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Chapter

A Unique Volume Balance 
Approach for Verifying the  
Three-Dimensional 
Hydrodynamic Numerical Models 
in Surface Waterbody Simulation
Hussein A.M. Al-Zubaidi and Scott A. Wells

Abstract

The hydrodynamic numerical modeling is increasingly becoming a widely 
used tool for simulating the surface waterbodies including rivers, lakes, and 
reservoirs. A challenging step in any model development is the verification tests, 
especially at the early stage of development. In this study, a unique approach was 
developed by implementing the volume balance principle in order to verify the 
three-dimensional hydrodynamic models for surface waterbody simulation. A 
developed and verified three-dimensional hydrodynamic and water quality model, 
called W3, was employed by setting a case study model to be verified using the 
volume balance technique. The model was qualified by calculating the error in the 
accumulated water volume within the domain every time step. Results showed that 
the volume balance reached a constant error over the simulation period, indicating 
a robust model setup.

Keywords: hydrodynamic model, lakes and reservoirs, model verification, model 
simulation, numerical model, volume balance, water quality modeling, W3 model

1. Introduction

Many 3D hydrodynamic and water quality models have been developed since 
the 1960s, and different numerical solution techniques have been used to solve 
the governing equations. The most popular numerical models and the basis that 
other models has been built based on are POM [1, 2], ECOM [1, 3], NCOM [4, 
5], FVCOM [6, 7], EFDC [8], TRIM-3D [9], UnTRIM [10], GLLVHT [11], and 
DNS [12].

During the development stage of any numerical model, verification tests need to 
be performed to ensure that model foundations are valid. The 3D simulation models 
available in market have been tested either by comparing the predictions with the 
analytical solution, field data, or both. As a result, each verification approach has its 
advantages and disadvantages depending on the model complexity (governing equa-
tions used to develop the model and assumptions used to simplify the problem).
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All three-dimensional models available to simulate surface waterbodies do not 
have outputs related to the model of volume balance performance (see the user 
manuals of the above popular models). Therefore, the user does not know the 
model preserves volume or not during the simulation period even though the model 
gives results. In addition, most 3D users run the simulation for a very short time 
(even for seconds), thinking the model is stable, since the 3D numerical models 
require long computation time to run. Thus, the need to develop a new volume bal-
ance tool arises based on these issues related to 3D hydrodynamic numerical models 
used in practice for surface waterbodies.

In this work, the volume balance approach was used as a tool to measure how a 
model preserves volume during the simulation time by calculating the accumulated 
error over time as a percent. Therefore, the modeler can monitor the model perfor-
mance over time and decide whether the model is robust or not while running the 
model rather than waiting until the end of simulation.

2. Methods

To implement the volume balance approach, the three-dimensional model W3 
developed by [13] for modeling hydrodynamics, temperature, and water qual-
ity in surface waterbodies was employed. Using the finite differences, the model 
solves the governing equations of continuity, free surface, momentums, and mass 
transport. Comparisons with analytical solutions and field data were carried out for 
verifying and validating the W3 model [13–17].

The model of volume balance was performed by comparing the water volume 
in the model domain during a time period with the water volume entering and 
leaving the same domain during the same period of time.

Let Vol be the accumulated water volume in the model domain over time. Then,

  Vol =  Vol  initial   +  Vol  in   −  Vol  out     (1)

where Volinitial = the initial water volume within the domain; Volin = the accumu-
lated water volume entering the domain; and Volout = the accumulated water volume 
leaving the domain.

Thus, the error over time can be calculated as follows:

  %𝖤𝗋𝗋𝗈𝗋 =  (𝖺𝖻𝗌 (𝖵𝗈𝗅 −  𝖵𝗈𝗅  𝗂𝗇𝗍𝖾𝗋𝗇𝖺𝗅  ) )  /  𝖵𝗈𝗅  𝗂𝗇𝗍𝖾𝗋𝗇𝖺𝗅   × 100   (2)

where Volinternal is the water volume within the domain at any time during the 
simulation period.

A subroutine was added to the model to check the volume preservation by 
calculating % error at every time step. A lower % error represents more accurate 
model predictions. The error should reach a constant value with time and should 
not grow with time. If % error grows with time exponentially, this implies that the 
model goes unstable (blows up). Two tests implementing the volume balance check 
were performed. One of these tests examined the volume balance over a rectangular 
domain, and the other tests evaluated the volume balance over an irregular domain. 
Both tests were performed over a period of 100 days based on the same real meteo-
rological data, calculated solar short radiation, and constant inflow and outflow. 
The meteorological data are shown in Figures 1–5.
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Figure 1. 
Wind speed input data.

Figure 2. 
Wind direction input data.

Figure 3. 
Air temperature input data.
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Figure 4. 
Dew point input data.

Figure 5. 
Cloud cover input data.

3. Results and discussion

The physical domain was divided into computational cells of 1000 × 500 × 1 
(x,y,z) m and oriented perpendicular to the north direction as shown in Figure 6, 
in which there are bends at the boundaries to check how the model catches the flow 
field variability. The code was run without assuming a frictionless fluid, with the 
Coriolis force, with wind variable in magnitude and direction at 10 m height above 

Figure 6. 
Irregular physical domain and the input bathymetry.
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the water surface, with a constant inflow and outflow of 0.8 m3/s, and with variable 
water temperature over time by solving the heat transport equation. Additionally, 
the adding/subtracting layers algorithm (see [18]) was turned on to examine the 
surface layer thickness over the simulation period.

Using a time step of 35 s and a degree of implicitness (θ) of 1, the code was run 
for the simulation period. Figure 7 presents the model predictions of the surface 
velocity field at Julian day 100. The model results showed good performance in fol-
lowing the bends at the boundaries. Furthermore, the volume balance error gave a 
good agreement in preserving volume in which the percent error reached a constant 
low value over time as shown in Figure 8, which is a semilog plot of the percent 
error with time. The corresponding water levels at three locations over time were 
shown in Figure 9, denoting a very small change (≅0.005 m) in the surface layer 
thickness resulting from the free water surface waves.

Since the W3 model uses the degree of implicitness to switch between the fully 
implicit numerical scheme and the fully explicit scheme, the effect of the degree of 
implicitness on the accumulated error was evaluated by running the code using θ = 0.5 
with the same inputs that were used with θ = 1. The results showed that using the semi-
implicit scheme of θ = 0.5 produces less percent error than using θ = 1. Figure 10 shows 
the percent error after running the code for day 100 using two degrees of implicitness 
(θ = 1 and θ = 0.5).

In addition and in order to make sure that the numerical answers do not depend 
on the grid resolution, a grid refinement was performed, and the associated volume 

Figure 7. 
Surface velocity field for the irregular domain at Julian day 100.

Figure 8. 
Volume balance for the irregular domain using θ = 1.
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error was assessed. The code was run using θ = 0.5 with three horizontal grid 
resolutions 1000 × 500, 500 × 500, and 500 × 125 (x,y) m in which the model was 
stable numerically. To maintain the stability, three different time steps were chosen 
to run the code because the refinement lowers the time step (∆t). All resolutions 
were applied on the same initial water volume in Figure 6. Therefore, the initial 
water volume of the waterbody was fixed, while the grid resolution was varied. 

Figure 9. 
Surface layer thickness over time for the irregular domain using θ = 1.

Figure 10. 
The volume balance for the irregular domain using θ = 1 and θ = 0.5.

Figure 11. 
The effect of grid refinement.
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Figure 11 shows the percent error over time for the three considered grid resolu-
tions, indicating that the error in volume has the same order of magnitude for the 
three resolutions.

4. Conclusions

Model verification is the first step after building any new hydrodynamic 
numerical model for surface waterbody simulation. In this chapter, a new volume 
balance approach was introduced for verifying the three-dimensional hydrody-
namic numerical models in surface waterbody simulation. This technique provides 
information about whether the code preserves fluid mass or not by calculating the 
volume balance percent error over time during a model simulation. The model 
results indicated that the model is considered numerically stable if the volume bal-
ance error reaches a constant value over time. In addition, even though the model 
degree of implicitness had a reasonable volume balance error (less than 0.1%), the 
semi-implicit numerical scheme had slightly better volume balance error than the 
fully implicit scheme.
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