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Chapter

Synthesis of Three-Dimensional 
Nanocarbon Hybrids by Chemical 
Vapor Deposition
Hua-Fei Li, Shuguang Deng and Gui-Ping Dai

Abstract

Carbon nanomaterials such as graphene, carbon nanotube (CNT), and carbon 
nanofiber (CNF) have received tremendous attentions in the past two decades due 
to their extraordinary mechanical strength and thermal and electrical properties. 
Recently, it indicates that three-dimensional (3D) nanocarbon hybrids overcome 
the weakness of individual low-dimensional nanocarbon materials and exhibit 
unique properties among carbon nanomaterials. Efforts have thus been made to 
acquire synergistic integration of one-dimensional (1D) and two-dimensional (2D) 
carbon nanomaterials. Meanwhile, chemical vapor deposition (CVD) is a wide-
spread and effective method of fabricating three-dimensional nanocarbon hybrids 
compared with other synthetic methods. In this case, a number of 3D nanocarbon 
hybrids are synthesized by using different precursors at diverse temperature, and 
the nanocarbon hybrids are expected to be a promising choice for various applica-
tion areas in the future.

Keywords: chemical vapor deposition, three-dimensional nanocarbon hybrids, 
graphene, carbon nanotube, carbon nanofiber

1. Introduction

As the typical 1D carbon materials, carbon nanotubes (CNTs) (Figure 1a) 
and carbon nanofibers (CNFs) have been widely investigated in the past two 
decades because of their merits, such as outstanding mechanical strength, large 
surface-to-volume ratio, and extraordinary electrical conductivity [1–4]. At the 
same time, graphene (Figure 1b), a recently discovered 2D sp2 carbon, displays 
outstanding physical and chemical properties such as high specific surface areas 
(about 2620 m2 g−1), great lightweight, and fast electron transport kinetics [5–7]. 
Nevertheless, their physical and chemical performances inevitably decrease com-
pared to the theoretical prediction result from the existence of the van der Waals 
interaction, generating easy self-aggregation and stacking during the synthesis 
process [8]. Therefore, the 3D nanocarbon hybrids (such as CNT/graphene, CNF/
graphene, CNT/CNF hybrids) are studied by a large number of the research groups, 
aiming at overcoming these shortcomings and a synergistic integration of their 
inherent properties in the new hybrid materials [9–11]. These nanocarbon hybrids 
have an interconnected network of carbon structure, resulting in a synergistic 
effect in enhanced conductivity in comparison with the individual components, 
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and the special 3D structure significantly provides a variety of applications, such as 
field-effect transistors [12, 13], electron field emitters [14–16], sensors [17–20], fuel 
cell [21–23], batteries [24, 25], and supercapacitors [26–30].

To date, a number of techniques and methods have been utilized for the fab-
rication of nanocarbon hybrid, such as mixing process of surface-treated carbon 
materials (including solution processing [31, 32], vacuum filtration [33, 34], layer-
by-layer self-assembly method [35, 36]), hydrothermal method [37], multi-step 
approaches using combinations of decorated carbon materials and CVD [10], and 
multi-step and one-step chemical vapor deposition [38–48]. Among all the nano-
carbon hybrid fabrication approaches reported, CVD techniques are considered as 
the most versatile and promising way for nanocarbon composite production with 
reasonable structure and mechanical strength, which has attracted tremendous 
research attention during the recent decades. As a sophisticated synthesis method 
for both laboratory research and industry production, conventional CVD (shown 
in Figure 2) is applied in many areas, such as thin-film coating, crystal growth, and 

Figure 2. 
Schematic diagrams of CVD technique.

Figure 1. 
Schematic diagrams of graphene and carbon nanotube.
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powder production and also suitable for the synthesis of nanocarbon materials. The 
mechanism of conventional CVD generally includes two steps, initially thermal 
decomposition of gaseous precursor [10], organic solvents [47], or solid feedstock 
[9, 28] and thereafter reassembly of carbon atoms into sp2 carbon nanostructures 
under the effective catalysis such as Cu [8], Fe [12], Co [28, 44], Ni [24], or their 
mixture [11, 49] at high temperature. Compared with other approaches, CVD tech-
nique significantly fabricated well-interconnected three-dimensional nanocarbon 
materials without needing sophisticated chemical routes with solvents and highly 
toxic agents during synthesis process. Zhu et al. [50] reported that the seamless, 
covalently bonded three-dimensional nanocarbon architecture was fabricated on 
the surface of Cu foil via simple two-step CVD methods. It is worth noting that 
although different aforementioned methods are employed for the production of 
nanocarbon hybrids, a facile and simple approach for controllable growth of three-
dimensional carbonaceous nanomaterials is still a big challenge.

In this chapter, we present a summary of the researches about nanocarbon 
hybrid in recent years, with a focus on the popular fabrication techniques. 
Moreover, the merits and demerits and effect of experimental parameters of these 
CVD methods are presented in detail. Finally, we discuss the development trend, 
challenges, and performance applications of nanocarbon hybrids in the further.

2. Preparation techniques of three-dimensional nanocarbon hybrids

Up to now, varied approaches have been used for the fabrication of 3D nanocar-
bon hybrids, and the preparation technology generally could be categorized into 
four different approaches (shown in Figure 3): mixing process of surface-treated 
carbon materials, hydrothermal method, multi-step approaches using combinations 
of decorated carbon materials and CVD, and multi-step and one-step chemical 
vapor deposition. In addition, early researches on the construction of 3D hybrids 
focus on mixing process, which includes solution processing, vacuum filtration, and 
layer-by-layer self-assembly methods. Compared to other methods, hydrothermal 
route is an appropriate way to the mass preparation of graphene-carbon nano-
tube hybrids because of the easy operation and mild experimental environment. 
Moreover, the composites consisted of carbon nanotube and carbon nanofiber 
mainly produced by utilizing the multi-step approaches using combinations of 
decorated carbon materials and CVD method. Especially, multi-step and one-step 

Figure 3. 
Classification of 3D nanocarbon hybrids synthesis techniques.
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chemical vapor deposition is considered as a simple and promising way to build 3D 
hybrids with hierarchical structure and stability.

2.1 Mixing process of surface-treated carbon materials

As the early hybridization approaches, solution processing, vacuum filtration, 
layer-by-layer self-assembly methods, and so on could be classified into the facile 
mixing process. Altogether 1D carbon nanomaterial incorporation of 2D nanomate-
rial with a facile mixing process exhibits a synergistic effect in enhanced properties. 
However, the nanocarbon hybrids are synthesized by utilizing various methods to 
mix modified carbon-based feedstocks, which generally need sophisticated chemi-
cal routes with solvents and highly toxic agents [31, 33–36]. Furthermore, this kind 
of techniques suffers from poor controllability, leading to the restriction of practical 
application due to the aggregation and stacking of carbon-based materials [51].

2.2 Hydrothermal method

With regard to hydrothermal method, firstly, the carbon feedstocks are dis-
solved and the mixed solution is transferred into a heating instrument. Secondly, 
the hydrothermal treatment is performed at low temperature, and the final product 
is obtained after centrifugation, washing, and freeze-drying process. Although this 
method has merits of mild conditions and scale-up synthesis, it is not suitable for 
the industrial production due to the time-consuming fault and defective products. 
Besides, the obtained 3D nanostructures are chiefly based on weak interconnection 
between individual nanocarbon components instead of owning powerful bonding, 
leading to robust 3D architecture [52].

2.3  Multi-step approaches using combinations of decorated carbon materials 
and CVD

Chemical vapor deposition is considered as the most promising approach of 
the preparation of graphene, CNTs, and CNFs on the substrate surface. Thus, it is 
always employed to facilitate the growth of CNTs on the decorated carbon materi-
als, leading to the 3D hierarchical composite. For example, most of the reported 3D 
carbon nanotube/carbon nanofiber hierarchical composites are typically prepared 
by a multi-step route, which first needs electrospinning technique and post-carbon-
ization for the preparation of CNFs, followed by decorating the CNFs with metal 
catalyst nanoparticles, and eventually the CNT growth is promoted by using toxic 
organic gases or solvent as carbon source during the CVD process [10, 22]. This 
kind of CVD-based methods has distinctive advantages: efficiency, convenience, 
and high yield. However, the stable and suitable decorated carbon materials that 
always need sophisticated pretreatment are vital to the construction of 3D carbon 
hybrids.

2.4 Multi-step synthesis by chemical vapor deposition

Multi-step chemical vapor depositions have been utilized in recent years to 
integrate individual 1D with 2D carbon nanomaterials to achieve controllable 
configurations of 3D nanostructures. Recently, Tang et al. successfully fabricated 
graphene-carbon nanotube composite on exfoliated vermiculite (EV) substrate 
by the multi-step CVD method (as shown in Figure 4). The whole CVD process 
could be divided into two steps: firstly, the aligned CNTs are synthesized at 650°C 
by using C2H4 as carbon source, and, secondly, the uniform graphene sheet directly 
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grows on the surface of substrate at a higher temperature of 950°C by utilizing the 
hydrocarbon—CH4, resulting in the in situ synthesis of graphene-carbon nanotube-
graphene sandwiches [53]. In other methods of the successful fabrication of 3D 
hybrids, the obtained component materials are always entangled with each other, 
and the ordered 3D packing architecture is hardly available. Nevertheless, this 
multi-step way successfully integrates low-dimensional materials into 3D ordered, 
controllable, and well-connected structures [50]. Additionally, the morphology and 
nanostructure could be well controlled by adjusting the experimental parameters 
due to the separated CVD processes. It is a pity that the multi-step process always 
requires strict growth conditions and large consumption of power (high tempera-
ture) for the growth of nanocarbon materials.

2.5 One-step synthesis by chemical vapor deposition

Recently, tremendous efforts have been made to produce 3D nanocarbon hybrid 
via simultaneously in situ growing of 1D and 2D carbon nanomaterials on the 
surface of substrate during the CVD method. For example, Dong et al. (illustrated 
in Figure 5) reported that graphene/carbon nanotube hybrids were synthesized 
by a facile single-step CVD route employing ethanol (C2H5OH) as feedstock on 
the surface of Cu substrate decorated with Si nanoparticles, and the property and 
shape of hybrid could be varied by adjusting the fabrication environment (e.g., 
Si nanoparticles, temperature, and annealing time). The single-step route has the 
merits of better electrical conductivity and lesser defect density than the multi-step 
methods [43]. Additionally, although this one-step process effectively decreases the 

Figure 4. 
Scheme for the two-step CVD synthesis of graphene/carbon nanotubes hybrids.

Figure 5. 
Scheme for the one-step CVD synthesis of graphene/carbon nanotubes hybrids.
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consumption of power, they still need high temperature, flammable gases, or toxic 
chemicals for the in-situ growth of 3D architecture.

3. Effect of experimental parameters of CVD methods

3.1 Effect of catalyst nanoparticles

It is known that substrate is the important part in the conventional CVD 
method, and the choice of substrate is essential to the morphology, nanostructure, 
and applications for carbonaceous nanomaterials. We generally use single transition 
metal substrate (Fe, Co, Ni, Cu, palladium (Pd) [41], ruthenium (Ru) [54]) as the 
catalyst for the preparation of graphene, and Fe, Co, Ni, and Cu are of great inter-
est, because of the low cost and availability.

Remarkably, to build the uniform 3D architecture, single metal substrate is 
not enough for the CVD growth process. Hence, substrate embedded with metal 
nanoparticles serves as the bifunctional catalyst to facilitate the synthesis of dif-
ferent dimensional carbon materials, and the crucial issue for the in situ growth of 
3D hybrids depends on the stability of catalyst nanoparticles during the deposition 
process. In CVD methods, the metal nanoparticles for the growth of hybrids could 
be obtained by a variety of ways, such as spin coating [47], electron evaporation 
[50], template etching [55, 56], and so on. Moreover, the covalent C–C bonding 
between different dimensional carbon materials, which is of paramount impor-
tance for 3D nanostructure, is probable to be achieved by such methods [57–59]. 
Nguyen et al. fabricated graphene/carbon nanotube composite by employing the Cu 
substrate-embedded Fe nanoparticles as the catalyst in the simple CVD approach 
[15]. In which Cu foil served as the template for the graphene sheet preparation. 
Additionally iron nanoparticles served as the catalyst for the CNT preparation. 
Besides, similar report indicated that the diameter, density, and quality of CNTs of 
composite could be defined by the size of the catalyst nanoparticles [45]. And vari-
ous densities of catalyst nanoparticles had a different effect on the purity, thermal 
stability, and defects of 3D carbon hybrids [59].

3.2 Effect of growth temperature

Although low-dimensional carbon nanomaterials’ nanostructure and diameter 
in 3D architecture is directly related to the size and nature of catalyst nanoparticles, 
it also could be indirectly determined by adjusting growth temperature in CVD 
technique. The different growth of CNF/CNT hybrid was fabricated due to the dif-
ferent carbon source decomposition and diffusion rate at various growth tempera-
tures in the study of Park et al. [24]. Furthermore, the growth temperature is also 
crucial for the defects and properties of 3D carbon nanomaterials. Lin et al. [57] 
found that at different growing temperatures, the various architecture of sample 
could be produced by indirectly changing the number of layers of graphene and 
packing density of CNTs. And the ratio of the ID/IG (Raman spectroscopy analysis), 
defects, and surface area increased with the decrease of growth temperature, lead-
ing to the increased specific capacitance. As a result, it is crucial to seek the appro-
priate growth temperature for the growth of well-developed 3D composite.

3.3 Effect of carrier gas

In the CVD approach, hydrogen (H2), argon (Ar), and nitrogen (N2) are utilized 
for the growth of carbon materials in the high-temperature annealing process, and 
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the influence of variety of gases in the conventional CVD process is different. As for 
Ar and N2, they serve as the carrier gas to introduce the vapor into the CVD furnace 
under a suitable flow rate. As for H2, it has multifunctional effects in the practical 
CVD environment. First, it is believed that H2 removes surface impurities (such 
as S and P) and defects which can cause local variations of carbon solubility in the 
metal substrate in the high-temperature process [13, 60]. And it also enables the 
reduction process of metal oxides for producing enough catalyst nanoparticles at 
the high temperature [10, 22, 24]. Yan et al. [49] fabricated mesoscopic 3D com-
posite comprised of graphene and CNTs under the effect of Ni-Co catalysts which 
was produced at 800°C in H2 atmosphere. Unlike the conventional CVD synthesis 
of individual 1D or 2D carbon nanostructure, H2 also plays an important role in 
building nanostructure of 3D hierarchical hybrids, especially for graphene/CNT 
composite. For example, there were two simultaneous reactions appearing during 
the construction of 3D graphene/CNT hybrids in the previous report [8]. On one 
time, the methane decomposed with the increasing temperature and thereafter 
facilitates the CNT growth out of islands of metal catalyst. Simultaneously, hydro-
genation process appeared on the surface of graphene sheet (shown in Figure 6). In 
this process, graphene sheet was effectively etched under the atmosphere of H2 and 
transformed into CH4 at the point of connection with the catalyst nanoparticles (Ni 
nanoparticle + C graphene +2H2 → Ni + CH4) [61]. Furthermore, the morphology 
of the hybrids was adjusted via varying the H2 flow rate to change the two contrary 
reactions in the CVD method. Consequently, the high density of CNTs grown on 
the surface of graphene sheet under the suitable flow rate of H2, implying that the 
rate of H2 etching optimized the 3D nanocarbon formation.

3.4 Effect of carbon source

So far, quite a few investigations have been dedicated to the fabrication of 3D 
carbonaceous hybrids by using various carbon sources, and studies have illustrated 
that the carbon sources can also be basically classified into the three categories: 
hydrocarbon compounds (CH4 [45, 58], C2H2 [11, 50], C2H4 [10], C3H8 [43]), liquid 

Figure 6. 
Schematics illustrating direct CNT growth on planar graphene under H2 etching.
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carbon sources (ethanol [47], pyridine [22], toluene [41]), and solid feedstock 
(melamine [49], Prussian blue [9], camphor [62]) and so on. According to the 
relevant reports, diverse carbonaceous hybrids choose various carbon sources 
as feedstock for the basic supply of 3D architecture. With respect to CNT/CNF 
hybrids, hydrocarbon compounds are always considered as feedstocks of CNTs on 
the surface of obtained CNFs. With respect to CNT/graphene or CNF/graphene 
composites, hydrocarbon compounds, liquid carbon sources, and solid feedstock 
are all used as precursors for the growth of hierarchical architecture. Notably, for 
the synthesis of graphene, the present CVD technique requires high growth tem-
perature, typically 1000°C [63–65]. Since it is more environment-friendly, conve-
nient, and economical for industrial fabrication, a low-temperature route is greatly 
desirable. Liquid and solid carbon sources decompose at a lower temperature rela-
tive to major gaseous carbon sources. Therefore, liquid and solid feedstock could 
be a better choice for the growth of 3D CNT/graphene or CNF/graphene hybrids 
because of the quick carbon diffusivity through metal catalysts and covering on 
the surface at lower temperature. Moreover, during the dehydrogenation process of 
liquid or solid carbon sources, the overall dehydrogenation barrier and nucleation 
barrier are much lower than that of gaseous carbon source from the relevant report 
[66]. Recently, low temperature (800°C) one-step CVD synthesis of 3D hybrids 
composed by CNTs and graphene sheet are demonstrated by using melamine as the 
single solid carbon source [56]. Nevertheless, 3D hybrid growth at lower tempera-
ture still remains a challenge.

4.  Development trend and application prospect of three-dimensional 
nanocarbon hybrids

Three-dimensional nanocarbon hybrids have been used for a variety of applica-
tions, for example, transparent and flexible electrodes and field-effect transistors 
[12–16, 47], sensors [17–20], fuel cell [67], batteries [9, 11, 44, 55], supercapacitors 
[10, 50, 51], and so on.

4.1  Three-dimensional nanocarbon hybrids in transparent and flexible 
electrodes and field-effect transistors

Because of the outstanding mechanical, electrical, and thermal properties, 
low dimensional nanocarbon materials have recently attracted enormous inter-
est for potential application in transparent and flexible nanoelectronics [68–70]. 
Furthermore, 3D graphene-based hybrids which offset shortcomings of pure 
graphene received a large number of attentions in particular for two applica-
tions: transparent and flexible electrodes and field-effect transistors. Kim et al. 
[13] successful synthesized single-walled carbon nanotubes (SWCNT)/gra-
phene hybrids on the Cu foil coated with CNTs. Notably, compared to pure CNT 
(58.78 ± 36.17 cm2/V s) and graphene (341.7 ± 259.4 cm2/V s), SWCNT-graphene 
hybrids possessed higher field-effect mobilities (μ) (394.46 ± 176.27 cm2/V s) and 
better output characteristics (Figure 7), suggesting that the electrical conductivity 
of this hybrids dramatically increased compared to individual carbon material. 
As for transparent and flexible device applications, the hybrids showed the low 
sheet resistance (300 Ω/sq) with 96.4% optical transparency which is largely lower 
than the monolayer graphene (∼1 kΩ/sq) grown by CVD method, indicating that 
composite is a promising material in developing high-performance transparent and 
flexible devices. Additionally, the hybrids possessed improved mechano-electrical 
property result from the CNT growth and obtained hybrid demonstrated that at an 
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applied field of 4.0 V/μm, the hybrid exhibited a current density of 1.33 mA cm−2 
[15], implying superiority than that of pure CNT materials on indium tin oxide 
films (ITO) glass [71]. And it probably replaces the ITO films, the most common 
transparent and flexible electrodes, as an alternative material with properties 
including high on/off ratios and outstanding electrical conductivity for high-
performance flexible device in the future.

4.2 Three-dimensional nanocarbon hybrids in fuel cell and batteries

In the practical application, the higher active and stable catalysts are crucial 
to the high electrochemical performance of fuel cell. Compared to the pure 
Pt-graphene cathode material, the Pt-3D nanocarbon composite cathode exhibits 
much smaller oxygen reduction reaction (ORR) charge transfer resistance and 
higher maximum power density in the direct methanol fuel cell [23] and proton 
exchange membrane fuel cells [21]. Moreover, due to the expensive cost and poor 
durability, as the spread anode and cathode electro-catalysts for ORR, Pt-based 
materials are hampered in the commercialization. Significantly, the CNT/CNF 
composite acts as the effective Pt-free ORR catalyst with a comparable activity, 
cheap price, and better thermal stability and durability, and the unique 3D network 
results in the enhanced electrochemical performance [22], implying 3D hybrid 
materials are becoming increasing competitive in the fuel cell applications.

Carbon-based materials (such as CNTs, CNFs, graphene), with their merits 
of reversible lithium-carbon reaction, low-intercalation potential with Li+, high-
coulumbic efficiencies, and low-capacity fade, are excellent choices as electrode 
materials of lithium-ion batteries [72, 73]. Nevertheless, the cycling performance 
and high-rate capability of individual material are not as satisfactory as expected, 
possibly owing to the large contact resistance of easy self-aggregation and stack-
ing. Moreover, hybrids consisting of various low dimensional carbon materials, 
which favor different oriented diffusion of the lithium ion and the 3D nanocarbon 
architecture, are beneficial to the electrons’ collection and transport around the 
cycling process, leading to high electrical conductivity and chemical stability. For 
example, the 3D nanocarbon hybrid anode exhibited significantly enhanced revers-
ible capacity (300 mA h g−1), outstanding cycling stability, and lower electrolyte 
resistance and contact resistances in contrast with the individual CNF material [11]. 

Figure 7. 
Output characteristics (IDS − VDS) of graphene, SWCNT-graphene hybrid film, and SWCNT. Reproduced 
with permission from ref. [13].
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Additionally, by building 3D carbon network, at current densities of 0.36, 0.6, 1.2, 
2.4, and 6 mA/cm2, the rate performance of graphene/CNF hybrids reached about 
420, 385, 329, 229, and 189 mA h g−1, (as shown in Figure 8), which were superior 
to those of other pure nanocarbon performances [44]. Therefore, hybridization of 
the different low-dimensional carbon nanomaterials is an effective route to provide 
fast ion/electron transfer and higher Li storage capability, and the hierarchical 3D 
carbonaceous architecture is also promising for Li-ion battery applications in the 
future.

Because of the large energy density, capacity (1673 mA h g−1), low cost, and 
environmental benignity of sulfur, lithium-sulfur (Li-S) batteries are investigated 
by a large number of research groups. However, the “shuttling effect” which always 
triggers an inevitable sulfur loss in practical Li-S battery applications, leading to an 
increase in internal resistance, low cycling capacity, and poor coulombic efficiency. 
To solve this problem, porous carbon materials, e.g., CNTs and graphene, also have 
been utilized to capture and encapsulate sulfur, blocking the high solubility of 
polysulfides during the Li-S battery applications [74, 75]. And compared to pure 
CNT which is always hindered by problems of easy self-aggregation, enormous 
interface resistance, and poor S-storage ability, the 3D hybrids composed of CNTs 
and graphene are more suitable for the cathode of high-rate performance for Li-S 
batteries. The hybrid structure exhibits unique advantages: (i) the well-connected 
junction between the CNTs and graphene sheets enable rapid electron transfer; 
(ii) robust nanostructure provides flexibility and mechanical robustness, which 
effectively buffers volume changes during the cycling process [9]. Zhao et al. 
reported that graphene/CNT composite cathode possessed remarkable perfor-
mance: a reversible capacity (928 mA h g−1) at 1 C capacity and at a high current 
rate of 5 C, the capacity as high as about 650 mA h g−1 could be obtained even after 
100 cycles with a coulombic efficiency of about 92% in Li-S battery applications 
[76]. Furthermore, it is worth noting that electrochemical performance and cata-
lytic activity have significantly improved nitrogen doping according to a relevant 
report, thus nitrogen-doped 3D hybrids also applied in the Li-S batteries. Tang 
et al. employed glucose and dicyandiamide as the carbon and nitrogen feedstocks to 
prepare the nitrogen-doped nanocarbon hybrid by a one-step chemical vapor depo-
sition process technique, and the result (1314 mA h g−1 at 0.2 C, a capacity retention 

Figure 8. 
Comparison of the rate capabilities of CNF/GNS, GNS, CNT, commercial natural graphite discharged at C/5, 
CNF (30 nm in diameter), CNF/natural graphite, and natural graphite spheres. Reproduced with permission 
from ref. [44].
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of 97% after 200 cycles at a high rate of 2 C) exhibited the improved cyclic and rate 
performances [9]. These experimental results also indicate that the nitrogen-doped 
3D nanostructure has the potential toward promising Li-S batteries.

4.3 Three-dimensional nanocarbon hybrids in supercapacitors

A variety of nanocarbon materials, e.g., CNTs, graphene, or mesoporous and 
activated carbon possess enormous specific surface areas yet are limited by low 
performance owing to aggregation and internal resistance, leading to decreased 
capacitance than theoretical prediction [77]. To overcome the aforementioned dis-
advantages, 3D composites are considered as attractive materials for supercapacitor 
application by inhibiting the agglomeration and improving the electrolyte electrode 
accessibility and the electrode conductivity. Relevant report demonstrated that the 
capacitance (653.7 μF cm−2) at 10 mV s−1 of 3D CNT/graphene-based supercapaci-
tor was superior to the graphene electrode (99.6 μF cm−2) [8]. Zhou et al. fabricated 
supercapacitor based on polyaniline/carbon nanotube/carbon nanofiber (PANI/
CNT/CNF) electrode [30]. Compared with pure PANI/CNF, the hybrids showed 
higher specific capacitance and energy density, superior rate capability, and lower 
ion diffusion/transport resistance (shown in Figure 9).

Meanwhile, due to the merits—high theoretical capacity, low cost, and natural 
abundance—diverse potential metal oxides, e.g., RuO2 [78], MnO2 [79], NiO [80], 

Figure 9. 
(A) GCD curves of CNF, CNT/CNF, PANI/CNF, and PANI/CNT/CNF film electrodes at a current density 
of 0.3 a g−1, respectively. (B) GCD curves of PANI/CNT/CNF film electrodes at different current densities. (C) 
Specific capacitance vs. current density for PANI/CNF and PANI/CNT/CNF film electrodes. (D) Charging/
discharging cycling stability of PANI/CNT/CNF film electrodes at a current density of 15 a g−1. Reproduced 
with permission from ref. [30].
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and Co3O4 [81] are regarded as the potential materials for pseudocapacitors. 
Particularly, as one of the most promising pseudocapacitor materials, when the 
MnO2 combined with 3D carbon hybrid, the drawbacks such as weak conductivity, 
low specific surface area, and brittleness of metal oxide electrodes are effectively 
alleviated, resulting in higher electrochemical performances [26, 27]. Wang et al. 
synthesized nanocarbon hierarchical composites (CNTs/CNFs) decorated with 
MnO2 for flexible supercapacitors [10]. And the 3D nanocarbon hybrid/MnO2 elec-
trodes showed large better specific capacitance, cycling stability, maximum energy 
density, and rate capability than the CNF/MnO2 electrodes. These enhanced elec-
trochemical performances of hybridized-based electrodes indicate that the designed 
hierarchical structures of composites support a large special surface area for the 
reaction between electrolyte ions and metal oxides. Simultaneously, the special 3D 
nanostructures improve the electrode nanomaterials’ electronic conductivity and 
facilitate transport channels for electrolyte ions. It is no doubt that 3D nanocarbon 
hybrids will have a crucial impact on the emerging materials of high-performance 
supercapacitor applications.

5. Conclusion and further prospects

To combine the merits of each building block, 3D nanocarbon structures (CNT/
graphene, CNF/graphene, CNT/CNF hybrids) have been prepared by a variety of 
methods. The synthesis procedure, merits, and demerits of different approaches 
reported in the literatures are discussed in this chapter. Among them, chemical 
vapor deposition is regarded as the most promising fabrication method, and nicely 
hybrid architectures are achievable by this way. Nevertheless, there are various 
drawbacks and challenges in the practice synthesis. One of the great challenges in 
the CVD synthesis of the three-dimensional nanocarbon hybrids is convenience 
or simpleness when compared to preparation methods of individual nanocarbon 
materials. A simple scalable CVD method to fabricate controllable architecture 
of 3D nanocarbon hybrid is still crucial to industrial production. Furthermore, a 
variety of applications have been presented in this chapter. Compared to individual 
nanocarbon components, the superior performances of 3D nanocarbon hybrids 
signify their promising and wide application in the future, and 3D hybrid electrode 
materials are becoming more competitive in energy storage applications. It is worth 
mentioning that studies on the growth mechanism of 3D nanostructure which is 
necessary for the full understanding of CVD growth process is seldom reported 
from the relevant literatures. And some crucial problem still remained to be solved, 
particularly the interactions between various individual components and structure 
control in the future.
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