λin½ �þ1ð Þ, i ¼ 1, … , r, with a½ � denoting the integer part of a

number a. The following result due to Mosteller [32] (also see [33], Section 9.2) is
classical. Denote

Y ∗
n, j ¼

ffiffiffi

n
p

W
λ jn½ �þ1ð Þ � ξλ j

� 


, j ¼ 1, … , r:

Theorem 7 [32]. If p xð Þ is differentiable in some neighborhoods of the quantiles ξλi
and p ξλi

� �

6¼ 0, i ¼ 1, … , r, then, as n ! ∞, the joint distribution of the normalized

sample quantiles Y ∗
n,1, … ,Y ∗

n,r weakly converges to the r-variate normal distribution with

zero vector of expectations and covariance matrix Σ ¼ σij
� �

,

σij ¼
λi 1� λ j

� �

p ξλi

� �

p ξλ j

� 
 , i≤ j:

To take into account the randomness of the sample size, consider the sequence
W1,W2 … of independent identically distributed random variables with common
distribution density p xð Þ.

Let N tð Þ, t≥0, be a Cox process controlled by a process Λ tð Þ. Recall the defini-
tion of a Cox process. Let N1 tð Þ, t≥0, be a standard Poisson process (i.e., a homo-
geneous Poisson process with unit intensity). Let Λ tð Þ, t≥0, be a random process
with non-decreasing right-continuous trajectories, Λ 0ð Þ ¼ 0, P Λ tð Þ<∞ð Þ ¼ 1 for all
t > 0. Assume that the processes Λ tð Þ and N1 tð Þ are independent. Set

N tð Þ ¼ N1 Λ tð Þð Þ, t≥0:

The process N tð Þ is called a doubly stochastic Poisson process (or a Cox process)
controlled by the process Λ tð Þ. The one-dimensional distributions of a Cox process
are mixed Poisson. For example, if Λ tð Þ has the gamma distribution, then N tð Þ has
the negative binomial distribution.

Cox processes are widely used as models of inhomogeneous chaotic flows of
events, see, for example, [2].

Assume that all the involved random variables and processes are independent. In
this section, under the assumption that Λ tð Þ ! ∞ in probability, the asymptotics of
the joint distribution of the random variables W λiN tð Þ½ �þ1ð Þ, i ¼ 1, … , r is considered

as t ! ∞.
As we have already noted, it was B. V. Gnedenko who drew attention to the

essential distinction between the asymptotic properties of sample quantiles
constructed from samples with random sizes and the analogous properties of sam-
ple quantiles in the standard situation. Briefly recall the history of the problem
under consideration. B. V. Gnedenko, S. Stomatovič, and A. Shukri [34] obtained
sufficient conditions for the convergence of distribution of the sample median
constructed from sample of random size. In the candidate (PhD) thesis of A. K.
Shukri, these conditions were extended to quantiles of arbitrary orders. In [35],
necessary and sufficient conditions for the weak convergence of the
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one-dimensional distributions of sample quantiles in samples with random sizes
were obtained.

Our aim here is to give necessary and sufficient conditions for the weak conver-
gence of the joint distributions of sample quantiles constructed from samples with
random sizes driven by a Cox process and to describe the r-variate limit distribu-
tions emerging here, thus extending Mosteller’s Theorem 4 to samples with random
sizes. The results of this section extend those of [36] to the continuous-time case.

Lemma 5. Let N tð Þ be a Cox process controlled by the process Λ tð Þ. Then N tð Þ !P

∞ t ! ∞ð Þ if and only if Λ tð Þ !P ∞ t ! ∞ð Þ.
Lemma 6. Let N tð Þ be a Cox process controlled by the process Λ tð Þ. Let d tð Þ > 0 be a

function such that d tð Þ ! ∞ t ! ∞ð Þ. Then the following conditions are equivalent:

1.One-dimensional distributions of the normalized Cox process weakly converge
to the distribution of some random variable Z as t ! ∞:

N tð Þ
d tð Þ ) Z t ! ∞ð Þ:

2.One-dimensional distributions of the controlling process Λ tð Þ, appropriately
normalized, converge to the same distribution:

Λ tð Þ
d tð Þ ) Z t ! ∞ð Þ:

For the proof of Lemmas 5 and 6 see [37].
Now we proceed to the main results of this section. In addition to the notation

introduced above, for positive integer n set Q j nð Þ ¼ W
λ jn½ �þ1ð Þ, j ¼ 1, … , r,

Q nð Þ ¼ Q1 nð Þ, … ,Qr nð Þð Þ, ξ ¼ ξλ1 , … , ξλr
� �

. Let d tð Þ be an infinitely increasing pos-
itive function. Set

Z tð Þ ¼
ffiffiffiffiffiffiffiffi

d tð Þ
p

Q N tð Þð Þ � ξð Þ:

Theorem 8. Let Λ tð Þ !P ∞ as t ! ∞. If p xð Þ is differentiable in neighborhoods of the

quantiles ξλi and p ξλi

� �

6¼ 0, i ¼ 1, … , r, then the convergence

Z tð Þ ) Z t ! ∞ð Þ,

to some random vector Z takes place, if and only if there exists a nonnegative
random variable U such that

P Z ∈Að Þ ¼ EΦU�1
Σ
Að Þ, A∈B 

rð Þ,

where Σ ¼ σij
� �

,

σij ¼
λi 1� λ j

� �

p ξλi

� �

p ξλ j

� 
 , i≤ j,

and

Λ tð Þ
d tð Þ ) U t ! ∞ð Þ:

18

Probability, Combinatorics and Control



The proof is a simple combination of Lemmas 1, 5, and 6 and Theorem 3.
Corollary 4. Under the conditions of Theorem 8, the joint distribution of the normal-

ized sample quantiles
ffiffiffiffiffiffiffiffi

d tð Þ
p

W
λ jN tð Þ½ �þ1ð Þ � ξλ j

� 


, j ¼ 1, … , r, weakly converges to the

r-variate normal law with zero expectation and covariance matrix Σ, if and only if

Λ tð Þ
d tð Þ ) 1 t ! ∞ð Þ:

This statement immediately follows from Theorem 8 with the account of
Lemma 1.

Corollary 5. Under the conditions of Theorem 8, the joint distribution of the

normalized sample quantiles
ffiffiffiffiffiffiffiffi

d tð Þ
p

W
λ jN tð Þ½ �þ1ð Þ � ξλ j

� 


, j ¼ 1, … , r, weakly converges

to the r-variate Student distribution with parameters γ > 0 and Σ defined in Theorem 4,
if and only if

P Λ tð Þ< xd tð Þð Þ ) Gγ=2,γ=2 xð Þ, t ! ∞,

where Gγ=2,γ=2 xð Þ is the gamma-distribution function with coinciding shape and

scale parameters equal to γ=2.
Let 0< λ< 1 and let ξλ be the λ-quantile of the random variable W1. As above,

the standard normal distribution function will be denoted Φ xð Þ.

8. Conclusion

The purpose of the chapter was to give a possible explanation of the emergence
of heavy-tailed distributions that are often observed in practice instead of the
expected normal laws. As the base for this explanation, limit theorems for random
sums and statistics constructed from samples with random sizes were considered.
Within this approach, it becomes possible to obtain arbitrarily heavy tails of the
data distributions without assuming the non-existence of the moments of the
observed characteristics. Some comments were made on the heavy-tailedness of
scale mixtures of normal distributions. Two general theorems presenting necessary
and sufficient conditions for the convergence of the distributions of random sums
of random vectors and multivariate statistics constructed from samples with ran-
dom sizes were proved. As examples of the application of these general theorems,
conditions were presented for the convergence of the distributions of random sums
of independent random vectors with finite covariance matrices to multivariate
elliptically contoured stable and Linnik distributions. An alternative definition of
the latter was proposed. Also, conditions were presented for the convergence of the
distributions of asymptotically normal (in the traditional sense) statistics to multi-
variate elliptically contoured Student distributions when the sample size is replaced
by a random variable. The joint asymptotic behavior of sample quantiles in samples
with random sizes was considered. Special attention was paid to the continuous-
time case assuming that the sample size increases in time following a Cox process
resulting in the sample size having the mixed Poisson distribution.
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