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Chapter

An Overview of Evolutionary
Algorithms toward Spacecraft
Attitude Control
Matthew A. Cooper and Brendon Smeresky

Abstract

Evolutionary algorithms can be used to solve interesting problems for aeronau-
tical and astronautical applications, and it is a must to review the fundamentals of
the most common evolutionary algorithms being used for those applications.
Genetic algorithms, particle swarm optimization, firefly algorithm, ant colony opti-
mization, artificial bee colony optimization, and the cuckoo search algorithm are
presented and discussed with an emphasis on astronautical applications. In sum-
mary, the genetic algorithm and its variants can be used for a large parameter space
but is more efficient in global optimization using a smaller chromosome size such
that the number of parameters being optimized simultaneously is less than 1000. It
is found that PID controller parameters, nonlinear parameter identification, and
trajectory optimization are applications ripe for the genetic algorithm. Ant colony
optimization and artificial bee colony optimization are optimization routines more
suited for combinatorics, such as with trajectory optimization, path planning,
scheduling, and spacecraft load bearing. Particle swarm optimization, firefly algo-
rithm, and cuckoo search algorithms are best suited for large parameter spaces due
to the decrease in computation need and function calls when compared to the
genetic algorithm family of optimizers. Key areas of investigation for these social
evolution algorithms are in spacecraft trajectory planning and in parameter identi-
fication.

Keywords: trajectory optimization, spacecraft control, artificial intelligence,
genetic algorithm, particle swarm optimization, ant colony, artificial bee colony,
cuckoo, firefly, swarm intelligence, evolutionary optimization

1. Introduction

Evolutionary algorithm use has been steadily increasing in the number of
published papers corresponding to an increasing number of applications over the
past 20 years [1–8]. Originating as an alternative to traditional mathematical opti-
mization techniques, the techniques now span across almost every discipline to
include data compression, traveling salesmen, image processing, and more impor-
tantly for spacecraft: control theory [9–13], system identification [14–19], and
trajectory optimization [20–25]. Randomly searching a solution space to perform a
global optimization routine can be computationally expensive and time consuming.
Traditional methods such as stochastic parallel gradient decent, newton’s method,
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and quadratic programming [26] are mathematical methods which rely mainly on
the “steepness” of the gradients, or of the corresponding derivatives to follow the
solution set to a zero-crossing gradient value and a potential optimum value. These
methods are not easily implemented in discontinuous, or highly non-linear systems
with a time-dependence such as in trajectory generation, and system identification
of complex systems. One can perform a systematic, or random, search across an
entire solution space, but the complex nature of some applications can limit the
optimization to solution sets of only those within a small parameter space.
Performing an exhausting search across an entire solution space can be considered
the “brute force”method where the routine tries every single possible solution until
the optimization criteria are met. For systems with a large parameter space with
many variables, the computational cost might be too burdensome to arrive at a
solution in a timely manner, and is certainly not relevant for a real-time application
outside of a few cherry-picked examples. However, if a problem can be defined in
an approachable way, evolutionary algorithms can provide a simpler and quicker
way to find a viable solution. Due to the nature of these derivative free
metaheuristic random search algorithms, the global optima may not be found but a
suitable local optima that meets the optimization criteria can.

The most prominent evolutionary algorithm is the genetic algorithm officially
introduced by John Holland in his 1975 book titled “Adaptation in Natural and
Artificial Systems” [27] and its primary variants involving the concepts of chromo-
somes, elitism, parallel populations [28–30], and adaptation [31–33] which are
derived from the concept of Darwinian evolution of animal species across many
generations, also known as natural selection. Genetic Algorithms will be discussed
more thoroughly in Section 2. The sister approach to natural selection based evolu-
tionary algorithms are social-evolutionary algorithms also known as swarm intelli-
gence which will be discussed in Section 3. Swarm intelligence is also a derivative
free metaheuristic random search algorithm but with a slight modification on both
selection criteria and on the definitions that spawn the “evolution”. Swarm intelli-
gence optimization algorithms for astronautical applications can be sub-categorized
into particle optimization and combinatorics. Particle optimization includes particle
swarm optimization [34], firefly algorithm [35], and cuckoo search algorithms [36]
which focus on a large parameter space with a correspondingly large solution space
that may be impossible to evaluate with traditionally exhaustive optimization rou-
tines. The artificial bee colony optimization [37], and ant colony optimization [38]
algorithms are designed for a smaller investigation swarm but can successfully
navigate a problem defined as an infinite set of combinations such as the commonly
referred to problem of a traveling salesman visiting a large number of cities.

2. Genetic algorithm

Genetic algorithms have been a staple of heuristic artificial intelligence
approaches since its inception in the 1960s and later more formally introduced by
John Holland in 1975 [27]. In the 1990s this kind of random search global optimiza-
tion routine became more mainstream through the use of greatly increased
processing speeds brought on by the personal computers any more importantly
GPUs. Just like other evolutionary algorithms, genetic algorithms rely on a very
specific parameter space defining the population characteristics, parent selection,
and success criteria.

Biesbroek presents a parametric study on the fundamental parameters within a
genetic algorithm application in [39] via three cases toward spacecraft trajectory
optimization. The fundamental parameters include population size, mutation
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probability, and cross-over probability. Figure 1 illustrates the baseline genetic
algorithm structure.

The first major step is in seeding a population. Seeding a population is done by
presenting the algorithm an initial starting point to grow a population from. An
alternative here is to randomly generate a population. A Gaussian distribution is one
common approach. The parent population size is generally dependent on how many
parameters are to be optimized via GA.

Holland described the genetic algorithm as being comprised of building blocks
[27], which was later rederived by Goldberg [40] who related the population size
with the quality of decisions and predicted that for an initial population of n, n3

building blocks are potentially available in the algorithm. A rule of thumb is for m
number of parameters the expected population required for convergence scales
with the square root of the problem. More specifically, Harik showed that using
probabilities, a more optimal population size can be described by Eq. (1) [41].

n ¼ �2k�1ln αð Þ σbb
ffiffiffiffiffiffiffi

πm
p

d
(1)

where k is the order of building blocks, α is the probability of GA failure, σbb is
the average noise expected on the quality of building blocks, m is the number of the
building blocks within the parameter minus one, and d is the difference between the
best and the second best fitness values. In this definition, the noise is a description
of how the building blocks create a member via the genetic evolution of the algo-
rithm and how the resulting combinations may interfere in finding the optimal
solution. In other words, the parent population can create noise hindering the
convergence efficiency. With the expectation on the population size that it scales
with

ffiffiffiffi

m
p

, it can be seen how quickly the required population and therefore compu-
tational need increases with the number of parameters. A more recently derived
rule of thumb is that for “small” parameter sets, the population size is effective if
scaled with the number of parameters with 10 m, and for larger spaces the popula-
tion size scales with ln mð Þ [42], where the definition of large is different for each
author. For a simple parameter set GA can be quite effective for optimization

Figure 1.
Generic genetic algorithm flow diagram.
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problems in many space based applications [23, 24, 28, 43–47] which stem from
aeronautical control [20, 22], and ground-based robotic systems [48–50].

Looking again at Figure 1, the next step is to create children. Children are the
result of statistical combinatorics of parents, and both of the mutation and cross-
over of that parent population. The initial parent population will be evaluated and
scored based on an objective function. The objective function is entirely user
defined for the specific application. The objective function could be described with
respect to minimizing the control effort needed to achieve a specified trajectory
such as described in [51], or in minimizing the error between the actual and the
desired trajectory in an attitude control scenario as presented in [52]. The objective
function is the key component of any optimization and it is crucial to define it in
such away as to minimize (or maximize) said function efficiently and precisely.
This may seem obvious but the optimization routine will focus on the weighted
parameter space defined by the objective function. If a control variable is not fully
observable in the prescribed control law for a system, for example, the optimization
may never converge to a viable solution set.

The objective function will be used to rate the performance of each member of
the parent population. The population will then be ranked based on the threshold
parameter specified in the algorithm. Different variations of GAs focus on certain
threshold schemes to achieve faster convergence in various applications. In the
basic GA scenario, those members who performed well enough to score below the
threshold value (for a minimization problem) will form the parent population for
the next generation. Additionally, a random subset of the original parent population
will remain unmodified. Through mutation or cross-over based on mutation prob-
ability and cross-over probability. These parameters will define the statistical prob-
ability that a member of the population will be chosen for mutation or crossover.
These probabilities typically start with a higher value and continually decrease on
each subsequent generation to encourage the population to converge nicely to an
optimal value. If a member is chosen for mutation, in this context, that will mean
that a randomly chosen set of parameters within that member (if the parameter
space is larger than one) will be adjusted via a Gaussian distribution function such
that the amplitude of the specific parameter will have a statistical mean at the
current value of the parameter. In short, a mutated member of the population will
only have some parameters altered in value, not its entire chromosome, or set of
parameters to optimize.

Cross-over is the next primary method by which the GA, alternatively described
as a non-stochastic optimization approach, is taken. Non-stochastic optimization
leads into the burgeoning field of deterministic artificial intelligence which entails
more than there is space available in this chapter to discuss, and the reader is
encouraged to review the following work compiled by Sands [53]. A cross-over is
created by taking two parents, and through a predefined or randomly selected
crossover point, they will be split and recombine as shown in Figure 2where Parent
1 and Parent 2 will now become Child 12 and Child 21 in the new population. After
each member of the population is statistically chosen to be either modified or left
alone it now is considered the children population. This new population is evaluated
through the given objective function and the results become the segregated parent
population for a new generation of possibilities. This cycle of parent-children func-
tion evaluations repeats until exit criteria are met. Common exit criteria may be to
stop after a given number of generations have been evaluated, if the delta between
the best performers across multiple generations shows no improvement, or ideally if
the best performer of the current generation has met the performance objective
desired. In this fashion, the population evolves over time via mutation and cross-
over until an optimal solution is reached. In the best case, the optimal solution is
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global, but is often local with the hyper-dimensional solution space too large to
confirm one way or the other.

In the flow of the genetic algorithm framework, the algorithm is said to have
“worked” when it reaches convergence. Convergence here is defined such that if
the fitness of the entire population is decreasing (not counting stall generations
where fitness is not improved) toward a global minimum, and that on the last
generation the majority of the population has very similar fitness. An example is
presented in Figure 3 which illustrates a simple problem of tailoring the input of a
trajectory system utilizing the dynamics based on the forced Van der Pol equation
shown in Eq. (2). In this simple control example illustrated in blue and green, some
arbitrary steady state value is the input to the system. It is then converted to a
desired trajectory and sent to the feedforward controller. The feedforward control-
ler builds a desired torque which is then sent as the control signal to the system
dynamics, also know as the “plant”. In an ideal situation, the equation used to
determine the required control torque is perfectly understood such that the system
is perfectly controllable. Here, the Van der Pol system converges to a desired state
but only after through a large amount of transient states which can be detrimental
to the physical stability of a mechanical system.

∂
2x

∂t2
� μ 1� x2

� � ∂x

∂t
þ x ¼ F tð Þ (2)

Ki xm � xdð Þ þ Kd €xm � €xdð Þ þ Ki xm � xdð Þ2 � 1
� �

Kp _xm � _xdð Þ (3)

This control system breaks the desired input into three components, x, _x, and €x
which represents angle, angular velocity, and angular acceleration, and are used to
feed the feedforward controller of the system in order to prescribe the best torque
command to the system dynamics described in Eq. (2). Using a non-linear PID
feedback control scheme as seen in Eq. (3) where Ki, Kd, Kp are the integral,
derivative, and proportional gains, and xd, and xm are the desired and measured
output values respectively. Tuned by hand, one can achieve an RMS-error between

Figure 2.
Generic genetic algorithm crossover illustration.

Figure 3.
Sample control flow diagram using the non-linear Van der pol equation as a system under test.
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the desired and measured circular trajectory in the phase-plane of this simulated
system at 0:1767deg. The x and _x components are shown in Figure 4a. This type of
highly non-linear feedforward – PID feedback system is challenging to classically
tune therefore a GA was investigated. In this scenario the objective function is set to
minimize the RMS-error between the desired xd and _xd trajectory when compared
to the actual trajectory xm and _xm. The objective function can be seen in Eq. (4).
Using a GA with the identified parameters in Table 1 an RMS-error of 0:1060deg is
achieved representing a 40% reduction in error.

RMSe ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

n

X

n

i¼1

xd

_xdÞ
€xd

2
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€xm
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2
v

u

u

u

u

t

(4)

The reduction in RMS error is illustrated in Figure 4b. The dotted line is the
desired trajectory whereas the solid line is the actual trajectory achieved within the

Figure 4.
Trajectory results using classically tuned PID feedback control on a highly non-linear system versus the results using
a genetic algorithm tuned to minimize the RMS error. A 40% reduction is RMS-error is achieved. (a) Trajectory
results using classically tuned PID controller, and (b) Trajectory Results using a GA tuned PID controller.

Parameter Value Result

Population size 200 Function call per generation

Population 3 Number of parameters to optimize

Mutation rate 10% Probability to be selected for crossover

Crossover rate 80% Probability to be selected for crossover

Lower bound a [0,0,0] Minimum values allowed in population

Upper bound a [1000,1000,1000] Maximum values allowed in population

Selection criteria 5% Elite Choose the top 5% of population as parents

Max Stall generations 20 Exit criteria

Initial population rangea [0,20] Initial population bounds

aConstraints to the genetic algorithm.

Table 1.
Genetic algorithm parameters for a highly nonlinear trajectory optimization of a Van der Pol system using PID
feedback control.
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phase plane of the system. The phase plane plots the angular position vs. the angular
velocity. The phase plane plot can be used to monitor trajectory tracking when you
are interested in more that one state in addition to highlighting any potential
instability in the system.

With this example, the rate of convergence can be illustrated and examined.
Figure 5 highlights the fact that the GA implementation presented here required
8800 function calls, and 43 generations to converge within the exit criteria at 20
stall generations. Figure 5 also implies that reasonable performance was achieved
after only 10 generations.

Figure 5.
Results of the genetic algorithm as it steps through each generation in optimizing a PID control variables.
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Let us look again at the paper presented by Biesbroek [39], they look at a
parameter space of only two in the application of optimizing the trajectory of a
rocket such that a maximum horizontal distance, x, is achieved. The specific

parameters are V m
s

� �

&m kgð Þ, where V = velocity in meters per second, and

m = mass in kilograms. The equation of motion for the dynamics of the rocket is
defined in Eq. (5) along with the deferential equation to define the range x with
respect to V, and m.

_x ¼ V, _V ¼ T �D

m
¼ VEβ � kV2

m
, dx ¼ � m

kV
dV � VE

kV
dm (5)

where T is thrust, D is the drag, VE is the exhaust velocity, β is the mass ratio,
and k is a constant. In this instance, the goal of the objective function is simply to
find the values for V and m based on the equations of motion for the rocket and the
differential equation defining the range. Using the equations defined in Eq. (5), it is
then rearranged via Green’s Theorem into the following objective function f in
Eq. (6). Depending on the author, an objective function may also be referred to a
fitness function when describing how well the converged solution “fits” the desired
result via an error equation. A common approach is to use the root-mean-squared
error (RMSe) between the resulting solution and the desired solution.

f ¼
X

n

k¼1

ln Vkð Þ � ln Vmax,kð Þ
k

� VE

k

� �

δmþ 7686:722 (6)

Here, VE is again the exhaust velocity, Vmax,k is the maximum velocity, and δm is
the change in mass as the propellant is used. In this case δm and Vmax,k are the
constraints that bound the solution space. Running through varying populations,
cross-over and mutation populations lead to the quickest convergence with a popu-
lation size of only 10,343 generations, a cross-over rate at 10% and mutation rate of
only 1%. The optimal solution for two parameter problem presented can be calcu-
lated analytically to be equal to a distance of 9839 km. The most efficient GA
solution, in terms of number of fitness function evaluations and therefore compu-
tational speed, required 3421 fitness function calculations and came to the correct
solution such that the rocket should start with a full thrust until no more propellant
is available, followed by a coasting arc to achieve maximum horizontal distance.

Another area of interest is in path planning. Jia presents a parallel evolutionary
algorithm solution for real-time path planning for unmanned aerial vehicles
(UAVs) in [29]. The Path planning problem for UAVs start with an initial point x0,
then the UAV needs to visit a series of waypoints, or stops, along its route, avoids
potential dangers, or no-fly zones, before traveling back to x0 or to another final
landing zone as illustrated in Figure 6. In this scenario, a cost function might be
described in such a fashion as to relate the fuel cost, a penalty of losing the UAV to a
no-fly zone or a crash, and a reward for finishing the mission. The concept here
takes a traditional genetic algorithm approach but modifies it through the use of
competitive parallel generations. Each generation is evaluated through the objective
function, but only the population with the best fitness value lives on whereas the
other populations are re-initialized for the next generation. In the case of
populations with similar peak fitness values, the population with the best overall
fitness is chosen. The non-deterministic nature of path-planning presents an inter-
esting challenge. The variability can stem from weather conditions, probabilities of
danger to the UAV, and probabilities of failure modes of the UAV itself. The goal of
using parallel competing populations is to mitigate the possibility of premature
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convergence to a local minima. If the population with the best fitness stagnates in
evolution to a local minima, the alternative parallel populations can potentially
surpass the aforementioned population in fitness and therefore the stagnate popu-
lation will become extinct and be re-initialized. This paper finalizes by highlighting
the improvement of using two parallel evolutionary algorithm over a single in the
ability to achieve a global minimum by 50% from 17%.

Taking the path planning application one step further leads us to the
interplanetary path planning regime. Gage from Stanford University presented a
novel paper in 1994 on interplanetary trajectory optimization using a genetic algo-
rithm [43]. The preliminary design space for interplanetary spacecraft missions are
highly complex, discontinuous, and anything beyond a two-body problem is pri-
marily solved numerically. This initial investigation was on the viability of using a
Genetic Algorithm as part of the team’s suite of search methods toward finding
viable interplanetary trajectories. It was shown that the computational need was
reduced by almost four times from the more common grid-search method used up
through the 1990s for designing interplanetary trajectories. The keys to the perfor-
mance improvement were the constraints applied to objective functions which
greatly penalized infeasible trajectories resultant from the parent-children, and to
also artificially degrade the fitness of population members that were in close prox-
imity within the GA’s search space. This paper also noted that it can be helpful to
restrict “mating” between parents with a separation ≤ σ, where σ is a user-defined
threshold distance between potential parents within the same search space. This can
ensure that parents that are circling around two different local minimums (not yet
decided if one is a global minimum) do not mate and produce offspring that result
near neither of the two local minimums, and thus are unlikely to increase fitness.
This restriction in mating can lead to multiple possible solutions sets evolving
through the generations and ensure that a single strong local minimum does not
dominate the evolution.

3. Swarm intelligence

The next major subset of evolutionary algorithms relies on the assumption of
swarm intelligence and social evolution in time whereas the genetic algorithms
previously discussed depends upon genetic evolution of the populations; which is
metaheuristic in nature and is derived from the biological (and probabilistic)
mechanisms describing the movement of swarms of birds, fish, and insects on their

Figure 6.
Simple illustration of a UAV path plan with no-fly zones in gray.
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search for food or mates. Referring to this concept as metaheuristic means that
these algorithms are high-level symbolic based approaches designed to utilize
imperfect or incomplete data in order to identify or approximate a sufficient solu-
tion to the given optimization problems. Swarm intelligence algorithms are based
on the simple individual actions of the swarm which can collectively be quite
complex and result in self-organization, decentralization and cooperation utilizing
what is also referred to as collective intelligence. The primary swarm intelligence
algorithms to be discussed are particle swarm optimization (PSO), cuckoo search
algorithm (CSA), firefly search algorithm (FA), ant colony optimization search
algorithm (ACO), and artificial bee colony algorithm (ABC).

3.1 Particle swarm optimization

Particle swarm optimization (PSO) was first introduced by Kennedy and
Eberhart in 1995 [34] as a data clustering algorithm [1], and follows a population-
based evolutionary social algorithm [3] along side of what can be considered an
individualized random search algorithm [54]. Figure 7 outlines the overarching
procedure. Initially, the algorithm is seeded with a uniformly random distribution,
which is called particles. These particles will result in many different values within
the search space of the system of possibilities, and again, the individual particle
performance is evaluated though an objective function just like with other optimi-
zation algorithms. In the general form of PSO, the algorithm utilizes a global topol-
ogy which defines how the swarm communicates with each other. Utilizing the
above mentioned communication, the swarm is aware of all other particle actions,
success, and current velocity. Each particle’s position within the search space
(searching for the optimum value) is calculated with a corresponding velocity as
defined by Eq. (7).

vn tð Þ ¼ ω� vn t� 1ð Þ þ a1r1 pBn
t� 1ð Þ � xn t� 1ð Þ

� �

þ a2r2 gBn
t� 1ð Þ � xn t� 1ð Þ

� �

(7)

Figure 7.
Particle swarm optimization flow chart.
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where vn is the particle velocity in the next time step, a1 and a2 are constant
weights on the effect due to social evolution, pBn

is the individual particle’s best

result so far, gBn
is the population’s best result so far, ω is the particle’s inertia, r1 and

r2 are random numbers normally distributed from 0 to 1 to keep the random nature
in the algorithm. Initially, the particles are generated with a small initial velocity
and then grow as independent individuals within the swarm. PSO relies on the best
particle solution position pBn

, the best group solution position gBn
, and the current

particle velocity to calculate the particles next position in the solution space. Within
that new particle position the objection function is then evaluated for fitness, along
with all other particles in the population, and new pBn

and gBn
are calculated for the

next iteration. The goal of particle swarm optimization algorithm is for all the
particles to converge within the hyper-dimensional parameter space to the opti-
mum value. With enough iterations, and a correspondingly well defined fitness
function and PSO parameters, the algorithm will converge to global optima as
illustrated in Figure 8. The algorithms parameters must be chosen such that the
algorithm is balanced between two competing search notions: the particles explor-
ing the unknown areas of the search space, and the particles exploiting the known
areas of the search space in order to prevent premature convergence (if too heavily
focused on exploiting) and non-convergence (if too heavily focused on exploring).

Alternatives and modifications to the PSO algorithm can include constrained
velocities such as a minimum or maximum value (such that it will not grow
unbounded), local biases defined by Euclidean distance between particles to define
neighborhoods in order to prevent two sets of parents from different neighbor-
hoods to attract to each other and reduce the overall fitness, and penalties for
leaving the desired search space. Additionally, PSO can be hybridized with other
approaches to utilize the lower computational cost of PSO but to decrease the
randomness of the search if a general solution space is already known [55].

3.2 Firefly search algorithm

The firefly search algorithm (FA) is an interesting optimization technique based
on the behavior of tropical fireflies who flash their abdomens with a biolumines-
cence chemical in order to both attract mates, and in some species to lure in prey
such as the male of competing firefly species. With this behavior there are a few
components that can lend itself toward the development of an interesting swarm
optimization routine. Their light flashing pattern and intensity is also affected by
their desire for mates or food, along with the distance another source is from the
observing firefly. The definition on describing this pattern for what specifically

Figure 8.
Particle swarm optimization iteration illustration.
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prompts the firefly to signal and how they signal there light is still unknown. But
taking some of these concepts, an optimization routine can be developed. With this
concept, the firefly algorithm was introduced by Yang [35]. The light intensity is a
function of distance through the environment, which can be described by Eq. (8).

In ¼ Ise
�γr2ns , rns ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

xn � xsð Þ2 þ yn � ys
� �2

q

, β∝ Ise
�γr2ns (8)

where In is the intensity seen by the nth firefly which is considered to be the
observer, Is is the intensity of a nearby firefly also known as the source, and rns is the
Euclidean distance between the nth firefly and the nearby firefly. With this equa-
tion an attractiveness calculation represented by β can be defined such that In ∝ β

also shown in Eq. (8).
The FA routine is shown in Figure 9. This algorithm depends on an objective

function just like the previously mentioned optimization algorithms. This objective
function will evaluate the fitness of the fireflies, where the fitness will also deter-
mine the light intensity value at each firefly. An initial population of fireflies is
generated and evaluated through the objective function. At this point the calcula-
tion for each firefly will be calculated to evaluate the attractiveness to its
nearest neighbors. The attractiveness will affect the firefly’s next step as shown
in Eq. (9) [35].

xntþ1 ¼ xnt þ β xn � xsð Þ þ εn (9)

where xnt is the current position of firefly n and xntþ1 will be the new position of
firefly n. β is the attractiveness of firefly n to firefly s weighted by the distance
xn � xsð Þ. εn is a uniform distribution random number to facilitate a random walk
behavior toward the more attractive mates. Starting from a relatively uniform
population density across the solution search space, the fireflies will iteratively
converge to the nearest minima location as seen in Figure 10.

The firefly search algorithm and its variants have been applied to trajectory
optimization [56–58], control parameter optimization [59, 60], and dynamics

Figure 9.
Firefly search algorithm flow chart.
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[61–63] in what can be considered as an introductory investigation by looking for
initial successes in applying the FA toward these astronautical research areas.

3.3 Ant colony optimization search algorithm

The ant colony optimization (ACO) algorithm is another approach based off of
the swarm behavior of insects, and was originally designed for combinatorial prob-
lems like the traveling salesman problem (TSP) where one tries to find the mini-
mum path for an individual to traverse across n number of cities. In the instance of
the traveling salesman, the salesman has a seemingly infinite number of combina-
tions (but not really) to try but only wants to travel the shortest path, and to not
repeat any stops along the way. The basic ant system, an earlier version of ACO, was
presented by Dorigo in 1992 in his PhD thesis [38]. He presented a complex opti-
mization algorithm based on the simultaneously simple and complex nature of
foraging ants that would gain a large interest in the 1990s and later. Many variants
and hybrids were presented by Dorigo and others. Most notably, offline pheromone
updates, and pheromone evaporation was introduced which led to the more com-
mon ACO in 1999 [64, 65]. The concept of pheromones will be discussed shortly.

Figure 11 illustrates at a high-level the flow of the ant colony optimization
routine. The algorithm is initiated with a given set of parameters and objective
function. Next, an initial set of solutions is populated. This is the first round of
traveling ants looking for an optimal solution. The given problem is defined and
broken apart such that the optimization routine will look for the optimal set of these
building blocks in order to minimize the objective functions, or distance in the
realm of the traveling salesman. At this point the pheromone level will be calcu-
lated. The pheromone is laid out such that each ant lays the same amount of
pheromone out on the path that it traverses. This pheromone makes the links
between different combinatorial building blocks attractive. If more than one ant
traverses a similar segment the pheromone level will increase on that path segment,
with an end result of the most common path being the most attractive.

With the most traversed paths being the most attractive, one may notice that
there could be a strong potential for the algorithm to get “stuck” in a local minima.
The ACO algorithm includes what is know as a local pheromone update, which
means that either only the last segment of a successful path will include the phero-
mone, or that the end segment will be delivered a heavier weight of pheromone by
the one ant who achieved the best path in the current iteration. Alternatively, the
best path so far (out of all the iterations) may receive that additional pheromone
instead. At this point the solution space is evaluated to see if a viable global solution

Figure 10.
Firefly search algorithm iteration illustration.
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was found. If not, then the current ants will go through an exponential pheromone
decrease before starting the next iteration in the optimization process. This phero-
mone decay reduces the impact of hysteresis on the solution space and helps pre-
vent premature convergence.

On the following iteration the current ant population will then create a new set
of paths to achieve a solution in the population. Each link will follow pseudorandom
proportional rule, which uses a uniform distribution probability weighted by the
segment pheromone values to decide on each link in the path. Once all ants create
the new population of solutions another iteration of pheromone decisions will
follow. This entire process will continue until convergence criteria are met.

Ant colony optimization has been successfully used for problem sets that can be
discretized into a combinatory problem such as in path planning [66–68], trajectory
optimization [21, 69], and even in spacecraft load bearing [70].

3.4 Artificial bee colony algorithm

Artificial bee colony (ABC) optimization is a derivative of both the bees system
presented in 1997 by Sato and Hagiwara and the bee colony optimization by
Teodorovic and Dell in 2005 [4], and was introduced later in 2005 by Karaboga
[37]. The underlying algorithm flow chart is illustrated in Figure 12 and involves
three types of bees: onlookers, employed bees, and scouts. At the start of the
algorithm, the routine parameters are initialized, and an initial population of food
sources is generated via a uniform random distribution across the solution space.
The population of food sources is discovered by employed bees and the quality of
the food source is evaluated via an application specific fitness function. The
employed bees then randomly search for a new food source, and if that food source
is of better quality, then it becomes the primary food source. If not, then the new
food source is abandoned. This is called a greedy search. Meanwhile, the onlooker
bees observe the actions of the employed bees, and observe their communication
dance through the lens of a randomly distributed variable. This represents the
decision tree on which employed bee an onlooker will follow, or if it will create a
new search. If the onlooker searches for a new food source, it will choose based on a
random recombination of two solutions nearby. When a food source is not picked
up by the onlookers when they transition to the employed bees, that food source is

Figure 11.
Ant colony optimization search algorithm flow chart.
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now considered to be abandoned and will not be a part of the known current
solution space. The next step is to repeat the search for new sources, a greedy
selection, and the corresponding employed bee dance to randomly attract an
onlooker to the known food source.

Similar to the ant colony optimization algorithm, the artificial bee colony algo-
rithm is primarily designed for a combinatorics based problem where the potential
solution can be discretized into an array of building blocks that can be rearranged
and mutated to find an optimum solution. Additionally, the ABC algorithm has bee
used for trajectory optimization [71], parameter optimization [72, 73], and remote
sensing applications [74, 75].

3.5 Cuckoo-search algorithm

Another metaheuristic search algorithm is introduced with the cuckoo search
algorithm (CSA). This approach mimics the parasitic brood behavior in certain
species of the cuckoo bird. This type of bird has a fascinatingly aggressive repro-
duction strategy which is the heart of the CSA. Quite a few species of cuckoos
participate in the obligate brood parasitism which means that they will lay their
eggs in the nests of other birds [36]. The key to the success of the individual cuckoo
is dependent on the cuckoo’s ability to produce an egg that is able to mimic, or
approximate, the host nest eggs such that the host nest mother bird can not distin-
guish the cuckoo egg from her own. The cuckoo egg will hatch before the host eggs,
and ensure dominance in the nest and thus prolong their survival.

Taking this concept to an optimization algorithm it can be illustrated as seen in
Figure 13. Step one is to initialize the algorithm and generate a population of host
nests. Each host nest has a single potential solution to be compared against. The next
step is to evaluate the initial population of nests with the defined fitness function.
Once the fitness function is evaluated for each cuckoo egg, the next step is for the
cuckoo to take flight via a classical Lvy flight path [36]. This is a type of step pattern
is a heavy-tailed random walk similar to that of a fruit fly, which are observed to jolt
out in a straight direction then randomly turn a sharp turn at a random angle. The
desired behavior is described in Eq. (10).

xtþ1 ¼ xt þ sEt (10)

Figure 12.
Artificial bee colony algorithm flow chart.
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where xtþ1 is the position in the next iteration, s is the step size, and Et is a zero-
mean random Gaussian draw to mimic Lvy flights. Once each cuckoo take a flight to
a “new” nest, the fitness function is then calculated again to evaluate the new
population of potential solutions. If the solution criteria are not met, then this
process of flying from nest to nest will continue until convergence as illustrated in
Figure 14. Each individual will take a random walk biases by the direction of the
current best solution within the group.

Yang’s and Deb’s seminal work on the CSA illustrated an enormous computational
cost savings when compared to the genetic algorithm and the particle swarm optimi-
zation Algorithm as each algorithm was used to find the solution to a handful of
standard challenging mathematical functions: Michalewiczs, Rosenbrocks, Schwefels,
Rastrigins, with a 96, 89, 96, and 91% decrease in the number of required fitness
function evaluations when compared to a GA solution respectively [36].

4. Conclusions

With a prevalence of evolutionary algorithms focused on solving trajectory
generation, path planning, remote sensing, control theory, and parameter

Figure 13.
Cuckoo-search algorithm flow chart.

Figure 14.
Cuckoo-search algorithm iteration illustration.
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identification for aeronautical and astronautical applications it is a must to review
the fundamentals of the most common evolutionary algorithms being used for those
applications. Genetic algorithm, particle swarm optimization, firefly algorithm, ant
colony optimization, artificial bee colony optimization, and the cuckoo search algo-
rithm are presented and discussed with an emphasis on astronautical applications.
In summary, the genetic algorithm and its variants can be used for a large parameter
space but is more efficient in investigating a smaller parameter space, less than
1000 parameters in the chromosome. It is found that PID controller parameters,
nonlinear parameter identification, and trajectory optimization are applications ripe
for the genetic algorithm. Ant colony optimization, and artificial bee colony opti-
mization are optimization routines more suited for combinatorics, such as with
trajectory optimization, path planning, scheduling, and spacecraft load bearing.
Particle swarm optimization, firefly algorithm, and cuckoo search algorithms are
best suited for large parameter spaces due to the decrease in computation need and
function calls when compared to the genetic algorithm family of optimizers. Key
areas of investigation for these social evolution algorithms are in spacecraft trajec-
tory planning, and in parameter identification.

Evolutionary algorithms have been shown to have a great potential to solve
challenging problems that traditional optimization routines may not be able to
tackle due to large computational need to support an exhaustive search of the
solution space. The reader should now have the tools to take the foundational
material presented here, to review the referenced sources, and conduct their own
deep dive in an application area of interest.
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