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Abstract

The conventional sources of energy such as oil, natural gas, coal, or nuclear 
are finite and generate environmental pollution. Alternatively, renewable energy 
source like wind is clean and abundantly available in nature. Wind power has a huge 
potential of becoming a major source of renewable energy for this modern world. 
It is a clean, emission-free power generation technology. Wind energy has been 
experiencing very rapid growth in Brazil and in Uruguay; therefore, it’s a promising 
industry in these countries. Thus, this rapid expansion can bring several regional 
benefits and contribute to sustainable development, especially in places with low 
economic development. Therefore, the scope of this chapter is to estimate short-term 
wind speed forecasting applying computational intelligence, by recurrent neural 
networks (RNN), using anemometers data collected by an anemometric tower at a 
height of 100.0 m in Brazil (tropical region) and 101.8 m in Uruguay (subtropical 
region), both Latin American countries. The results of this study are compared with 
wind speed prediction results from the literature. In one of the cases investigated, 
this study proved to be more appropriate when analyzing evaluation metrics (error 
and regression) of the prediction results obtained by the proposed model.

Keywords: atmospheric science, computer science, energy, wind engineering

1. Introduction

Since the Industrial Revolution in the eighteenth century, fossil fuels have 
been used as an energy source, contributing to increase the concentration of CO2 
(carbon dioxide) in the atmosphere [1]. An increasing global concentration of CO2 
in the atmosphere, from 290.0 parts per million (ppm) in 1870 [2] to 414.0 ppm in 
2019 [3], occurred during the period which was marked by the Second and Third 
Industrial Revolution. This period is characterized by a significant increase in the 
use of fossil fuels as an energy source. The increased concentration of CO2 in the 
atmosphere results in temperature rise. The increase in the temperature is the major 
cause for all other changes on the earth’s climate. The rise in temperatures is causing 
warming of oceans, melting of ice mass, and increase in evaporation. Due to this 
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increase in CO2 emissions and its consequences, the traditional concept of global 
development incorporated the environmental development. This incorporation 
resulted a broader concept referred to as sustainable development, which is based 
on the inseparability of economic, social, and environmental development [1]. 
Therefore, nowadays, integrated renewable energy system-based power generation 
has enormous growth and enhanced technological development due to increasing 
worldwide electricity demand, environmental concerns, and financial aspects [4].

In this context, renewable energy is at the center of the transition to a less 
carbon-intensive and more sustainable energy system. Renewable energy has grown 
rapidly in recent years, accompanied by sharp cost reductions for solar photovolta-
ics and wind power in particular [5]. Wind energy, a sustainable and a domestic 
source of energy that can reduce our dependency on fossil fuels, has developed 
rapidly in recent years. It’s mature technology and comparatively low cost make 
it promising as an important energy source in the next decades [6]. The electric-
ity sector remains the brightest spot for renewables energy with the exponential 
growth of wind power in recent years in the world [7]. Figure 1 shows the global 
cumulative installed wind capacity 2001–2017 (adapted from [8]).

Brazil is a large country with regard to its sizable power system and continental 
distances, both in terms of grid extension and generating capacity. A prominent 
feature of its power system is the significance of its hydropower [9], which accounts 
for 59.90% [10] of the generation in the interconnected system. By the end of 2018, 
there were a total of 583 plants/wind farms and 14.71 GW of installed capacity, a 
15.19% growth compared to December 2017, when the installed capacity was 12.77 
GW. With an additional 1.94 GW, wind power now makes up 9.0% of the nation’s 
power matrix, which also shows the percent contribution from all sources of energy 
to the electric power grid at the end of 2018. It is important to remember that at the 
end of 2017, wind power accounted for 8.10% of the energy generated [10].

Uruguay surprisingly obtains 94.0% of its electricity from renewable sources 
[11]. In addition to old hydropower plants, large investments in solar, wind, and 
biomass have increased the proportion of these sources to 55.0% of the total energy 
(see that the global average is 12.0% and the European average is approximately 
20.0%). In this way, wind power has attracted attention, and various wind farms 

Figure 1. 
Wind power global capacity 2001–2017 (adapted from [8]).
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have been constructed in Uruguay to harness wind energy. Among the countries of 
the world, Uruguay ranks fourth in the generation of wind energy, in accordance 
with [12]. Additionally, Uruguay and Brazil have good relationships, which contrib-
ute to its excellent growth with regard to wind and solar energy [13].

Regarding wind power, the variability of wind speed and wind direction 
throughout the day makes it difficult to decide whether to drive wind turbines, 
because wind exhibits temporal variations of several orders of magnitude, e.g., 
short-duration variations (bursts), hourly variations (owing to land and sea 
breezes), daily variations (owing to the local microclimate), seasonal variations, 
and annual variations (owing to climatic changes) [13]. The spatial variation of 
wind energy is also very large. The soil roughness and topography significantly 
influence the distribution and velocity of winds. Large fluctuations in wind speed 
make forecasting the power generated by wind turbines difficult; not to mention 
that economic losses occur if these turbines are subjected to unfavorable weather 
conditions [14].

Consequently, it is necessary to develop reliable tools to wind speed forecasting, 
even in the short-range. The interest in applications of mathematical modeling and 
numerical simulation of the atmosphere for the estimation of wind potential is 
increasing and driving a significant market. The use of computational models can 
help both the identification of locations with high wind potential and, when used 
operationally in daily integrations, in the short-term energy generation forecast 
[15]. The mainstream models used by scientific researchers can be divided into 
several categories [13, 16]: physical forecasting models, conventional statistical 
forecasting models, artificial intelligence forecasting models, statistical machine 
learning models, fuzzy logic-based models, spatial-correlation forecasting models, 
and hybrid models.

Computational models can be useful for the identification of locations with 
high wind potential and, when used operationally in daily integrations, short-term 
energy generation forecasting [13, 15]. In [13, 17, 18], among others, they obtained 
good results with small error via mathematical modeling and numerical simulation 
for short-term prediction using computational intelligence techniques, especially 
multilayer perceptron neural networks with feed-forward and back-propagation 
training algorithms. Although the previously cited authors demonstrated the 
applicability of artificial neural networks (ANN) in the next-step prediction of 
wind speed, none of them compared the performance of the results of wind speed 
forecasting 6 h ahead between Colonia Eulacio, Soriano Department, Uruguay 
(humid subtropical climate region), and Mucuri city, Bahia, Brazil (humid tropi-
cal climate region), using meteorological data collected by anemometers and not 
climatic data from global circulation models shown in [19].

This chapter presents two case studies about short-term wind speed forecasting 
in Brazil and Uruguay. The chapter is organized as follows. In part 2, the air and the 
wind power are briefly described. Part 3 describes the materials and methods, com-
putational intelligence, and nowcasting. In part 4, the case studies are proposed. 
Conclusions are proposed in part 5.

2. The air and wind power

The air in motion—what we commonly call wind—is invisible, yet we see evidence 
of it nearly everywhere we look. It transports heat, moisture, dust, insects, bacteria, 
and pollen from one area to another [20]. Inserted in this context, [21] explain that 
the winds are generated by pressure differences that arise because of unequal heating 
of the earth’s surface. The earth’s winds blow in an unending attempt to balance these 
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surface temperature differences. As the zone of maximum solar heating migrates 
with the seasons—moving northward during the Northern Hemisphere summer and 
southward as winter approaches—the wind patterns that make up the general circula-
tion also migrate latitudinally. Airflow (or wind) can be divided into three broad 
categories: waves, turbulence, and mean wind. Each can exist in the boundary layer, 
where transport of quantities such as moisture, heat, momentum, and pollutants is 
dominated in the vertical by turbulence and horizontal by the mean wind [22]. Each 
can exist in the presence of any of the others or separately.

The earth’s highly integrated wind system can be thought of as a series of deep 
rivers of air that encircle the planet. Embedded in the main currents are vortices 
of various sizes, including hurricanes, tornadoes, and midlatitude cyclones. 
Like eddies in a stream, these rotating wind systems develop and die out with 
somewhat predictable regularity. In general, the smallest eddies, such as dust 
devils, last only a few minutes, whereas larger and more complex systems, such as 
midlatitude cyclones and hurricanes, may survive for several days [21]. The scales 
of atmospheric motion shown in Table 1 illustrate the three major categories of 
atmospheric circulation: microscale, mesoscale, and macroscale (synoptic scale and 
global scale).

In short, wind is the movement of air from an area of high pressure to an area of 
low pressure. In fact, wind exists because the sun unevenly heats the surface of the 
earth. As hot air rises, cooler air moves in to fill the void. As long as the sun shines, 
the wind will blow. And wind has long served as a power source to humans [23]. 
Wind spins the blades, which turn a shaft connected to a generator that produces 
electricity, in other words, wind turbines convert kinetic energy contained in the 
wind first into mechanical and then into electrical energy [24]. Wind is a clean 
source of renewable energy that produces no air or water pollution. And since the 
wind is free, operational costs are nearly zero once a turbine is erected. Mass pro-
duction and technology advances are making turbines cheaper, and many govern-
ments offer tax incentives to spur wind-energy development [23].

Nowadays, wind turbine technology is considered matured, and the costs 
of wind energy are low [6]. Industry experts predict that if this pace of growth 
continues, by 2050 one third of the world’s electricity needs will be fulfilled by wind 
power [23]. Though wind power has performed well in recent years, it also creates 
a strong environmental impact, such as visual impact, climatic impact, and noise. 
Although these impacts seem minor when compared with nonrenewable energy, its 
effect on humans should not be overlooked, due to its potential great development 
in usage. In short, with proper and supportive policies toward wind power and a 
good understanding of its environmental impact, wind energy can be a clean and 
sustainable source of energy that can successfully replace fossil fuels [6].

Scale Typical size Phenomenon Life span

Microscale 0–1.0 km Small turbulent eddies, thunderstorms Seconds to 
minutes

Mesoscale 1.0–100 km Tornadoes, waterspouts, dust devils, land/sea 
breeze, mountain/valley breeze

Minutes to hours/
days

Synoptic 
scale

100–5000 km Hurricanes, tropical storms Days to weeks

Global scale 1000–
40,000 km

Longwaves in the westerlies, trade wind Weeks to years

Table 1. 
Scales of atmospheric motion (adapted from [20, 21]).
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3. Materials and methods

In this chapter, we use computational intelligence by artificial neural networks 
for the next-step prediction of one climatic variable: wind speed. ANN was trained 
to perform the forecasting of 1 h ahead, and then, using it, the trained network was 
applied to recursively infer the forecasting for the next 6 h of the wind speed (now-
casting), following the methodology explained in [13]. The activation functions 
that define the outputs of the neurons in terms of their activity levels, inserted in 
this simulation, were the sigmoidal function in the form of the hyperbolic tangent 
function (characterized as continuous, increasing, differentiable, and nonlinear) 
for hidden layers and linear function to the output layer.

To train the RNN and validate the technique, anemometer data (average hourly 
values of wind speed, wind direction, and temperature) for 1 year (August 08, 
2014, and August 07, 2015) are collected by one tower with anemometer installed 
at height of 101.8 m to Colonia Eulacio (Uruguay), and data (average hourly values 
of wind speed, wind direction, temperature, humidity, and pressure) for 1 month 
(November 30, 2015, until December 31, 2015) are collected by one tower with 
anemometers installed at height of 100.0 m to Mucuri (Brazil), using the same 
criteria as in [13], namely, 70% for training/validating data and 30% for simulation. 
The reason for choosing these periods is these are the months with the totality of 
data available for the realization of this study.

The Mucuri city (Bahia, Brazil) is located at an altitude of 7.0 m in relation to the 
sea level, and it has a territorial area of 1775 km2, approximately. Mucuri’s anemom-
eter tower is located in a coastal plain, at a distance of 340.0 m from the sea, with 
latitude 18°1′31.52″ S and longitude 39°30′51.69″ W (Figure 2).

As for Colonia Eulacio Tower in Uruguay, according to datum WGS84, it is 
located at 33o16′ S, 57o31′ W [25]. The altitude of the installation location (see 
Figure 3) is approximately 100.0 m, and the location is surrounded by fields with 
plains; thus, it is characterized by noncomplex terrain. The station is owned by the 
Administración Nacional de Usinas y Transmissiones Eléctricas (UTE), which is a 
state-owned company in Uruguay that is responsible for the generation, distribu-
tion, and commercialization of electrical energy in the country, as cited in [13].

Figure 2. 
Location of the Mucuri Tower in Bahia, Brazil.
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The insertion of meteorological parameters as input data contributes to efficient 
training of the ANN. Seven different ANN configurations are applied for each site 
and height; then, a quantitative analysis is conducted, and the statistical results 
(MAE, MSE, and RMSE) are evaluated to select the configuration that best predicts 
the real data. The proposed ANN configurations to be analyzed are the following 
ones. For Mucuri (Brazil) the best ANN configuration was Configuration 1 and for 
Colonia Eulacio (Uruguay) was the Configuration 4.

1. Configuration 1: three layers, nine input nodes (site, Brazil) or seven input 
nodes (site, Uruguay), nine hidden neurons, and one output node

2. Configuration 2: three layers, nine input nodes (site, Brazil) or seven input 
nodes (site, Uruguay), six hidden neurons, and one output node

3. Configuration 3: three layers, nine input nodes (site, Brazil) or seven input 
nodes (site, Uruguay), three hidden neurons, and one output node

4. Configuration 4: three layers, nine input nodes (site, Brazil) or seven input 
nodes (site, Uruguay), one hidden neuron, and one output node

5. Configuration 5: four layers, nine input nodes (site, Brazil) or seven input 
nodes (site, Uruguay), nine hidden neurons (first hidden layer) and six hidden 
neurons (second hidden layer), and one output node

6. Configuration 6: four layers, nine input nodes (site, Brazil) or seven input 
nodes (site, Uruguay), six hidden neurons (first hidden layer) and three 
 hidden neurons (second hidden layer), and one output node

7. Configuration 7: four layers, nine input nodes (site, Brazil) or seven input 
nodes (site, Uruguay), one hidden neuron (first hidden layer) and one hidden 
neuron (second hidden layer), and one output node

For statistical analysis of wind speed prediction results at the above sites, the 
following statistical indicators were applied: Pearson’s correlation coefficient  

Figure 3. 
Location of the Colonia Eulacio Tower in Soriano Department, Uruguay [21].
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(r or Pearson’s r), coefficient of determination (R2 or R-squared), mean absolute 
percentage error (MAPE), mean absolute error (MAE), mean squared error (MSE), 
and root mean square error (RMSE). Pearson’s correlation coefficient ranges from 
−1.0 to 1.0. Values close to 0.0 are adequate for the MAE, MSE, and RMSE, values 
close to 0.0% are adequate for the MAPE, and values close to 1.0 are adequate for 
the R-squared. The software used to program and perform this computational 
procedure was MATLAB version 7.10.0 (2010) (personal computer, 8 GB RAM), as 
the methodology applied in [13].

3.1 Computational intelligence and nowcasting

Computational intelligence (CI) is the theory, design, application, and develop-
ment of biologically and linguistically motivated computational paradigms. Over 
the last few years, there has been an explosion of research on machine learning and 
deep learning. Nowadays, deep learning has become the core method for artificial 
intelligence (AI) [26]. AI is one of the newest fields in science and engineering. AI 
currently encompasses a huge variety of subfields, ranging from the general (learn-
ing and perception) to the specific, such as playing chess, proving mathematical 
theorems, writing poetry, driving a car on a crowded street, diagnosing diseases, 
and predicting the conditions of the atmosphere for a given location and time. AI is 
relevant to any intellectual task; it is truly a universal field [27]. In fact, some of the 
most successful AI systems are based on CI.

In the early days of artificial intelligence, the field rapidly tackled and solved 
problems that are intellectually difficult for human beings but relatively straight-
forward for computers—problems that can be described by a list of formal, math-
ematical rules [28]. Many artificial intelligence tasks can be solved by designing the 
right set of features to extract for that task, then providing these features to a simple 
machine learning algorithm. The most widely used artificial neuron model is the 
perceptron proposed in [29, 30]. This model defines a neuron composed of inputs, 
a summation and an activation function. The value of each input is multiplied by 
a weight, and the weighted values of the inputs are summed to yield the result of 
the sum which is used as the input of the activation function. To teach (train) the 
neuron, the weights are modified so that the output obtained corresponds to the 
desired value [30].

The multilayer perceptron (MLP) consists of a system of simple interconnected 
neurons, or nodes, which is a model representing a nonlinear mapping between 
an input vector and an output vector. The architecture of a MLP is variable but in 
general will consist of several layers of neurons. The input layer plays no compu-
tational role but merely serves to pass the input vector to the network. The terms 
input and output vectors refer to the inputs and outputs of the MLP and can be 
represented as single vectors [31]. Moreover, in relation to recurrent neural net-
work (RNN), the definition is that they are powerful sequence-processing models 
that are equipped with a memory from recurrent feedback connections. One of 
the current main challenges of RNN is to dynamically adapt to multiple temporal 
resolutions and scales in order to learn hierarchical representations in time. Since 
they operate in discrete time steps and update at every time step, it is generally dif-
ficult to learn temporal features that have a significantly different resolution than 
their input frequency [32].

Predicting the short-term power output of a wind turbine (wind energy con-
verter) is an important task for the efficient management of smart grids. Short-
term forecasting at the minute scale also is known as nowcasting. By definition 
nowcasting refers to short lead time weather forecasts, the US National Weather 
Service specifies zero to 3 h, though forecasts up to 6 h may be called nowcasts by 
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some agencies [33]. Nowcasting is critical when managing operations of the smart 
grid, such as system integration, ensuring power continuity and managing ramp 
rates [34]. In this chapter, nowcasting refers to short-term wind speed forecasting 
6 h ahead. In [35] they described and evaluated a proposal for nowcasting wind 
speed for wind farm locations from historical time series, based on the method of 
regression by support vectors (in short, nowcasting of wind speed using support 
vector regression: experiments with time series from Gran Canaria).

4.  Brazilian and Uruguayan case study: Mucuri municipality, tropical 
region, and Colonia Eulacio, subtropical region

The figures below show the time series used in the models which consist of 
744 h for Mucuri in Brazil (Figure 4) and 8760 h for Colonia Eulacio in Uruguay 
(Figure 5), corresponding to hourly mean wind speed data. As can be observed in 
the figures, there is noticeable data randomness, and it is difficult to find a series 
tendency or seasonality.

In this sense, a descriptive statistic regarding wind speed at different sites is 
shown in Table 2. It can be noted that wind speed data measured at Colonia Eulacio 
has a higher variability.

Tables 3–6 show the evaluation metrics of the prediction results obtained by 
the proposed model. Table 3 presents simulation results referring to errors in wind 
speed forecasting 1, 3, and 6 h ahead for Mucuri using the RNN model. In Table 4, 
we present the results for regression for Mucuri. In Table 5, we can see errors in 
wind speed forecasting 1, 3, and 6 h ahead for Colonia Eulacio using the RNN 
model. Table 6 shows the regression results to Colonia Eulacio. The percentage of 
the data of a factor of two is a fraction of data [%] for 0.5 ≤ wind predicted/wind 
anemometer ≤ 2.0. Table 4 shows that the percentage of the data of a factor of two 
[%] to Mucuri is bigger than the percentage of the data of a factor of two [%] to 
Colonia Eulacio (see Table 6).

Figures 6–8 show the results of six-step predictions of the wind speed series 
to Colonia Eulacio and to Mucuri. In Figure 6, we observe wind speed forecasting 
results of the model with RNN in six-step ahead for Colonia Eulacio, Uruguay. 
Figure 7 presents wind speed forecasting 6 h ahead in a period of 744 ho of 

Figure 4. 
The experimental wind speed time series—Mucuri (Brazil).



9

Study of the Wind Speed Forecasting Applying Computational Intelligence
DOI: http://dx.doi.org/10.5772/intechopen.89758

anemometric tower measurements. In Figure 8, we can see wind speed forecasting 
results of the model with RNN in six-step ahead for Mucuri, Brazil.

Figures 9 and 10 show the multistep root mean square error (RMSE) evaluation 
of RNN and MLP for Mucuri, Brazil, and Colonia Eulacio, Uruguay. It is observed 
in Figure 9 that as the prediction horizon increases, RNN were more efficient when 
compared to those employed in the study which applies MLP referenced by [36]. These 
results indicate that if we want a higher accuracy in the result to Mucuri, we must use a 

Site Arithmetic mean of wind speed 

[m/s]

Variance  

[m2/s2]

Standard deviation 

[m/s]

Mucuri 7.91 8.53 2.92

Colonia Eulacio 7.21 9.02 3.00

Table 2. 
Statistics (Mucuri and Colonia Eulacio).

Figure 5. 
The experimental wind speed time series—Colonia Eulacio (Uruguay).

Prediction horizon [h] MAE MSE RMSE MAPE [%]

1 0.839 1.111 1.054 11.07

3 1.385 3.154 1.775 17.63

6 1.779 5.108 2.260 21.26

Table 3. 
Simulation results (errors): wind speed forecasting 1, 3, and 6 h ahead for Mucuri using the RNN model.

Prediction 

horizon [h]

Pearson correlation 

coefficient

Coefficient 

R2

Percentage of the data of a factor of 

two [%]

1 0.940 0.885 99.48

3 0.850 0.723 98.95

6 0.742 0.550 98.94

Table 4. 
Simulation results (regression): wind speed forecasting 1, 3, and 6 h ahead for Mucuri using the RNN model.
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recurrent neural network. A recurrent neural network allows self-loops and backward 
connections between all neurons in the network. That enables the networks to do 
temporal processing and learn sequences, e.g., temporal association/prediction.

Unlike the previous comparison, for Colonia Eulacio’s anemometers data, the 
study which applies MLP referenced by [13] was more appropriate (Figure 10) than 
this study that applies RNN.

The multistep Pearson correlation coefficient evaluation of different architec-
ture and site is shown in Figure 11.

The computational cost employed to simulate wind speed prediction through 
RNN for Colonia Eulacio is not viable when compared to the application of MLP. In 

Prediction 

horizon [h]

Pearson correlation 

coefficient

Coefficient 

R2

Percentage of the data of a factor of 

two [%]

1 0.922 0.849 98.44

3 0.729 0.531 93.60

6 0.543 0.295 88.52

Table 6. 
Simulation results (regression): wind speed forecasting 1, 3, and 6 h ahead for Colonia Eulacio using the RNN 
model.

Prediction horizon [h] MAE MSE RMSE MAPE [%]

1 0.895 1.408 1.187 16.08

3 1.687 4.710 2.170 30.65

6 2.266 8.051 2.837 39.86

Table 5. 
Simulation results (errors): wind speed forecasting 1, 3, and 6 h ahead for Colonia Eulacio using the RNN 
model.

Figure 6. 
Wind speed forecasting results of the model with RNN in six-step ahead (Colonia Eulacio, Uruguay).
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contrast, for Mucuri, it is considerably more viable to apply RNN, as can be seen 
from the figure above. Lastly, nowadays, adopting renewable energy has become 
a national energy policy for many countries due to concerns with pollution from 
fossil fuel consumption and climate change. Regarding wind energy, the accurate 
prediction of wind is crucial in managing the power load. Thus, this work pre-
sented the short-term wind speed forecasting for two representative sites in South 
America, Brazil, and Uruguay, which are the most important countries in terms of 
renewable energy production in Latin America.

Each scientific study on wind speed prediction has its own characteristics, such 
as the height of the anemometer that records atmospheric data (e.g., wind speed, 

Figure 7. 
Wind speed forecasting results of the model with RNN in six-step ahead (Colonia Eulacio, Uruguay), April 20, 
2015, at 13:00 to April 28, 2015, at 14:00.

Figure 8. 
Wind speed forecasting results of the model with RNN in six-step ahead (Mucuri, Brazil).
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direction, temperature, humidity, and atmospheric pressure) and the time series of 
this atmospheric data. These data are applied to train and test the efficiency of the 
ANN. On the accuracy of the use of ANN in the estimation of short-term wind speed 
and wind power forecasting, we can mention these earlier studies (see Table 7). The 
MAE average value for 1 h ahead was 0.847 m/s and for 3 h ahead was 1.420 m/s.

Other scientific research on wind speed has been developed. We can cite 
the works in [39, 40]. In [39] they analyzed the time series of wind speeds in 
Mucuri, Mucugê, and Esplanada, cities of the state of Bahia, and the Abrolhos 
Archipelago, Brazil, through the use of the detrended fluctuation analysis tech-
nique to verify the existence of long-range correlations and associated power 
laws. Already [40] describes a short-term wind energy forecasting tool based on 
a run set forecasting system of the WRF-GFS model that has been operationally 
implemented in the electricity system in Uruguay with estimates for Brazil wind 
energy production.

Figure 9. 
The multistep root mean square error evaluation of different architecture for Mucuri, Brazil.

Figure 10. 
The multistep root mean square error evaluation of different architecture for Colonia Eulacio, Uruguay.
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5. Conclusions

The present chapter aimed to define the most efficient RNN configuration to 
predict the wind speed for 1 h and, after that, to apply it for 6 h ahead, using as 
reference observational data collected from two anemometric towers, with ane-
mometers installed at 100.0 and 101.8 m height, located, respectively, in a tropical 
region in Mucuri, Bahia, northeastern Brazil, and in a subtropical region in Colonia 
Eulacio, Soriano Department, Uruguay. It has been shown graphically and verified 
through numerical simulations that the RNN was better than MLP in Mucuri and 
worst in Colonia Eulacio.

In the light of the statistical results recorded in this work, the application of 
computational intelligence is a viable alternative for the predictability of wind 
speed and, in this way, wind power generation, mainly due to the low computa-
tional cost; however, one must choose the ANN architecture that best suits the proj-
ect, as well as quantitatively and qualitatively analyzes the available data that will 
feed the network, since these variables directly impact the results of the forecast.

The results of the short-term wind speed forecasting showed good accuracy at 
all the anemometer heights tested. Therefore, the proposed short-term wind speed 
forecasting method is an important scientific contribution for reliable large-scale 
wind power forecasting and integration in tropical and subtropical regions, like in 
Brazil and Uruguay.

Figure 11. 
The multistep Pearson correlation coefficient evaluation of different architecture and site.

Prediction 

horizon [h]

Mucuri: 

this study

Colonia 

Eulacio: 

this study

Reference 

[13]

Reference 

[36]

Reference 

[37]

Reference 

[38]

Mean absolute error

1 0.839 0.895 0.892 0.720 1.050 0.684

3 1.385 1.687 1.678 1.370 1.230 1.168

Table 7. 
Accuracy of the use of ANN in the estimation of wind speed and wind power.
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The suggestion for improving the accuracy of ANN for higher lead time is wavelet 
packet decomposition because the empirical wavelet transform can effectively identify 
and extract a finite number of intrinsic modes of a wind speed time series and thus 
improving the accuracy of the supervised machine learning; other suggestion is to apply 
the wind speed x-axis component and wind speed y-axis component ANN’s input.

We can suggest as future work to use the Mucuri, Colonia Eulacio, and other 
observational data collected in different heights in Brazil and Uruguay to per-
form the prediction of the wind speed more accurately in the short-term and in 
the medium-term using computational intelligence by long short-term memory 
(LSTM) and gated recurrent unit (GRU) and to compare these results with the 
output produced by numerical and meteorological modeling using the weather 
research and forecasting (WRF) model, for example. Wind ramp and greater 
forecasting horizons are also a great subject of research.
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